Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2018

ELECTRONIC SUPPORTING INFORMATION

An Unusual Alkylidyne Homologation

	Yong-Shen Han, Anthony F. Hill* an	d Richard Y. Kong		
Received 00th January 20xx, Accepted 00th January 20xx	Research School of Chemistry, Australian National University, Canberra,			
DOI: 10.1039/x0xx00000x	Australian Capital Territory, ACT 26	Australian Capital Territory, ACT 2601, Australia		
www.rsc.org/				
Experimental Procedu	ures1	¹³ C{ ¹ H} NMR Spectrum of		
General Considerat	tions1	[W(≡C ^t Bu)(SiCl ₃)(CO) ₂ (dcpe)] 4		
Synthesis of W(≡C	^{2*} Bu)(SiCl ₃)(CO) ₂ (dcpe) 4 1	³¹ P{ ¹ H} NMR Spectrum of [W(≡C ^t Bu)(SiCl ₃)(CO) ₂ (dcpe)] 4		
Attempted Synthes	sis of W(\equiv C ^t Bu)(SiMe ₃)(CO) ₂ (dcpe)			
and observation of	W(CH ^t Bu)(η ² -Cl,Si-	Experimental Procedure		
SiCl ₄)(CO) ₂ (dcpe)	2	General Considerations		
Crystal data for C ₃₃	H _{58.7} Cl _{3.3} O₂P₂SiW·CHCl₃ (3)2	All manipulations of air-sensitive compound at room temperature under a dry		
Discussion of the C	rystal Structure of 3 2	atmosphere using standard Schlenk, v atmosphere (argon) glovebox techniq degassed solvents. NMR spectra were		
Crystal data for C_{33}	H ₅₇ O ₂ SiP ₂ Cl ₃ W (4)2	Avance 400 (¹ H at 400.1 MHz, ¹³ C at 100 MHz), Bruker Avance 700 (¹ H at 700.1 M		
Crystal data for C_{32}	H ₅₉ Cl ₃ P ₂ W (5)3	³¹ P at 283.5 MHz), or Bruker Avance 800 800.1 MHz, ¹³ C at 200.2 MHz) spectrom		
Crystal data for C_{26}	H ₄₈ Cl ₃ OP ₂ W.CHCl ₃ (7)3	(δ) are reported in ppm and referenced (¹ H, ¹³ C) or external 85% H ₃ PO ₄ . The		
Computational Analys	sis of (Cl₃Si)(CO)₂(dmpe)W≡CH3	resonances are denoted by the abbrev (doublet), t (triplet), sep (septet),		
References	4	combinations thereof for more highly con- reported in Hz. Whilst ${}^{13}C{}^{1H}$ for c $(C_6H_{11})_2P(CH_2CH_2)P(C_6H_{11})_2$ ligand were o		
Selected Spectra	5	spectral range precluded unequivocal as: carbon environments. Similarly, proton		
³¹ P{ ¹ H} NMR Data f	or Conversion of 4 to 5, 6 and 9 (t	the dcpe ligand could not be uniquely		
= 1 and 72 hours)	5	complex multiplicities and similar chemic		
	IMR Data for Conversion of 4 to 5	Infrared spectra were obtained using a P One FT-IR spectrometer. Elemental mi performed at the London Metr		
and 6	6	Electrospray ionisation mass spectro		
¹ H- ¹³ C HMBC (3-4 b	oond optimised)7	performed by the ANU Research School spectrometry service with acetonitrile matrix. Data for X-ray crystallography we		
NMR Data for WCl ₄	(dcpe) and neohexene in final	an Oxford Diffraction SuperNova or Oxfo		
product (t = 120 hr	s at room temperature)8	diffractometer. The synthesis [W(≡CH)Br(CO)₂(dcpe)] (1) has been desc		
³¹ P{ ¹ H} NMR Spectr	rum8	Synthesis of W(≡C ^t Bu)(SiCl ₃)		
¹ H NMR Spectrum	of [W(≡C ^t Bu)(SiCl ₃)(CO) ₂ (dcpe)] 4 9	To a yellow solution of W(CH)(Br)(de 0.200 mmol) in THF -78°C (dry ice/acetone), 0.38 mL of a 1.6		

$[W(\equiv C^{t}Bu)(SiCl_{3})(CO)_{2}(dcpe)]$ 4	0
³¹ P{ ¹ H} NMR Spectrum of [W(\equiv C ^t Bu)(SiCl ₃)(CO) ₂ (dcpe)] 4 12	1

