Nickel-Catalyzed Reductive Dicarbofunctionalization of Alkenes via Radical Cyclization

Yulong Kuang, Xuefeng Wang, David Anthony, and Tianning Diao*

Department of Chemistry, New York University, 100 Washington Square East
New York, New York 10003, United States

E-Mail: diao@nyu.edu

Table of Contents

1. General Considerations S1
2. Synthesis of substrates S1
3. General procedure S3
4. Characterization of products S3
5. Synthesis of the N-free pyrrolidine derivative S20
6. Copies of NMR spectra S21
1. General Considerations

Metal, ligands, solvents, and most substrates were obtained from commercial sources. All air- and moisture-sensitive manipulations were carried out in a glove box or using standard Schlenk techniques. \(^1\)H NMR spectra were recorded on Agilent 400, Villi and Bruker 400, 500, or 600 Avance spectrometer (400 MHz, 500 MHz, or 600 MHz). Chemical shifts are reported in ppm relative to tetramethylsilane, with the residual solvent resonance (CDCl\(_3\), \(\delta = 7.26\)) or TMS (\(\delta = 0.00\)) as the internal reference. Spectra are reported as follows: chemical shift (\(\delta\) ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant (Hz), integration and assignment. \(^1\)C NMR spectra were recorded on Agilent 400, Varian 400, Bruker 400 and Bruker 500 Avance spectrometers (101 or 151 MHz). Chemical shifts were reported in ppm relative to tetramethylsilane with the solvent resonance used as the internal reference (CDCl\(_3\), \(\delta = 77.2\)). HRMS was recorded on an Agilent 6224 TOF LC/MS (EI, ESI, or APCI source).

2. Synthesis of substrates

1) Synthesis of secondary bromide substrate

\[
\text{Ts} \quad \text{N} \quad \text{O} \quad \text{MeMgBr} \quad 1) \text{THF,} \ 0 \ ^\circ \text{C to rt} \quad 2) \ 	ext{CBr}_4, \ 	ext{PPh}_3, \ 	ext{CH}_2\text{Cl}_2 \quad \text{Ts} \quad \text{N} \quad \text{Br}
\]

To a MeMgBr solution (1 N in THF, 10 mL) was added a THF solution of aldehyde (506 mg, 2 mmol), prepared according to a reported procedure\(^1\), at 0 \(^\circ\)C under nitrogen. Then the mixture was warmed up to room temperature and stirred for 1 hour, followed by quenching with saturated aqueous NH\(_4\)Cl solution. The reaction mixture was extracted with EtOAc (3 x 10 mL), dried over MgSO\(_4\), filtered, and concentrated. The crude material was diluted with 10 mL CH\(_2\)Cl\(_2\) and to this solution was added PPh\(_3\) (2.4 equiv., 4.8 mmol) and CBr\(_4\) (1.2 equiv., 2.4 mmol). After stirring at room temperature for 1 hour, the mixture was concentrated and purified by column chromatography on silica gel (hexanes:EtOAc = 8:1), which gave 265 mg (40% total yield) colorless oil. \(^1\)H NMR (400 MHz, CDCl\(_3\), \(\delta = 7.26\)).

MHz, Chloroform-\(d\)) \(\delta\) 7.71 (d, \(J = 8.4\) Hz, 2H), 7.32 (d, \(J = 8.4\) Hz, 2H), 5.68 – 5.47 (m, 1H), 5.20 – 5.17 (m, 1H), 5.17 – 5.14 (m, 1H), 4.29 (dt, \(J = 8.2, 6.6\) Hz, 1H), 3.85 (d, \(J = 6.8\) Hz, 1H), 3.79 (d, \(J = 6.8\) Hz, 1H), 3.44 (dd, \(J = 14.6, 8.2\) Hz, 1H), 3.33 (dd, \(J = 14.6, 6.4\) Hz, 1H), 2.44 (s, 3H), 1.73 (d, \(J = 6.8\) Hz, 3H). \(^{13}\)C NMR (101 MHz, Chloroform-\(d\)) \(\delta\) 143.7, 136.2, 132.7, 129.9, 127.3, 119.9, 55.2, 52.5, 46.8, 23.3, 21.6. HRMS (APCI-TOF) calcd for C\(_{13}\)H\(_{19}\)BrNO\(_2\)S\(^+\) (M + H\(^+\)) = 332.0314, found: 332.0314; HRMS (APCI-TOF) calcd for C\(_{13}\)H\(_{19}\)BrNO\(_2\)S\(^+\) (M + H\(^+\)) = 334.0294, found: 334.0292.

2) Synthesis of chiral \(\alpha\)-substituted bromide substrate

![Chemical structure](image)

Alcohol was prepared according to a reported procedure\(^2\) from methyl \(L\)-alaninate•HCl or methyl \(L\)-phenylalaninate•HCl. The corresponding alcohol (2 mmol) was diluted with 10 mL CH\(_2\)Cl\(_2\) and to this solution was added PPh\(_3\) (2.4 equiv., 4.8 mmol) and CBr\(_4\) (1.2 equiv., 2.4 mmol). After stirring at room temperature for 1 hour, the reaction mixture was concentrated and purified by column chromatography on silica gel (hexanes:EtOAc = 8:1).

\(\text{Ts} \quad \text{R} \quad \text{OH} \quad \text{PPh}_3 \quad \text{CBr}_4 \quad \text{Br} \quad \text{R} \)

40% yield, colorless oil. \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.72 (d, \(J = 8.3\) Hz, 2H), 7.30 (d, \(J = 8.3\) Hz, 2H), 5.84 (dddd, \(J = 17.1, 10.1, 6.9, 5.7\) Hz, 1H), 5.21 (ddd, \(J = 17.2, 2.7, 1.3\) Hz, 1H), 5.14 (ddd, \(J = 10.2, 2.5, 1.2\) Hz, 1H), 4.18 – 4.07 (m, 1H), 3.94 (ddt, \(J = 16.3, 5.7, 1.3\) Hz, 1H), 3.72 (ddt, \(J = 16.3, 6.9, 1.2\) Hz, 1H), 3.48 (dd, \(J = 10.2, 6.1\) Hz, 1H), 3.33 (dd, \(J = 10.1, 8.4\) Hz, 1H), 2.43 (s, 3H), 1.24 (d, \(J = 6.8\) Hz, 3H). \(^{13}\)C NMR (101 MHz, Chloroform-\(d\)) \(\delta\) 143.6, 137.8, 135.9, 129.9, 127.4, 118.1, 55.5, 47.2, 35.4, 21.7, 17.3. HRMS (APCI-TOF) calcd for C\(_{13}\)H\(_{19}\)BrNO\(_2\)S\(^+\) (M + H\(^+\)) = 332.0314, found: 332.0316

60% yield, white solid, M.P. 67.2 ~ 67.4 °C. \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.59 (d, \(J = 8.4\) Hz, 2H), 7.36 – 7.16 (m, 5H), 7.12 (d, \(J = 8.0, 2\)H), 5.92 – 5.76 (m, 1H), 5.23 (d, \(J = 17.2, 1\)H), 5.15 (d, \(J = 10.1, 1\)H), 4.31 – 4.10 (m, 1H), 3.85 (d, \(J = 6.4\) Hz, 2H), 3.55

(ddd, $J = 10.8, 7.7, 1.4$ Hz, 1H), 3.43 (ddd, $J = 10.8, 6.1, 1.4$ Hz, 1H), 3.16 – 3.02 (m, 1H), 3.01 – 2.91 (m, 1H), 2.38 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 143.3, 137.4, 137.4, 135.7, 129.5, 129.0, 128.7, 127.4, 126.8, 118.2, 61.8, 48.0, 38.8, 33.5, 21.5. HRMS (ESI-TOF) calcd for C$_{19}$H$_{23}$BrNO$_2$S$^+$ (M + H$^+$) = 408.0627, found 408.0623; HRMS (ESI-TOF) calcd for C$_{19}$H$_{23}$BrNO$_2$S$^+$ (M + H$^+$) = 410.0612, found 410.0604.

3) Synthesis of mono-substituted carbo-substrate

Alcohol was prepared according to the reported procedure3 from γ-lactone. And then, the corresponding alcohol (2 mmol) was diluted with 10 mL DCM and added with PPh$_3$ (2.4 eq, 4.8 mmol) and CBr$_4$ (1.2 eq, 2.4 mmol) at 0 °C. After stirring for 1 hour, it was concentrated and purified by column chromatography on silica gel (PE:EtOAc = 20:1) to give 250 mg (57% yield) colorless oil. 1H NMR (400 MHz, Chloroform-d) δ 5.72 (ddt, $J = 17.1, 10.1, 7.0$ Hz, 1H), 5.14 – 5.03 (m, 2H), 3.70 (s, 3H), 3.44 (ddd, $J = 10.1, 7.0, 5.9$ Hz, 1H), 3.36 (ddd, $J = 10.1, 7.9, 6.6$ Hz, 1H), 2.73 (dt, $J = 9.1, 6.9, 4.9$ Hz, 1H), 2.44 – 2.35 (m, 1H), 2.33 – 2.26 (m, 1H), 2.26 – 2.17 (m, 1H), 2.05 – 1.95 (m, 1H). 13C NMR (101 MHz, Chloroform-d) δ 174.9, 134.5, 117.5, 51.8, 43.4, 36.0, 34.1, 31.0.

