Supplementary information

Bioadhesive Anisotropic Nanogrooved Microfibers Directing Three-dimensional Neurite Extension

Yilin Chen, a Mehmet Berat Taskin, b Zhongyang Zhang, b Yingchun Su, b,c Xiaojun Han c and Menglin Chen a,b *

a Department of Engineering, Aarhus University, Aarhus 8000, Denmark

b Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark

c School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China

Figure S1. SEM images of 20%PCL/6%PEO microfibers electrospun with different volume ratios. In 9:1 group, fibers presented smooth surface and with the increase of PEO, fiber surface became rougher. Longitudinal grooves gradually appeared at 7:3 group and 6:4 group, where 6:4 group showed clearer and deeper grooves. With further increased PEO content, transverse lamellae structures appeared and co-existed with longitudinal grooves (5:5 group). At 4:6 group,
even more random transverse structures were present, making the microfibers porous and loose. 
Scale bar: 50 μm.

Figure S2. SEM images of GF electrospun with different parameters, flow rates range from 2 
ml/h to 4 mL/h, distances range from 8 cm to 15 cm. Microfibers electrospun at 15 cm and 4 
ml/h showed clearer and deeper nanogrooves. Scale bar: 50 μm.
Figure S3. SEM images of RF electrospun with different parameters, flow rates range from 2 mL/h to 4 mL/h, distances range from 8 cm to 15 cm. Microfibers electrospun at 8 cm and 2 mL/h showed more random and rougher surface. Scale bar: 50 μm.
Figure S4. SEM images of GF, GF/pNE, RF and RF/pNE. No obvious morphology change could be observed between uncoated fibers and pNE-coated fibers. Scale bar: 50 μm.
Figure S5. Element mapping images of GF, GF/pNE, RF and RF/pNE assessed by EDS. N element was seen distributed evenly on pNE coated fibers. Colors: green, O; blue, C; red, N.
Figure S6. Stress–strain curves of RF, RF/pNE, GF, and GF/pNE.