'es

ounds were carried out oxygen-free nitrogen vacuum line, or inert ques with dried and obtained on a Bruker 0.5 MHZ, ³¹P at 162.0 MHz, ¹³C at 176.1 MHz,) with cryoprobe (¹H at neter. Chemicals shifts ed to the solvent peak multiplicities of NMR eviations s (singlet), d m (multiplet), and oupled systems and ⁿJ_{ab} carbon nuclei of the observed, their narrow ssignment for the dcpe n environments within identified due to the cal shifts encountered. Perkin-Elmer Spectrum nicroanalysis has been ropolitan University. ometry (ESI-MS) was ool of Chemistry mass or methanol as the ere collected on either ord Diffraction Xcalibur of the complex cribed previously.1

$_{3}(CO)_{2}(dcpe)$ 3

dcpe)(CO)2 (1: 151 mg, (10 mL) at 6 M solution of ^tBuLi in

hexanes (0.60 mmol) was added via syringe. The resultant dark red solution was allowed to stir for 30 minutes at -78°C before 0.22 mL of a 1.0 M solution of SiCl₄ (0.22 mmol) in THF was added via syringe. The reaction was allowed to stir at -78°C for a further 30 minutes before removal of the cooling bath. THF was removed in vacuo and the product was extracted using DCM (2x 10mL) via filtration through a glass frit from the insoluble LiBr precipitate. The DCM was removed in vacuo and resultant crude product was washed with benzene (2 x 5mL) to afford a crude light yellow powder. Recrystallisation from DCM/hexane afforded 7 as bright yellow crystals. Yield 64 mg, 37%. IR (CH₂Cl₂) v/cm⁻¹: 1990 (CO), 1921 (CO). IR (Nujol) v/cm⁻ ¹: 1978 (CO), 1911 (CO). ¹H NMR (CD₂Cl₂, -40°C): δ_H 2.09 (m, 2 H, dcpe), 2.01-1.87 (m, 4 H, dcpe), 1.79-1.04 (m, 42 H, dcpe), 1.30 (s, 9 H, C(CH₃)₃). ¹³C NMR (C₆D₆, 25°C): δ_{C} 324.0 (W= \underline{C} , observed through HMBC in C₆D₆, carbonyl resonance not observed), 54.2 pm (<u>C</u>(CH₃)₃), 41.0 (d, ¹J_{CP} = 21.2 Hz, <u>C</u>H[C₆H₁₁]), 38.9 (d, ${}^{1}J_{CP}$ = 21.3 Hz), 31.8 (<u>C</u>H₂[C₆H₁₁]), 30.8 (<u>C</u>H₂[C₆H₁₁]), 30.4 ($\underline{C}H_2[C_6H_{11}]$), 29.0 (d, $J_{CP} = 3.9$, $\underline{C}H_2[C_6H_{11}]$), 28.9 (CH2[C6H11]), 27.8 (C(CH3)3), 27.6-27.2 (m, 3xCH2[C6H11]) 26.2 $(\underline{C}H_2[C_6H_{11}])$, 26.0 $(\underline{C}H_2[C_6H_{11}])$, 22.1 (dd, ${}^{1}J_{CP}$ = 22.9, ${}^{2}J_{CP}$ = 13.2, $P(\underline{C}H_2)_2P$). ³¹P{1H} NMR (CD₂Cl₂, -40 °C): δ_P 49.3 (¹J_{PW} = 216.1). MS-ESI: 864.2173 [M]⁺. Accurate mass: found 864.2173 [M]⁺. Calcd for C₃₃H₅₇O₂SiP₂Cl₃W 864.2178. Anal. found: C, 44.58; H, 7.17; N, 0.00%. Calcd. for C₃₃H₅₇O₂SiP₂Cl₃W: C, 45.77; H, 6.63; N, 0.00% (Hydrolytic and thermal sensitivity likely saw decomposition of sample en route to London Metropolitan University). Crystals suitable for crystallographic analysis were obtained via layering hexane over a solution of 4 in DCM at -20°C

Attempted Synthesis of $W(\equiv C^t Bu)(SiMe_3)(CO)_2(dcpe)$ and observation of $W(CH^tBu)(\eta^2-Cl,Si-SiCl_4)(CO)_2(dcpe)$

The above procedure was conducted, unsuccessfully, using excess ClSiMe₃ in place of SiCl₄. On one occasion, which was not successfully reproduced, attempts to crystallise the crude product provided a small number of red crystals identified as a chloroform solvate of the tetrachlorosilane complex $W(=CH^tBu)(\eta^2-Cl,Si-SiCl_4)(CO)_2(dcpe)$ 8.