3. General procedure

To a 10 mL Schlenk tube, 1,10-phenanthroline (12 mol%). NiBr$_2$$\cdot$DME (10 mol%) and ground, activated zinc (2.0 equiv., 0.2 mmol) were added under N$_2$ flow. Subsequently, 6-bromo-1-ene (0.1 mmol, 0.1 equiv.) and the electrophile (0.2 mmol, 2.0 equiv.) were injected via syringe. The reaction was allowed to stir at 50 °C for 16 hours under N$_2$, the product was purified by column chromatography.

A reaction on the 5 mmol scale reaction was carried out by using 50 mL DMA in 100 mL bomb flask following the general procedure. After 16 hours, the solvent was removed at 80 °C by rotor-vapor. Finally, 1.26 g (80% yield) colorless oil was collected by column chromatography on silica gel (PE:EtOAc = 8:1).

This compound was purified by column chromatography on silica gel (PE:EtOAc = 20 :1) to give colorless oil following the general procedure (as a 2:1 mixture of cis:trans diastereomers). Due to its overlap with the direct coupling byproduct on column separation, the accurate yield and diastereoselectivity (64% NMR yield, 3:1 cis:trans) were detected by using NMR spectra after a short pad of silica gel with 10:1 PE:EtOAc as eluent. The relative configuration was confirmed by using the 2D COSY and NOESY spectra, 13C NMR was assigned according to 2D HSQC spectra. Major diastereomer (cis): 1H NMR (400 MHz, Chloroform-d) δ 7.30 – 7.24 (m, 2H, m-Ar), 7.21 – 7.12 (m, 3H, o-Ar and p-Ar), 3.67 (s, 3H, CO$_2$Me), 2.81 – 2.71 (m, 1H, CHCO$_2$Me), 2.66 (dd, J = 7.4, 4.4, 2H, CH$_2$Ar), 2.22 – 2.02 (m, 1H, CHCH$_2$Ar), 2.08 – 1.95 (m, 1H, CO$_2$MeCHCH$_2$CH$_2$), 1.95 -1.89 (m, 1H, CHCH$_2$CHBn), 1.89 – 1.82 (m, 1H, CHCH$_2$CHBn), 1.82 – 1.71 (m, 1H, CO$_2$MeCHCH$_2$CH$_2$), 1.54 – 1.46 (m, 1H, CO$_2$MeCHCH$_2$CH$_2$), 1.45 – 1.37 (m, 1H, CO$_2$MeCHCH$_2$CH$_2$). 13C NMR (101 MHz, Chloroform-d) δ 177.1 (CO$_2$Me), 141.7 (i-Ar), 128.7 (o-Ar), 128.2 (m-Ar), 125.7 (p-Ar), 51.6 (CO$_2$Me), 43.3 (CO$_2$MeCH), 42.5 (CHCH$_2$Ar), 41.6 (CH$_2$Ar), 36.7 (CO$_2$MeCHCH$_2$CH$_2$), 31.8 (CH$_2$CH$_2$CHBn), 28.7 (CHCH$_2$CH). Minor diastereomer (trans): 1H NMR (400 MHz, Chloroform-d) δ 7.30 – 7.24 (m, 2H, m-Ar), 7.21 – 7.12 (m, 3H, o-Ar and p-Ar), 3.65 (s, 3H, CO$_2$Me), 2.92 – 2.81 (m, 1H, CHCO$_2$Me), 2.61 (dd, J = 7.4, 4.4, 2H, CH$_2$Ar), 2.36 – 2.24 (m, 1H, CHCH$_2$Ar), 1.82 – 1.76 (m, 1H, CO$_2$MeCHCH$_2$CH$_2$), 1.76 – 1.66 (m, 1H, CO$_2$MeCHCH$_2$CH$_2$), 1.61 – 1.54 (m, 2H, CHCH$_2$CH), 1.32 – 1.19 (m, 2H, CO$_2$MeCHCH$_2$CH$_2$ and CO$_2$MeCHCH$_2$CH$_2$). 13C NMR (101 MHz, Chloroform-d) δ 177.2 (CO$_2$Me), 141.4 (i-Ar), 128.8 (m-Ar), 125.8 (p-Ar), 42.6 (CHCO$_2$Me), 41.6 (CH$_2$Ar), 41.2 (CHCH$_2$Ar), 35.6 (CHCH$_2$CH), 32.6 (CO$_2$MeCHCH$_2$CH$_2$), 29.5 (CO$_2$MeCHCH$_2$CH$_2$).
4. Characterization of products

dimethyl 3-benzylcyclopentane-1,1-dicarboxylate 2:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 15:1) to give 25.9 mg (94% yield) colorless oil following the general procedure with PhBr as the cross coupling partner, and 21.4 mg (77% yield) when PhI was used as the cross coupling partner. NMR of the resulting product matched with the reported one. 1H NMR (500 MHz, Chloroform-d) δ 7.27 (t, J = 7.6 Hz, 2H), 7.21 – 7.13 (m, 3H), 3.72 (s, 3H), 3.69 (s, 3H), 2.71 – 2.58 (m, 2H), 2.42 (dd, J = 13.3, 7.3 Hz, 1H), 2.38 – 2.30 (m, 1H), 2.30 – 2.21 (m, 1H), 2.20 – 2.10 (m, 1H), 1.88 – 1.77 (m, 2H), 1.38 (dq, J = 12.5, 9.2 Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 173.3, 173.2, 141.3, 128.9, 128.4, 126.0, 60.0, 52.8, 52.8, 41.7, 41.4, 40.7, 34.0, 32.1. HRMS (ESI-TOF) calcd for C$_{16}$H$_{21}$O$_4$+ (M + H$^+$) = 277.1434, found 277.1434.

tetramethyl 3,3’-(ethane-1,2-diyl)bis(cyclopentane-1,1-dicarboxylate) 4:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 2:1) to give 20.1 mg (99% yield) colorless oil following the general procedure, except using 4,4’-di-tert-butyl-2,2’-bipyridine instead of 1,10-phenanthroline and without adding a cross coupling partner. NMR of the resulting product matched with the reported one. 1H NMR (400 MHz, Chloroform-d) δ 3.68 (s, 12H), 2.41 (dd, J = 13.2, 8.0 Hz, 2H), 2.32 – 2.21 (m, 2H), 2.16 – 2.05 (m, 2H), 1.91 – 1.77 (m, 4H), 1.68 – 1.61 (m, 2H), 1.33 – 1.25 (m, 4H), 1.25 – 1.17 (m, 2H). 13C NMR (101 MHz, Chloroform-d) δ 173.2, 59.8, 52.6, 40.8, 39.9, 39.9, 34.1, 33.9, 32.0. HRMS (ESI-TOF) calcd for C$_{20}$H$_{34}$NO$_8$+ (M + NH$_4^+$) = 416.2279, found 416.2271.

dimethyl 3-(4-methylbenzyl)cyclopentane-1,1-dicarboxylate:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 15:1) to give 29.1 mg (99% yield).

yield) colorless oil following the general procedure. 1H NMR (500 MHz, Chloroform-d) δ 7.08 (d, $J = 8.0$ Hz, 2H), 7.05 (d, $J = 8.1$ Hz, 2H), 3.72 (s, 3H), 3.70 (s, 3H), 2.61 (qd, $J = 13.6$, 7.4 Hz, 2H), 2.42 (dd, $J = 13.3$, 7.3 Hz, 1H), 2.37 – 2.30 (m, 4fH), 2.29 – 2.21 (m, 1H), 2.15 (dd, $J = 13.6$, 9.3, 7.6 Hz, 1H), 1.86 – 1.81 (m, 2H), 1.37 (dq, $J = 12.6$, 9.3 Hz, 1H). 13C NMR (151 MHz, CDCl$_3$) δ 173.34, 173.25, 138.2, 135.4, 129.1, 128.7, 60.0, 52.8, 52.8, 41.8, 41.0, 40.7, 34.0, 32.1, 21.1. HRMS (ESI-TOF) calcd for C$_{17}$H$_{22}$NaO$_4^+$ (M + Na$^+$) = 313.1410, found 313.1414.

dimethyl 3-(4-(trifluoromethyl)benzyl)cyclopentane-1,1-dicarboxylate:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 15:1) to give 32.7 mg (95% yield) colorless oil following the general procedure in a 1.8 mL GC vial in a thermoshaker. 1H NMR (500 MHz, Chloroform-d) δ 7.53 (d, $J = 8.1$ Hz, 2H), 7.27 (d, $J = 7.4$ Hz, 2H), 3.73 (s, 3H), 3.70 (s, 3H), 2.77 – 2.66 (m, 2H), 2.40 (dd, $J = 13.4$, 7.3 Hz, 1H), 2.37 – 2.32 (m, 1H), 2.32 – 2.23 (m, 1H), 2.16 (dd, $J = 13.7$, 9.3, 7.8 Hz, 1H), 1.87 – 1.77 (m, 2H), 1.38 (dq, $J = 12.5$, 9.3 Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 173.2, 173.1, 145.4, 129.2, 128.6, 125.4 (q, $J = 3.6$ Hz), 123.4, 59.9, 52.9, 52.9, 41.5, 41.2, 40.6, 34.0, 32.1. HRMS (APCI-TOF) calcd for C$_{17}$H$_{20}$F$_3$O$_4$ (M + H$^+$) = 345.1308, found: 345.1309.

dimethyl 3-(4-chlorobenzyl)cyclopentane-1,1-dicarboxylate:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 15:1) to give 24.8 mg (80% yield) colorless oil following the general procedure. 1H NMR (400 MHz, Chloroform-d) δ 7.23 (d, $J = 8.0$ Hz, 2H), 7.08 (d, $J = 8.0$ Hz, 2H), 3.72 (s, 3H), 3.70 (s, 3H), 2.67 – 2.55 (m, 2H), 2.38 (dd, $J = 13.3$, 7.2 Hz, 1H), 2.35 – 2.29 (m, 1H), 2.27 – 2.18 (m, 1H), 2.18 – 2.09 (m, 1H), 1.85 – 1.77 (m, 2H), 1.35 (dq, $J = 18.7$, 9.4 Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 173.1, 173.0, 139.5, 131.6, 130.0, 128.4, 59.7, 52.7, 41.4, 40.5, 40.4, 33.8, 31.9. HRMS (ESI-TOF) calcd for C$_{16}$H$_{23}$ClO$_4$ (M + NH$_4^+$) = 328.1310, found 328.1310.
dimethyl 3-(1,1'-biphenyl)-4-ylmethyl)cyclopentane-1,1-dicarboxylate:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 15:1) to give 35.8 mg (99% yield) white solid following the general procedure, M.P. 73.6 ~ 73.8 °C. \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.59 (d, \(J = 7.8\) Hz, 2H), 7.52 (d, \(J = 7.9\) Hz, 2H), 7.44 (t, \(J = 7.6\) Hz, 2H), 7.34 (t, \(J = 7.2\) Hz, 1H), 7.24 (d, \(J = 7.9\) Hz, 2H), 3.74 (s, 3H), 3.71 (s, 3H), 2.77 – 2.65 (m, 2H), 2.47 (dd, \(J = 13.4\), 7.2 Hz, 1H), 2.42 – 2.35 (m, 1H), 2.34 – 2.26 (m, 1H), 2.23 – 2.13 (m, 1H), 1.93 – 1.85 (m, 1H), 1.42 (dq, \(J = 18.6\), 9.2 Hz, 1H). \(^{13}\)C NMR (101 MHz, Chloroform-\(d\)) \(\delta\) 173.3, 173.3, 141.2, 140.4, 139.0, 129.3, 128.9, 127.2, 127.1, 60.0, 52.9, 52.8, 41.7, 41.0, 40.7, 34.0, 32.2. HRMS (ESI-TOF) calcd for C\(_{22}\)H\(_{28}\)NO\(_4^+\) (M + NH\(_4^+\)) = 370.2013 found 370.2009.

dimethyl 3-(4-benzoylbenzyl)cyclopentane-1,1-dicarboxylate:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 15:1) to give 28.1 mg (74% yield) white solid following the general procedure, 57.6 ~ 57.8 °C. \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.79 (d, \(J = 8.2\) Hz, 2H), 7.73 (d, \(J = 7.7\) Hz, 2H), 7.58 (t, \(J = 7.4\) Hz, 1H), 7.47 (t, \(J = 7.6\) Hz, 2H), 7.27 (d, \(J = 7.4\) Hz, 2H), 3.73 (s, 3H), 3.70 (s, 3H), 2.80 – 2.67 (m, 2H), 2.43 (dd, \(J = 13.3\), 7.2 Hz, 1H), 2.39 – 2.34 (m, 1H), 2.32 – 2.25 (m, 1H), 2.22 – 2.12 (m, 1H), 1.90 – 1.82 (m, 2H), 1.40 (dq, \(J = 18.4\), 9.1 Hz, 1H). \(^{13}\)C NMR (101 MHz, Chloroform-\(d\)) \(\delta\) 196.6, 173.2, 173.1, 146.4, 138.0, 135.5, 132.4, 130.5, 130.1, 128.8, 128.4, 59.9, 52.9, 41.4, 41.4, 40.6, 34.0, 32.1. HRMS (ESI-TOF) calcd for C\(_{23}\)H\(_{28}\)NO\(_5^+\) (M + NH\(_4^+\)) = 398.1962, found 398.1956.

dimethyl 3-(4-formylbenzyl)cyclopentane-1,1-dicarboxylate:

This compound was purified by column chromatography on neutral Al\(_2\)O\(_3\) (PE:EtOAc = 5:1) to give 26.0 mg (85% yield) colorless oil following the general procedure. \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 9.97 (s, 1H), 7.80 (d, \(J = 8.2\) Hz, 2H), 7.33 (d, \(J = 8.0\) Hz, 2H), 3.73 (s, 3H), 3.70 (s, 3H), 2.80 – 2.68 (m, 2H), 2.44 – 2.38 (m, 1H), 2.37 – 2.32 (m, 1H), 2.32 –
2.24 (m, 1H), 2.16 (ddd, J = 13.7, 9.4, 7.6 Hz, 1H), 1.88 – 1.77 (m, 2H), 1.44 – 1.32 (m, 1H). 1C NMR (101 MHz, Chloroform-d) δ 192.0, 173.0, 173.0, 148.6, 134.6, 130.0, 129.4, 59.7, 52.8, 52.8, 41.4, 41.2, 40.4, 33.8, 32.0. HRMS (ESI-TOF) calcd for C$_{17}$H$_{21}$O$_5$+ (M + H$^+$) = 305.1384, found: 305.1376.

dimethyl 3-(4-vinylbenzyl)cyclopentane-1,1-dicarboxylate:

This compound was purified by column chromatography (PE:EtOAc = 15:1) to give 26.0 mg (86% yield) colorless oil following the general procedure. 1H NMR (400 MHz, Chloroform-d) δ 7.32 (d, J = 7.7 Hz, 2H), 7.12 (d, J = 7.8 Hz, 2H), 6.69 (dd, J = 17.6, 10.9 Hz, 1H), 5.70 (d, J = 17.6 Hz, 1H), 5.19 (d, J = 10.9 Hz, 1H), 3.72 (s, 3H), 3.69 (s, 3H), 2.71 – 2.57 (m, 2H), 2.41 (dd, J = 13.4, 7.3 Hz, 1H), 2.37 – 2.29 (m, 1H), 2.25 (dd, J = 16.1, 8.6 Hz, 1H), 2.20 – 2.09 (m, 1H), 1.88 – 1.76 (m, 2H), 1.43 – 1.30 (m, 1H). 13C NMR (101 MHz, Chloroform-d) δ 173.1, 173.1, 140.9, 136.6, 135.3, 128.8, 126.1, 113.0, 59.8, 52.7, 52.6, 41.5, 40.9, 40.5, 33.8, 31.9. HRMS (ESI-TOF) calcd for C$_{18}$H$_{26}$NO$_4$+ (M + NH$_4^+$) = 320.1856, found 320.1854.

dimethyl 3-(3,5-dimethylbenzyl)cyclopentane-1,1-dicarboxylate:

This compound was obtained from column chromatography on silica gel (PE:EtOAc = 15:1) to give 26.3 mg (86% yield) colorless oil under the general procedure. 1H NMR (400 MHz, Chloroform-d) δ 6.83 (s, 1H), 6.78 (s, 2H), 3.73 (s, 3H), 3.70 (s, 3H), 2.57 (qd, J = 13.5, 7.4 Hz, 2H), 2.42 (dd, J = 13.3, 7.2 Hz, 1H), 2.34 (ddd, J = 13.3, 8.3, 4.0 Hz, 1H), 2.28 (s, 6H), 2.27 – 2.20 (m, 1H), 2.20 – 2.10 (m, 1H), 1.88 – 1.78 (m, 2H), 1.48 – 1.25 (m, 1H). 13C NMR (101 MHz, Chloroform-d) δ 173.4, 173.3, 141.2, 137.8, 127.7, 126.7, 60.0, 52.8, 52.8, 41.7, 41.3, 40.7, 34.0, 32.2, 21.4. HRMS (ESI-TOF) calcd for C$_{18}$H$_{28}$NO$_4$+ (M + NH$_4^+$) = 322.2013, found 322.2009.