Crystal data for C₃₃H_{58.7}Cl_{3.3}O₂P₂SiW·CHCl₃ (8)

 $M_{\rm w}$ = 997.73, monoclinic, $P2_1/c$, *a* = 10.9285(2) Å, *b* = 19.4442(4) Å, *c* = 20.0693(5) Å, β = 98.632(2)°, *V* = 4216.35(17) Å³, Z = 4, $\rho_{\rm calcd}$ = 1.572 Mg m⁻³, μ (Cu Kα) = 9.966 mm⁻¹, *T* = 150(1) K, red plate, 0.104 × 0.055 × 0.019 mm, 8184 independent reactions, *F*² refinement, *R* = 0.037, *wR* = 0.097 for 6702 reflections (*I* > 2 σ (*I*), 2 $\theta_{\rm max}$ = 143.6°), 427 parameters, 0 restraints (CCDC 1557985).

Discussion of the Crystal Structure of 8

The 7-coordinate tungsten may be described as an octahedron with the Cl1-C2-C3 face capped by the SiCl₃ ligand. The neopentylidene ligand has a W1-C1-C6 angle of 142.0(4)° which

Figure ESI-1. Molecular structure of **8** in a crystal of **8**.CHCl₃ (60% displacement ellipsoids, most H-atoms omitted, cyclohexyl groups simplified). Selected bond lengths (Å) and angles: W1–Cl1 2.5847(9), W1–P1 2.6488(9), W1–P2 2.6236(10), W1–Si1 2.5799(12), W1–C1 2.006(4), C6–C1–W1 142.0(3), Cl2–Si1 2.054(2), Cl3–Si1 2.025(3), Cl4–Si1 2.1411(19), Si1–Cl1 2.863 (Σr_{cov} = 2.13, Σr_{vdW} = 3.55). Inset = View normal to Cl2–Cl3 vector.

given the coordinative saturation at tungsten may be attributed to steric pressures rather than any incipient $\alpha\mbox{-}{\rm agostic}$ interaction. The W=C bond length (2.010(6) Å) is somewhat long for a tungsten neopentylidene however it should be noted that data are otherwise unavailable for 7-coordinate complexes. Lower coordination geometries, e.g., octahedral tungsten have shorter W-C separations (1.859–1.986 Å) invariably accompanied by α -agostic C-H-W interactions.² Of note however is the geometry at silicon, which departs significantly from conventional tetrahedral hybridisation. This distortion (silicon angle sum for W1, Cl2 and Cl3 = 340.8°) is best understood in terms of a weak inter-ligand hypervalent interaction between the tungsten-bound chloride (Cl1) and the silicon (Cl1-Si1 = 2.862 Å), which from this perspective begins to approach trigonal bipyramidal coordination.³ The coordination of intact tin halides to zerovalent group 6 metal centres without Sn-Cl bond rupture is well-established, e.g., [W(SnCl₄)(CO)₃(COD)],⁴ however this type of interaction, effectively an intercepted Si-C oxidative addition, has not been previously documented for silicon halides and remains rare for germanium halides.

Crystal data for C₃₃H₅₇O₂SiP₂Cl₃W (3)

 $M_{\rm w}$ = 866.01, triclinic, *P*-1, *a* = 13.3178(2)Å, *b* = 16.6846(3) Å, *c* = 18.1264(3) Å, *α* = 99.3043(14)°, β = 95.4402(14)°, γ = 106.7416(16)°, *V* = 3763.42(12) Å³, *Z* = 4, $\rho_{\rm calcd}$ = 1.528 Mg m⁻³, μ (Cu K α) = 8.967 mm⁻¹, *T* = 150(1) K, yellow block, 15176 independent reactions, *F*² refinement, *R* = 0.031, *wR* = 0.067 for 13046 reflections (*I* > 2 σ (*I*), 2 $\theta_{\rm max}$ = 147.9°), 763 parameters, 0 restraints (CCDC 1557986).