dimethyl 3-(3-(methoxycarbonyl)benzyl)cyclopentane-1,1-dicarboxylate:

This compound was obtained from column chromatography on silica gel (PE:EtOAc = 10:1) to give
23.4 mg (70% yield) colorless oil following the general procedure in a 1.8 mL GC vial in a thermostaker. 1H NMR (500 MHz, Chloroform-d) δ 7.88 – 7.80 (m, 2H), 7.37 – 7.30 (m, 2H), 3.90 (s, 3H), 3.72 (s, 3H), 3.69 (s, 3H), 2.69 (qd, J = 13.6, 7.5 Hz, 2H), 2.39 (dd, J = 13.3, 7.3 Hz, 1H), 2.36 – 2.30 (m, 1H), 2.30 – 2.23 (m, 1H), 2.14 (ddd, J = 13.7, 9.2, 7.8 Hz, 1H), 1.86 – 1.76 (m, 2H), 1.37 (dq, J = 12.5, 9.3 Hz, 1H). 13C NMR (151 MHz, CDCl$_3$) δ 173.2, 173.1, 167.4, 141.6, 133.5, 130.3, 129.9, 128.5, 127.4, 60.0, 52.9, 52.8, 52.2, 41.6, 41.1, 40.6, 34.0, 32.0. HRMS (APCI-TOF) calcd for C$_{18}$H$_{23}$O$_6$ $^+$ (M + H$^+$) = 335.1489, found: 335.1490.

dimethyl 3-(3-methylbenzyl)cyclopentane-1,1-dicarboxylate:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 15:1) to give 24.1 mg (83% yield) colorless oil under the general procedure. 1H NMR (400 MHz, Chloroform-d) δ 7.16 (t, J = 7.4 Hz, 1H), 7.02 – 6.93 (m, 3H), 3.73 (s, 3H), 3.70 (s, 3H), 2.61 (qd, J = 13.5, 7.4 Hz, 2H), 2.42 (dd, J = 13.3, 7.3 Hz, 1H), 2.37 – 2.30 (m, 4H), 2.30 – 2.21 (m, 1H), 2.14 (ddd, J = 13.6, 9.3, 7.6 Hz, 1H), 1.87 – 1.77 (m, 2H), 1.37 (ddd, J = 18.1, 12.4, 9.2 Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 173.4, 173.3, 141.3, 138.0, 129.7, 128.3, 126.8, 125.9, 60.0, 52.8, 41.7, 41.4, 40.7, 34.0, 32.2, 21.6. HRMS (ESI-TOF) calcd for C$_{17}$H$_{26}$NO$_4$ $^+$ (M + NH$_4^+$) = 308.1856, found 308.1854.

dimethyl 3-(2-methylbenzyl)cyclopentane-1,1-dicarboxylate:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 15:1) to give 23.4 mg (81% yield) colorless oil following the general procedure. 1H NMR (400 MHz, Chloroform-d) δ 7.15 – 7.06 (m, 4H), 3.73 (s, 3H), 3.70 (s, 3H), 2.72 – 2.60 (m, 2H), 2.44 (dd, J = 13.4, 7.2 Hz, 1H), 2.35 (ddd, J = 13.5, 8.4, 3.8 Hz, 1H), 2.30 (s, 3H), 2.29 – 2.23 (m, 1H), 2.14 (ddd, J = 13.5, 9.5, 7.5 Hz, 1H), 1.91 – 1.78 (m, 2H), 1.46 – 1.33 (m, 1H). 13C NMR (101 MHz, Chloroform-d) δ 173.4, 173.3, 139.5, 136.1, 130.4, 129.5, 126.2, 126.0, 60.0, 52.9, 40.8, 40.3, 38.5, 34.1, 32.4, 19.7. HRMS (ESI-TOF) calcd for C$_{17}$H$_{26}$NO$_4$ $^+$ (M + NH$_4^+$) = 308.1856, found 308.1855.
dimethyl 3-(pyridin-3-ylmethyl)cyclopentane-1,1-dicarboxylate:

This compound was purified by column chromatography on silica gel which was dealt with 1 mL NEt₃ before loading the sample (PE:EtOAc = 1:1) to give 25.5 mg (92% yield) colorless oil following the general procedure. ¹H NMR (400 MHz, Chloroform-d) δ 8.45 – 8.38 (m, 2H), 7.46 (d, J = 7.8 Hz, 1H), 7.19 (dd, J = 7.6, 4.9 Hz, 1H), 3.71 (s, 3H), 3.68 (s, 3H), 2.70 – 2.57 (m, 2H), 2.39 (dd, J = 13.5, 7.4 Hz, 1H), 2.36 – 2.29 (m, 1H), 2.29 – 2.18 (m, 1H), 2.19 – 2.12 (m, 1H), 1.86 – 1.75 (m, 2H), 1.35 (dq, J = 18.5, 9.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 173.0, 172.9, 150.0, 147.5, 136.3, 136.1, 123.3, 59.7, 52.7, 41.2, 40.3, 38.2, 33.7, 31.8, 29.7. HRMS (ESI-TOF) calcd for C₁₅H₂₀NO₄⁺ (M + H⁺) = 278.1387, found 278.1389.

dimethyl 3-((2,6-dimethylpyridin-4-yl)methyl)cyclopentane-1,1-dicarboxylate:

This compound was purified by column chromatography on silica gel which was treated with 1 mL Et₃N before loading the sample (PE:EtOAc = 2:1) to give 30.8 mg (99% yield) colorless oil following the general procedure. ¹H NMR (400 MHz, Chloroform-d) δ 6.75 (s, 2H), 3.72 (s, 3H), 3.70 (s, 3H), 2.61 – 2.50 (m, 2H), 2.47 (s, 6H), 2.39 (dd, J = 13.6, 7.3 Hz, 1H), 2.36 – 2.29 (m, 1H), 2.28 – 2.19 (m, 1H), 2.19 – 2.10 (m, 1H), 1.84 – 1.76 (m, 2H), 1.34 (dq, J = 18.4, 9.3 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 173.0, 172.9, 150.0, 147.5, 136.3, 136.1, 123.3, 59.7, 52.7, 41.2, 40.3, 38.2, 33.7, 31.8, 29.7. HRMS (ESI-TOF) calcd for C₁₇H₂₄NO₄⁺ (M + H⁺) = 306.1700, found 306.1695.

dimethyl 3-((2-methylpyridin-4-yl)methyl)cyclopentane-1,1-dicarboxylate:

This material was purified by column chromatography on silica gel which was treated with 1 mL Et₃N before loading sample (PE:EtOAc = 2:1) to give 28.6 mg (98% yield) colorless oil following the general procedure. ¹H NMR (400 MHz, Chloroform-d) δ 8.35 (d, J = 5.0 Hz, 1H), 6.95 (s, 1H), 6.89 (d, J = 5.2 Hz, 1H), 3.72 (s, 3H), 3.70 (s, 3H), 2.65 – 2.53 (m, 2H), 2.51 (s, 3H), 2.40 (dd, J = 13.6, 7.5 Hz, 1H), 2.36 – 2.29 (m, 1H), 2.29 – 2.20 (m, 1H), 2.21 – 2.10 (m, 1H), 1.85 – 1.76 (m, 2H), 1.42 – 1.28 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ
dimethyl 3-((1-tosyl-1H-indol-5-yl)methyl)cyclopentane-1,1-dicarboxylate:

This compound was purified by column chromatography on silica gel (PE:EtO = 1:1) to give 31.0 mg (66% yield) colorless oil by using 1.0 equiv. cross coupling partner following the general procedure; 47.9 mg (99% yield) colorless oil by using 2.0 equiv. cross coupling partner following the general procedure. 1H NMR (400 MHz, Chloroform-d) δ 7.89 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 3.6 Hz, 1H), 7.35 – 7.30 (m, 1H), 7.24 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.4 Hz, 1H), 6.60 (d, J = 3.7 Hz, 1H), 3.74 (s, 3H), 3.70 (s, 3H), 2.78 – 2.65 (m, 2H), 2.40 (dd, J = 12.8, 6.7 Hz, 1H), 2.36 (s, 3H), 2.35 – 2.22 (m, 2H), 2.15 (ddd, J = 13.6, 9.2, 7.6 Hz, 1H), 1.90 – 1.76 (m, 2H), 1.51 – 1.36 (m, 1H). 13C NMR (101 MHz, Chloroform-d) δ 173.2, 173.1, 144.8, 136.3, 135.4, 133.3, 130.9, 129.9, 126.8, 126.4, 125.6, 121.0, 113.2, 108.9, 59.8, 52.7, 41.8, 41.1, 40.5, 33.8, 32.0, 21.6. HRMS (ESI-TOF) calcd for C$_{25}$H$_{31}$N$_{2}$O$_{6}$S$^+$ (M + NH$_4^+$) = 487.1897, found 487.1895.

dimethyl 3-((thiophen-3-ylmethyl)cyclopentane-1,1-dicarboxylate:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 8:1) to give 24.0 mg (85% yield) colorless oil following the general procedure. 1H NMR (400 MHz, Chloroform-d) δ 7.25 – 7.21 (m, 1H), 6.95 – 6.90 (m, 2H), 3.72 (s, 3H), 3.71 (s, 3H), 2.74 – 2.61 (m, 2H), 2.44 (dd, J = 13.3, 7.3 Hz, 1H), 2.38 – 2.22 (m, 2H), 2.21 – 2.10 (m, 1H), 1.91 – 1.77 (m, 2H), 1.37 (dq, J = 18.1, 9.0 Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 173.1, 173.1, 141.4, 128.3, 125.2, 120.6, 59.9, 52.7, 40.8, 40.5, 35.6, 33.8, 32.0. HRMS (ESI-TOF) calcd for C$_{14}$H$_{22}$NO$_4$S$^+$ (M + NH$_4^+$) = 300.1264, found 300.1253.

dimethyl 3-(benzo[b]thiophen-3-ylmethyl)cyclopentane-1,1-dicarboxylate:
This compound was purified by column chromatography on silica gel (PE:EtOAc = 8:1) to give 23.6 mg (71% yield) colorless oil following the general procedure. 1H NMR (400 MHz, Chloroform-d) δ 7.85 (d, $J = 7.4$ Hz, 1H), 7.74 (d, $J = 7.7$ Hz, 1H), 7.42 – 7.31 (m, 2H), 7.11 (s, 1H), 3.73 (s, 3H), 3.70 (s, 3H), 2.95 – 2.82 (m, 2H), 2.55 – 2.43 (m, 2H), 2.41 – 2.31 (m, 1H), 2.23 – 2.12 (m, 1H), 1.97 – 1.84 (m, 2H), 1.52 – 1.39 (m, 1H). 13C NMR (101 MHz, Chloroform-d) δ 173.3, 173.2, 140.6, 139.2, 135.7, 124.3, 124.0, 123.0, 122.0, 121.8, 52.9, 40.9, 39.6, 34.1, 34.1, 32.5. HRMS (ESI-TOF) calcd for C$_{18}$H$_{24}$NO$_4$S$^+$ (M + NH$_4^+$) = 350.1421, found 350.1418.

dimethyl 3-(4-phenylbutyl)cyclopentane-1,1-dicarboxylate:

This compound was purified by column chromatography on silica gel (PE:Et$_2$O = 20:1) to give 34.7 mg (54% yield) colorless oil following the general procedure but using 5 mol% NiBr$_2$•DME, 6 mol% 1,10-phenanthroline, 0.2 mmol dimethyl 2-allyl-2-(2-bromoethyl)malonate, and 0.8 mmol (3-bromopropyl)benzene in 1.0 mL DMA. 1H NMR (400 MHz, Chloroform-d) δ 7.27 (t, $J = 7.5$ Hz, 2H), 7.20 – 7.14 (m, 3H), 3.72 (s, 3H), 3.71 (s, 3H), 2.60 (t, $J = 7.7$ Hz, 2H), 2.46 (dd, $J = 13.1$, 7.1 Hz, 1H), 2.34 – 2.27 (m, 1H), 2.19 – 2.09 (m, 1H), 1.99 – 1.81 (m, 2H), 1.69 (dd, $J = 13.3$, 10.0 Hz, 1H), 1.66 – 1.59 (m, 2H), 1.42 – 1.30 (m, 4H), 1.29 – 1.21 (m, 1H). 13C NMR (101 MHz, Chloroform-d) δ 173.4, 142.9, 128.5, 128.4, 125.8, 60.0, 52.9, 41.1, 39.9, 36.1, 35.3, 34.1, 32.3, 31.8, 28.3. HRMS (ESI-TOF) calcd for C$_{19}$H$_{30}$NO$_4^+$ (M + NH$_4^+$) = 336.2169, found 336.2165.

dimethyl 3-(4-chlorobutyl)cyclopentane-1,1-dicarboxylate:

This compound was purified by column chromatography on silica gel (PE:Et$_2$O = 20:1) to give 33.6 mg (61% yield) colorless oil following the general procedure but using 5 mol% NiBr$_2$•DME, 6 mol% 1,10-phenanthroline, 0.2 mmol dimethyl 2-allyl-2-(2-bromoethyl)malonate, and 0.8 mmol 1-bromo-3-chloropropane in 1.0 mL DMA. 1H NMR (400 MHz, Chloroform-d) δ 3.71 (s, 3H), 3.71 (s, 3H), 3.52 (t, $J = 6.7$ Hz, 2H), 2.46 (dd, $J = 13.4$, 7.5 Hz, 1H), 2.35 – 2.26 (m, 1H), 2.14 (dd, $J = 13.6$, 9.3, 7.5 Hz, 1H), 1.98 – 1.83 (m, 2H), 1.80 – 1.65 (m,
13C NMR (101 MHz, Chloroform-d) δ 173.3, 60.0, 52.8, 45.2, 41.0, 39.8, 34.6, 34.1, 32.9, 32.2, 26.0. HRMS (ESI-TOF) calcd for C$_{13}$H$_{25}$ClNO$_4^+$ (M + NH$_4^+$) = 294.1467, found 294.1466.

dimethyl 3-tetradecylcyclopentane-1,1-dicarboxylate:

This compound was purified by column chromatography on silica gel (PE:Et$_2$O = 20:1) to give 25.1 mg (34% yield) colorless oil following the general procedure but using 5 mol% NiBr$_2$•DME, 6 mol% 1,10-phenanthroline, 0.2 mmol dimethyl 2-allyl-2-(2-bromoethyl)malonate, and 0.8 mmol 1-bromododecane in 1.0 mL DMA. 1H NMR (400 MHz, Chloroform-d) δ 3.71 (s, 6H), 2.45 (dd, $J = 13.1$, 6.9 Hz, 1H), 2.34 – 2.25 (m, 1H), 2.19 – 2.08 (m, 1H), 1.97 – 1.80 (m, 2H), 1.72 – 1.63 (m, 1H), 1.35 – 1.18 (m, 24H), 0.91 – 0.84 (m, 4H). 13C NMR (101 MHz, Chloroform-d) δ 174.6, 173.2, 59.9, 40.9, 39.8, 35.3, 31.9, 29.8, 29.6, 29.6, 29.6, 29.3, 28.5, 14.1. HRMS (ESI-TOF) calcd for C$_{22}$H$_{41}$O$_4$ + (M + H$^+$) = 369.2999, found 369.2996.

dimethyl 3-(cyclohexylmethyl)cyclopentane-1,1-dicarboxylate:

This compound was purified by column chromatography on silica gel (PE:Et$_2$O = 20:1) to give 25.4 mg (45% yield) colorless oil following the general procedure but using 5 mol% NiBr$_2$•DME, 6 mol% 1,10-phenanthroline, 0.2 mmol dimethyl 2-allyl-2-(2-bromoethyl)malonate, and 0.8 mmol bromocyclohexane in 1.0 mL DMA. 1H NMR (400 MHz, Chloroform-d) δ 3.71 (s, 3H), 2.45 (dd, $J = 13.2$, 7.2 Hz, 1H), 2.31 (ddd, $J = 12.6$, 8.6, 3.6 Hz, 1H), 2.17 – 2.08 (m, 1H), 2.08 – 1.97 (m, 1H), 1.90 – 1.79 (m, 1H), 1.73 – 1.59 (m, 6H), 1.33 – 1.07 (m, 7H), 0.93 – 0.73(m, 2H). 13C NMR (101 MHz, Chloroform-d) δ 173.3, 173.3, 59.8, 52.6, 43.2, 41.1, 36.9, 36.5, 33.9, 33.6, 33.5, 32.4, 26.6, 26.3. HRMS (ESI-TOF) calcd for C$_{16}$H$_{24}$O$_4$ + (M + H$^+$) = 283.1904, found 283.1905.

dimethyl 3-(cyclopentylmethyl)cyclopentane-1,1-dicarboxylate:

This compound was purified by column chromatography on silica gel (PE:Et$_2$O = 20:1) to give 26.0 mg (48% yield) colorless oil following the general procedure but using 5 mol% NiBr$_2$•DME, 6 mol%
1,10-phenanthroline, 0.2 mmol dimethyl 2-allyl-2-(2-bromoethyl)malonate, and 0.8 mmol bromocyclopentane in 1.0 mL DMA.