Crystal data for C₃₂H₅₉Cl₃P₂W (4)

 $M_{\rm w}$ = 795.93, orthorhombic, *P*bca, *a* = 14.7156(4) Å, *b* = 23.4584(6) Å, *c* = 23.8845(7) Å, *V* = 8245.0(4) Å³, Z = 8, ρ_{calcd} = 1.282 Mg m⁻³, μ(Cu Kα) = 7.83 mm⁻¹, *T* = 150(1) K, brown block, 0.090 × 0.076 × 0.031 mm, 8039 independent reactions, *F*² refinement, *R* = 0.053, *wR* = 0.122 for 5937 reflections (*I* > 2*σ*(*I*), 2θ_{max} = 143.4°), 359 parameters, 66 restraints (CCDC 1587450).

Crystal data for C₂₆H₄₈Cl₃OP₂W.CHCl₃(6)

 $M_{\rm w}$ = 848.15, orthorhombic, $P2_12_12_1$, a = 12.31677(14) Å, b = 14.9414(3) Å, c = 18.7844(3) Å, V = 3456.89(10) Å³, Z = 4, $\rho_{\rm calcd}$ = 1.630 Mg m⁻³, μ = 11.486 mm⁻¹, T = 150(2) K, yellow block, 0.227 × 0.081 × 0.064 mm, 6981 independent reactions, F^2 refinement, R = 0.050, wR = 0.119 for 6703 reflections ($I > 2\sigma(I)$, $2\theta_{\rm max}$ = 148°), 418 parameters, 84 restraints (CCDC 1557986).

Computational Analysis of (Cl₃Si)(CO)₂(dmpe)W≡CH

Table ESI-1. Comparison of Geometric and Spectroscopic Data			
	Cl₃Si(CO)₂(dcpe)W≡C ^t B (Measured) ^a	Cl₃Si(CO)₂(dmpe)W≡CH (Calculated)	
W≡CH/Å	1.834(3), 1.833(4)	1.823	
W–CO/Å	2.013(3), 2.023(4)	2.013,	
	2.015(4), 2.018(4)	2.013	
W–Si/Å	2.6880(9), 2.6887(9)	2.753	
W–P/Å	2.5473(8), 2.5590(8)	2.612,	
	2.5618(8), 2.5544(8)	2.615	
P-W-P/°	78.78(3), 79.26(3)	79.24	
vCO/cm ⁻¹	1990, 1921	1983, 1929	
vWC/cm ⁻¹	L _	954 vw	

^aTwo crystallographically independent molecules

Figure ESI-2. Molecular structure of **6** in a crystal of **6**.CHCl₃ (60% displacement ellipsoids, H-atoms omitted, cyclohexyl groups simplified). Minor component (occupancy 0.254(9), designated 'A') of the O1=W1-Cl4 triatomic unit depicted in pastel shades. W1–Cl4 2.438(9), W1–P1 2.585(3), W1–P2 2.533(4), W1–Cl2 2.343(4), W1–Cl3 2.403(4), W1=O1 1.806(14).

In addition to one cyclohexyl ring showing positional disorder, the O1=W1-Cl4 spine displays disorder with the inverted triatomic based on O1A=W1A-Cl4A with occupancies for he two units refining to 0.746(9):0.254(9).

Figure ESI-3. Optimised Geometry for (Cl₃Si)(CO)₂(dmpe)W=CH

Chemical	Commun	ications
----------	--------	----------

Table ESI-2	Standard Nuclear Orientation (Å) for Cl ₃ Si(CO) ₂ (dmpe)W≡CH (Geometry
Optimisation	at DFT: B3LYP-LANL2DZ).