\[^1\text{H NMR (400 MHz, Chloroform-}d\text{)} \delta 3.71 (s, 3H), 3.71 (s, 3H), 2.47 (dd, J = 13.4, 7.0 Hz, 1H), 2.35 – 2.24 (m, 1H), 2.19 – 2.07 (m, 1H), 2.04 – 1.91 (m, 1H), 1.91 – 1.81 (m, 1H), 1.79 – 1.64 (m, 4H), 1.61 – 1.54 (m, 2H), 1.52 – 1.43 (m, 2H), 1.38 – 1.32 (m, 1H), 1.31 – 1.17 (m, 2H), 1.10 – 1.01 (m, 2H).

\[^{13}\text{C NMR (101 MHz, Chloroform-}d\text{)} \delta 173.3, 59.9, 52.6, 41.7, 41.1, 39.2, 39.1, 33.9, 32.9, 32.9, 32.4, 25.1. HRMS (ESI-TOF) calcd for C_{15}H_{25}O_{4}\text{+ (M + H\text{+})} = 269.1747, \text{found 269.1748.}

dimethyl 3-(naphthalen-2-ylmethyl)cyclopentane-1,1-dicarboxylate:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 15:1) to give 12.1 mg (37% yield) colorless oil following the general procedure by using naphthalen-2-yl methanesulfonate as the cross coupling partner.

\[^1\text{H NMR (400 MHz, Chloroform-}d\text{)} \delta 7.87 – 7.73 (m, 3H), 7.60 (s, 1H), 7.49 – 7.38 (m, 2H), 7.31 (dd, J = 8.4, 1.6 Hz, 1H), 3.73 (s, 3H), 3.69 (s, 3H), 2.89 – 2.73 (m, 2H), 2.48 – 2.31 (m, 3H), 2.17 (ddd, J = 13.6, 9.2, 7.6 Hz, 1H), 1.94 – 1.77 (m, 2H), 1.53 – 1.37 (m, 1H).

\[^{13}\text{C NMR (101 MHz, Chloroform-}d\text{)} \delta 173.4, 173.3, 138.9, 133.7, 132.2, 128.0, 127.8, 127.6, 127.0, 126.1, 125.3, 60.0, 52.9, 52.9, 41.7, 41.6, 40.7, 34.0, 32.2. HRMS (ESI-TOF) calcd for C_{20}H_{26}NO_{4}\text{+ (M + NH}_{4}\text{+)} = 344.1856, \text{found 344.1854.}

dimethyl 3-phenethylcyclopentane-1,1-dicarboxylate:

This compound was purified by column chromatography on silica gel (PE:Et_2O = 10:1) to give 8.9 mg (31% yield) colorless oil following the general procedure by using benzyl chloride as the cross coupling partner. The corresponding NMR spectra match with the reported ones.

\[^1\text{H NMR (400 MHz, Chloroform-}d\text{)} \delta 7.30 – 7.24 (m, 2H), 7.20 – 7.14 (m, 3H), 3.72 (s, 3H), 3.72 (s, 3H), 2.61 (t, J = 8.0 Hz, 2H), 2.51 (dd, J = 13.2, 7.2 Hz, 1H), 2.32 (ddd, J = 13.3, 8.5, 3.7 Hz, 1H), 2.15 (ddd, J = 13.6, 9.2, 7.5 Hz, 1H), 2.03 – 1.86 (m, 2H), 1.77 (dd, J = 13.3, 9.8 Hz, 1H), 1.72 – 1.62 (m, 2H), 1.32 (dq, J = 12.3, 9.2 Hz, 1H).

\[^{13}\text{C NMR (101 MHz, Chloroform-}d\text{)} \delta 173.3, 173.3, 142.5, 128.5, 128.5, 125.9, 60.1, 52.8, 40.9, 39.5, 37.3,
35.0, 34.1, 32.1. HRMS (ESI-TOF) calcd for $\text{C}_{17}\text{H}_{26}\text{NO}_4^+$ (M + NH_4^+) = 308.1856, found 308.1855.

3-benzyl-1-tosylpyrrolidine 5:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 8:1) to give 25.8 mg (82% yield) colorless oil following the general procedure. The corresponding spectra match with the reported ones. $^1\text{H NMR}$ (500 MHz, Chloroform- d) δ 7.70 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.26 (t, J = 7.3 Hz, 1H), 7.20 (t, J = 7.3 Hz, 1H), 7.06 (d, J = 7.0 Hz, 2H), 3.39 (ddd, J = 9.8, 8.3, 4.2 Hz, 1H), 3.35 (dd, J = 9.8, 7.2 Hz, 1H), 3.20 (dt, J = 9.8, 7.8 Hz, 1H), 2.92 (dd, J = 9.8, 7.5 Hz, 1H), 2.60 – 2.50 (m, 2H), 2.44 (s, 3H), 2.38 – 2.28 (m, 1H), 1.88 (ddd, J = 18.9, 7.0, 4.3 Hz, 1H), 1.50 (dq, J = 12.5, 8.2 Hz, 1H). $^{13}\text{C NMR}$ (126 MHz, Chloroform- d) δ 143.5, 139.9, 134.1, 129.8, 128.7, 128.6, 127.6, 126.4, 53.0, 47.5, 40.6, 39.2, 31.2, 21.7. HRMS (ESI-TOF) calcd for $\text{C}_{18}\text{H}_{23}\text{NO}_2\text{S}^+$ (M + H^+) = 316.1366, found 316.1361.

3-(1-phenylethyl)-1-tosylpyrrolidine 7:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 10:1) to give 15.0 mg (46% yield) colorless oil as the first fraction following the general procedure. The relative configuration was confirmed by using the 2D COSY and NOESY spectra, which showed the interaction of TsNCH_2 and CHCH_3Ph. $^1\text{H NMR}$ (500 MHz, Chloroform- d) δ 7.77 – 7.74 (m, 2H, m-Ts), 7.36 (d, J = 7.9 Hz, 2H, α-Ts), 7.31 – 7.27 (m, 2H, m-Ar), 7.23 – 7.17 (m, 1H, p-Ar), 7.12 – 7.06 (m, 2H, α-Ar), 3.61 (dd, J = 9.5, 7.5 Hz, 1H, TsNCH_2CH), 3.35 – 3.29 (m, 1H, $\text{TsNCH}_2\text{CH}_2$), 3.12 (td, J = 9.5, 7.0 Hz, 1H, $\text{TsNCH}_2\text{CH}_2$), 3.03 – 2.94 (m, 1H, TsNCH_2CH), 2.47 (s, 3H, CH_3 of Ts), 2.44 – 2.39 (m, 1H, CHCH_3Ph), 2.26 – 2.16 (m, 1H, TsNCH_2CH), 1.59 – 1.51 (m, 1H, $\text{TsNCH}_2\text{CH}_2$), 1.32 – 1.26 (m, 1H, $\text{TsNCH}_2\text{CH}_2$), 1.23 (d, J = 7.0 Hz, 3H, CHCH_3Ph). $^{13}\text{C NMR}$ (126 MHz, Chloroform- d) δ 145.4, 143.3, 134.0, 129.7, 128.5, 127.5, 127.0, 126.4, 52.3, 47.7.

This compound was purified by column chromatography on silica gel (PE:EtOAc = 10:1) to give 16.9 mg (51% yield) white solid as the second fraction following the general procedure, 80.4 ~ 80.6 °C. 1H NMR (600 MHz, Chloroform-d) δ 7.65 (d, $J = 8.0$ Hz, 2H, m-Ts), 7.30 (d, $J = 8.0$ Hz, 2H, o-Ts), 7.28 – 7.23 (m, 2H, m-Ar), 7.23 – 7.16 (m, 1H, p-Ar), 7.09 (d, $J = 8.0$ Hz, 2H, o-Ar), 3.43 (td, $J = 8.8$, 2.8 Hz, 1H, TsNCH$_2$CH$_2$), 3.24 (td, $J = 10.0$, 7.2 Hz, 1H, TsNCH$_2$CH$_2$), 3.09 (dd, $J = 10.0$, 7.6 Hz, 1H, TsNCH$_2$CH), 2.70 (t, $J = 9.6$ Hz, 1H, TsNCH$_2$CH), 2.46 (s, 3H, CH$_3$ of Ts), 2.46 – 2.37 (m, 1H, CHCH$_3$Ph), 2.27 – 2.16 (m, 1H, TsNCH$_2$CH), 2.13 – 2.05 (m, 1H, TsNCH$_2$CH$_2$), 1.52 (tt, $J = 12.4$, 9.2 Hz, 1H, TsNCH$_2$CH$_2$), 1.22 (d, $J = 6.8$ Hz, 3H, CHCH$_3$Ph). 13C NMR (126 MHz, Chloroform-d) δ 145.4, 143.3, 134.0, 129.7, 128.5, 127.5, 127.0, 126.4, 52.3, 47.7, 46.0, 43.8, 30.7, 21.6, 21.1. HRMS (ESI-TOF) calcd for C$_{19}$H$_{24}$NO$_2$S$^+$ (M + H$^+$) = 330.1522, found 330.1520.

3-benzyl-3-methyl-1-tosylpyrrolidine 8:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 8:1) to give 20.0 mg (61% yield) colorless oil following the general procedure. 1H NMR (500 MHz, Chloroform-d) δ 7.71 (d, $J = 8.0$ Hz, 2H), 7.31 (d, $J = 8.0$ Hz, 2H), 7.29 – 7.20 (m, 3H), 7.04 (d, $J = 6.8$ Hz, 2H), 3.43 (ddd, $J = 9.7$, 8.4, 5.1 Hz, 1H), 3.30 (dt, $J = 9.8$, 7.6 Hz, 1H), 3.19 (d, $J = 9.6$ Hz, 1H), 2.90 (d, $J = 9.5$ Hz, 1H), 2.60 (d, $J = 13.3$ Hz, 1H), 2.52 (d, $J = 13.3$ Hz, 1H), 2.43 (s, 3H), 1.73 (dt, $J = 12.5$, 7.9 Hz, 1H), 1.48 (ddd, $J = 12.7$, 7.8, 5.1 Hz, 1H), 0.82 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 143.4, 138.1, 134.3, 130.3, 129.8, 128.3, 127.6, 126.6, 58.6, 46.7, 45.1, 43.0, 37.4, 23.5, 21.7. HRMS (ESI-TOF) calcd for C$_{19}$H$_{23}$NNaO$_2$S$^+$ (M + Na$^+$) = 352.1342, found 352.1346.

(2R)-2,4-dibenzyl-1-tosylpyrrolidine 9:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 8:1) to give 39.8 mg (98% yield) colorless oil
(3.6:1 mixture of cis:trans diastereomers) following the general procedure. The 1H NMR match with the reported one5. The relative configuration was confirmed by using the 2D COSY and NOESY spectra. 13C NMR was assigned according to 2D HSQC spectra, and for the minor diastereomer, not all 13C NMR peaks could be identified due to overlap with the major diastereomer peaks and lack of signal in the HSQC. Major diastereomer: 1H NMR (400 MHz, Chloroform-d) δ 7.68 (d, $J = 8.4$ Hz, 2H, m-Ts), 7.29 – 7.24 (m, 2H, o-Ts), 7.25 – 7.13 (m, 8H, Ar of Bn and m-Ph, p-Ph), 6.93 (d, $J = 7.7$ Hz, 2H, co-Ph), 3.76 – 3.67 (m, 1H, TsNCHBn), 3.54 – 3.45 (m, 1H, TsNCH$_2$), 3.41 (dd, $J = 13.2, 3.6$ Hz, 1H, TsCHCH$_2$C$_6$H$_5$), 2.93 – 2.84 (m, 1H, TsNCH$_2$), 2.84 – 2.78 (m, 1H, TsCHCH$_2$C$_6$H$_5$), 2.49 (dd, $J = 13.8, 6.8$ Hz, 1H, CHCH$_2$Ph), 2.42 (s, 3H, CH$_3$ of Ts), 2.41 – 2.35 (m, 1H, CHCH$_2$Ph), 1.79 (dt, $J = 12.8, 6.6$ Hz, 1H, TsNCHBnCH$_2$), 1.64 – 1.52 (m, 1H, TsCH$_2$CHBn), 1.38 – 1.27 (m, 1H, TsNCHBnCH$_2$). 13C NMR (101 MHz, Chloroform-d) δ 143.6 (i-Ts), 139.8 (i-Ar), 138.3 (i-Ar), 135.1, 129.9, 129.8 (o-Ts), 128.6 (o-Ar), 128.54 (m-Ar), 128.45 (p-Ar), 127.60 (m-Ts), 126.56, 126.4, 62.3 (TsNCHBn), 54.9 (TsNCH$_2$), 43.1 (TsCHCH$_2$C$_6$H$_5$), 39.8 (CHCH$_2$Ph), 38.5 (TsNCHBnCH$_2$), 38.1 (TsCH$_2$CHBn), 21.7 (CH$_3$ of Ts). Minor diastereomer: 1H NMR (400 MHz, Chloroform-d) δ 7.74 (d, $J = 8.0$ Hz, 2H, m-Ts), 7.34 – 7.29 (m, 2H, o-Ts), 7.26 – 7.15 (m, 8H, Ar of Bn and m-Ph, p-Ph), 6.96 (d, $J = 7.6$ Hz, 2H, o-Ph), 3.92 – 3.83 (m, 1H, TsNCHBn), 3.51 – 3.38 (m, 1H, TsNH$_2$), 3.23 – 3.13 (m, 1H, TsCHCH$_2$C$_6$H$_5$), 2.74 – 2.65 (m, 2H, TsCHCH$_2$C$_6$H$_5$), 2.42 (s, 3H, CH$_3$ of Ts), 2.45 – 2.32 (m, 2H), 1.72 – 1.64 (m, 1H), 1.64 – 1.52 (m, 1H), 1.17 – 1.06 (m, 1H). 13C NMR (101 MHz, Chloroform-d) δ 139.5, 138.4, 134.3, 129.7 (o-Ts), 127.5 (m-Ts), 126.4, 61.4 (TsNCHBn), 54.1 (TsNCH$_2$), 38.6 (CHCH$_2$Ph), 38.2 (TsNCHBnCH$_2$), 35.6 (CH$_3$ of Ts). HRMS (ESI-TOF) calcd for C$_{25}$H$_{28}$NO$_2$S$^+$ (M + H$^+$) = 406.1835, found 406.1830.

(2S)-4-benzyl-2-methyl-1-tosylpyrrolidine 10:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 8:1) to give 28.6 mg (87% yield) colorless oil (4:1 mixture of cis:trans diastereomers) following the general procedure in a 1.8 mL vial in a thermoshaker. The relative configuration was confirmed by 2D COSY and NOESY spectra, 13C NMR was assigned according to 2D HSQC spectra. Major
diastereomer: 1H NMR (400 MHz, Chloroform-d) δ 7.66 (d, $J = 8.2$ Hz, 2H, m-Ts), 7.38 (d, $J = 8.0$ Hz, 2H, o-Ts), 7.37 – 7.32 (m, 2H, m-C$_6$H$_4$), 7.31 – 7.25 (m, 1H, p-C$_6$H$_3$), 7.06 – 6.99 (m, 2H, o-C$_6$H$_3$), 3.55 (dt, $J = 8.8$, 6.3 Hz, 1H, TsNCHCH$_3$), 3.48 (m, 1H, TsNCH$_2$), 3.05 (dd, $J = 11.3$, 10.0 Hz, 1H, TsNCH$_2$), 2.61 – 2.50 (m, 2H, CH$_2$C$_6$H$_4$), 2.43 (s, 3H, CH$_3$ of Ts), 2.07 – 1.98 (m, 1H, TsNCH(CH$_3$)CH$_2$), 1.84 – 1.70 (m, 1H, TsNCH$_2$CHBn), 1.40 (d, $J = 6.2$ Hz, 3H, TsNCHCH$_3$), 1.25 – 1.20 (m, 1H, TsNCH(CH$_3$)CH$_2$). 13C NMR (101 MHz, Chloroform-d) δ 143.36 (i-Ts), 140.0 (i-C$_6$H$_3$), 135.3 (p-C$_6$H$_3$), 129.8 (o-Ts), 128.62 (m-C$_6$H$_4$), 128.59 (o-C$_6$H$_3$), 127.58 (m-Ts), 126.44 (p-Ts), 57.0 (TsNCHCH$_3$), 54.6 (TsNCH$_2$), 41.3 (TsNCH(CH$_3$)CH$_2$), 39.8 (TsNCH$_2$CHBn), 38.9 (CH$_2$C$_6$H$_4$), 23.0 (CHCH$_3$), 21.7 (CH$_3$ of Ts). Minor diastereomer: 1H NMR (400 MHz, Chloroform-d) δ 7.72 (d, $J = 8.0$ Hz, 2H, m-Ts), 7.32 (d, $J = 8.0$ Hz, 2H, o-Ts), 7.27 – 7.24 (m, 2H, m-C$_6$H$_4$), 7.21 – 7.17 (m, 1H, p-C$_6$H$_3$), 7.04 – 7.00 (m, 2H, o-C$_6$H$_3$), 3.86 – 3.77 (m, 1H, TsNCHCH$_3$), 3.53 – 3.50 (m, 1H, TsNCH$_2$), 2.75 (t, $J = 8.8$ Hz, 1H, TsNCH$_2$), 2.55 – 2.46 (m, 2H, CH$_2$C$_6$H$_4$), 2.44 (s, 3H, CH$_3$ of Ts), 1.63 – 1.52 (m, H, CH$_2$C$_6$H$_4$), 1.46 – 1.38 (m, 1H, TsNCH(CH$_3$)CH$_2$), 1.27 (d, $J = 6.0$ Hz, 3H, CHCH$_3$), 1.25 – 1.20 (m, 1H, TsNCH(CH$_3$)CH$_2$). 13C NMR (101 MHz, Chloroform-d) δ 143.37 (i-Ts), 139.9 (i-C$_6$H$_3$), 134.9 (p-C$_6$H$_3$), 129.8 (o-Ts), 128.67 (m-C$_6$H$_4$), 128.64 (o- C$_6$H$_3$), 127.66 (m-Ts), 126.44 (p-Ts), 55.9 (TsNCHCH$_3$), 54.2 (TsNCH$_2$), 39.4 (TsNCH(CH$_3$)CH$_2$), 39.0 (TsNCH$_2$CHBn), 38.8 (CH$_2$C$_6$H$_4$), 23.4 (CHCH$_3$), 21.7 (CH$_3$ of Ts). HRMS (APCI-TOF) calcld for C$_{19}$H$_{24}$NO$_2$S$^+$ (M+H$^+$) = 330.1522, found 330.1526.