optili	insuction at		2):		
	A	tom X	Y	z	
1	W1	-1.0418998	0.8705173	0.8747805	
2	C1	-2.7242001	0.3852115	0.3686689	
3	H3	-3.7846909	0.2021168	0.1866551	
4	P1	0.0499366	0.8856024	-1.4977061	
5	P2	-0.0047047	-1.5288803	0.7991561	
6	C2	-1.5896406	2.8049209	0.7650141	
7	01	-1.9611688	3.9154066	0.6667306	
8	C3	-1.6182070	0.6950330	2.7955691	
9	02	-2.0091154	0.5640302	3.8961624	
10	Si1	1.2996704	1.8381941	1.9526223	
11	Cl1	1.5689420	4.0330462	2.1007919	
12	CI2	3.2030915	1.2448209	0.8451282	
13	CI3	1.7842219	1.1323491	4.0094729	
14	C4	1.1158455	-0.6903563	-1.7085560	
15	H2	2.0976610	-0.4688939	-1.2782996	
16	H1	1.2518980	-0.8809816	-2.7796946	
17	C5	-1.2199159	0.7211404	-2.8837169	
18	H5	-1.8187936	-0.1769901	-2.7191898	
19	H8	-0.7220925	0.6639785	-3.8563389	
20	H11	-1.8834207	1.5886765	-2.8623219	
21	C6	0.4695843	-1.9000126	-1.0200679	
22	H12	-0.4577173	-2.1870572	-1.5293361	
23	H13	1.1432436	-2.7644454	-1.0401857	
24	C7	-1.1923939	-2.9300544	1.2196758	
25	H9	-2.1049069	-2.8163274	0.6309454	
26	H14	-1.4493547	-2.8693148	2.2801230	
27	H15	-0.7314975	-3.9008950	1.0141599	
28	C8	1.5351600	-2.0087131	1.7726003	
29	H10	2.3700784	-1.3679513	1.4835195	
30	H16	1.7865927	-3.0563878	1.5819919	
31	H17	1.3463963	-1.8625500	2.8384868	
32	C9	1.1626862	2.2633109	-2.1359375	
33	H7	2.0187778	2.3762722	-1.4687951	
34	H18	0.5980656	3.1985937	-2.1567364	
35	H19	1.5118684	2.0265900	-3.1453723	

References

- 1 A. F. Hill, J. S. Ward and Y. Xiong, *Organometallics*, 2015, **34**, 5057–5064.
- 2 J. C. Axtell, R. R. Schrock, P. Muller, S. J. Smith and A. H. Hoveyda, *Organometallics*, 2014, **33**, 5342 5348 and refs. therein.
- 3 E. Brendler, T. Heine, A. F. Hill and J Wagler, *Z. Anorg. Allg. Chem.*, 2009, **635**, 1300 1305.
- 4 M. Elder and D. Hall, *Inorg. Chem.*, 1969, **8**, 1268–1273.

Selected Spectra

³¹P{¹H} NMR Data for Conversion of 3 to 4, 5 and 9 (t = 1 and 72 hours).

The apparent asymmetry in the tungsten satellites surrounding peak the peak at $\delta_P = 45.33$ ppm reflects the formation of the decomposition product WCl₄(dcpe), the resonance for which overlaps with the low frequency satellite. The peak at 54.7 ppm peak corresponds to **4**, while the AB system labelled (CDCl₃: $\delta_A = 45.33$; $\delta_B = 26.27$) is of **5**.

This journal is © The Royal Society of Chemistry 20xx

Chem. Commun., 2017, **00**, 1-3 | **5**

Chemical Communications

Low-Field $^{13}C\{^{1}H\}$ NMR Data for Conversion of 4 to 5 and 6.

The resonance at δ_c = 212.3 appears as an apparent triplet. The weak resonance at δ_c = 288.0 is attributed to the neohexylidyne complex **4**. The carbyne resonance for **5** appears as a doublet of doublets centred at δ_c = 230.4.

This journal is © The Royal Society of Chemistry 20xx

¹H-¹³C HMBC (3-4 bond optimised).

Correlations are colour coded t their respective species. Correlations between the methylene group are NMR silent due to the likely nature of H/D exchange with adventitious D₂O.

Chem. Commun., 2017, **00**, 1-3 | **7**

Chemical Communications

NMR Data for WCl₄(dcpe) (9) and neohexene in final product (t = 120 hrs at room temperature). $^{31}P{^{1}H}$ NMR Spectrum

The dramatic reduction in signal to noise is consistent with the formation of NMR silent [W(=O)Cl₃(dcpe)] (7), with only trace amounts of (6) remaining in solution.

8 | Chem. Commun, 2017, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications

COMMUNICATION

¹H NMR Spectrum of [W(≡C^tBu)(SiCl₃)(CO)₂(dcpe)] **3**

This journal is © The Royal Society of Chemistry 20xx

Chem. Commun., 2017, **00**, 1-3 | **9**

Chemical Communications

¹³C{¹H} NMR Spectrum of [W($\equiv C^tBu$)(SiCl₃)(CO)₂(dcpe)] **3**

10 | Chem. Commun, 2017, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications

COMMUNICATION

³¹P{¹H} NMR Spectrum of $[W(\equiv C^tBu)(SiCl_3)(CO)_2(dcpe)]$ 3

This journal is © The Royal Society of Chemistry 20xx

Chem. Commun., 2017, **00**, 1-3 | **11**