3-benzyl-2-methyl-1-tosylpyrrolidine 11:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 8:1) to give 24.0 mg (73% yield) colorless oil (1.7:1 mixture of cis:trans diastereomers) following the general procedure. The relative configuration was confirmed by 2D COSY and NOESY spectra, 13C NMR was assigned according to 2D HSQC spectra. Major diastereomer: 1H NMR (500 MHz, Chloroform-d) δ 7.73 (d, $J = 8.0$ Hz, 2H, m-Ts), 7.33 (d, $J = 8.0$ Hz, 2H, o-Ts), 7.30 – 7.23 (m, 2H, m-C$_6$H$_4$), 7.23 – 7.17 (m, 1H, p-C$_6$H$_3$), 7.07 (d, $J = 6.0$ Hz, 2H, o-C$_6$H$_3$), 3.56 – 3.49 (m, 1H, TsNCHCH$_3$), 3.39 – 3.33 (m, 1H, TsNCH$_2$), 3.05 – 2.96 (m, 1H, TsNCH$_2$), 2.67 (dd, $J = 14.0$, 6.0 Hz, 1H, CH$_2$Ar), 2.51 (dd, $J = 14.0$, 9.0 Hz, 1H,
CH₂Ar), 2.46 (s, 3H, CH₃ of Ts), 2.15 – 2.05 (m, 1H, CHBn), 2.00 – 1.90 (m, 1H, TsNCH₂CH₂), 1.76 – 1.69 (m, 1H, TsNCH₂CH₂), 1.25 (d, J = 6.5 Hz, 3H, CHCH₃). ¹³C NMR (101 MHz, Chloroform-d) δ 143.3 (i-Ts), 140.1 (i-C₆H₅), 135.2 (m-C₆H₅), 129.8 (o-Ts), 128.63 (o-C₆H₅), 128.62 (p-C₆H₅), 127.5 (m-Ts), 126.38 (p-Ts), 58.2 (TsNCH₂CH₂), 47.4 (TsNCH₂), 44.1 (CHBn), 35.6 (CH₂Ar), 29.0 (TsNCH₂CH₂), 21.7 (CH₃ of Ts), 17.6 (CHCH₃). Minor diastereomer: ¹H NMR (500 MHz, Chloroform-d) δ 7.76 (d, J = 8.0 Hz, 2H, m-Ts), 7.35 (d, J = 8.0 Hz, 2H, o-Ts), 7.30 – 7.24 (m, 2H, m-C₆H₅), 7.23 – 7.18 (m, 1H, p-C₆H₅), 6.94 (d, J = 6.0 Hz, 2H, o-C₆H₅), 3.86 (p, J = 6.8 Hz, 1H, TsNCHCH₃), 3.46 – 3.41 (m, 2H, TsNCH₂), 2.48 (s, 3H, CH₃ of Ts), 2.38 (dd, J = 13.5, 6.5 Hz, 1H, CH₂Ar), 2.11 (dd, J = 13.5, 8.5 Hz, 1H, CH₂Ar), 2.08 – 2.03 (m, 1H, CHBn), 1.72 – 1.68 (m, 1H, TsNCH₂CH₂), 1.35 (d, J = 6.5 Hz, 3H, CHCH₃), 1.24 – 1.22 (m, 1H, TsNCH₂CH₂). ¹³C NMR (101 MHz, Chloroform-d) δ 143.4 (i-Ts), 139.6 (i-C₆H₅), 135.3 (m-C₆H₅), 129.8 (o-Ts), 128.9 (o-C₆H₅), 128.6 (p-C₆H₅), 127.6 (m-Ts), 126.42 (p-Ts), 61.1 (TsNCH₂CH₂), 48.3 (TsNCH₂), 47.7 (CHBn), 38.7 (CH₂Ar), 29.3 (TsNCH₂CH₂), 22.5 (CHCH₃), 21.7 (CH₃ of Ts). HRMS (ESI-TOF) calcd for C₁₉H₂₃NNaO₂S⁺ (M + Na⁺) = 352.1342, found 352.1341.

3-benzyl-4-methyl-1-tosylpyrrolidine 12:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 8:1) to give 23.7 mg (72% yield) colorless oil (2.6:1 mixture of cis:trans diastereomers) following the general procedure. The relative configuration was confirmed by 2D COSY and NOESY spectra, ¹³C NMR was assigned according to 2D HSQC spectra. Major diastereomer: ¹H NMR (500 MHz, Chloroform-d) δ 7.69 (d, J = 8.2 Hz, 2H), 7.31 (t, J = 7.7 Hz, 2H), 7.28 – 7.23 (m, 2H), 7.22 – 7.17 (m, 1H), 7.04 (t, J = 7.7 Hz, 2H), 3.39 (dd, J = 9.8, 6.5 Hz, 1H), 3.24 (dd, J = 9.8, 6.5 Hz, 1H), 3.08 (dd, J = 9.8, 4.4 Hz, 1H), 3.02 (dd, J = 10.0, 7.0 Hz, 1H), 2.64 (q, J = 10.3 Hz, 1H), 2.44 (s, 3H), 2.39 – 2.28 (m, 2H), 2.25 – 2.16 (m, 1H), 0.85 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 143.4 (i-Ts), 140.0 (i-C₆H₅), 134.5 (p-Ts), 129.8 (o-Ts), 128.7 (m-C₆H₅), 128.7 (o-C₆H₅), 127.6 (m-Ts), 126.4 (p-C₆H₅), 54.8 (TsNCH₂CHCH₃), 51.0 (TsNCH₂CHBn), 43.8 (CHBn), 35.6 (CHCH₃), 34.0 (CH₂C₆H₅), 21.7 (CH₃ of Ts), 13.4 (CHCH₃). Minor diastereomer: ¹H NMR (500 MHz, Chloroform-
2H NMR (400 MHz, Chloroform-\textit{d}) δ 8.45 (dd, $J = 4.8, 1.5$ Hz, 1H), 8.32 (d, $J = 1.9$ Hz, 1H), 7.69 (d, $J = 8.2$ Hz, 2H), 7.39 (d, $J = 7.8$ Hz, 1H), 7.32 (d, $J = 8.0$ Hz, 2H), 7.20 (dd, $J = 7.8, 4.8$ Hz, 1H), 3.39 (ddd, $J = 9.9, 8.3, 4.2$ Hz, 1H), 3.33 (dd, $J = 9.8, 7.1$ Hz, 1H), 3.19 (dt, $J = 9.8, 7.8$ Hz, 1H), 2.90 (dd, $J = 9.8, 7.5$ Hz, 1H), 2.61 – 2.50 (m, 2H), 2.43 (s, 3H), 2.38 – 2.26 (m, 1H), 1.88 (ddd, $J = 19.0, 7.0, 4.2$ Hz, 1H), 1.49 (dq, $J = 12.6, 8.3$ Hz, 1H). 13C NMR (101 MHz, Chloroform-\textit{d}) δ 149.9, 147.9, 143.5, 136.0, 135.0, 133.7, 129.7, 127.5, 123.4, 52.6, 47.3, 40.0, 36.2, 31.0, 21.6. HRMS (ESI-TOF) calcd for $C_{17}H_{21}N_2O_2S^+$ (M + H$^+$) = 317.1318, found 317.1314.

3-benzyl-1-tosylpiperidine 15:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 15:1) to give 13.5 mg (41% yield) colorless oil following the general procedure. 1H NMR (400 MHz, Chloroform-\textit{d}) δ 7.62 (d, $J = 7.7$ Hz, 2H), 7.32 (d, $J = 8.1$ Hz, 2H), 7.29 – 7.25 (m, 2H), 7.20 (t, $J = 6.8$ Hz, 1H), 7.11 (d, $J = 7.7$ Hz, 2H), 3.55 (d, $J = 11.3$ Hz, 2H), 2.61 (dd, $J = 13.5, 6.4$ Hz, 1H), 2.44 (s, 3H), 2.42 – 2.32 (m, 2H), 2.12 (t, $J = 10.7$ Hz, 1H), 1.96 – 1.85 (m, 1H), 1.75 – 1.61 (m, 2H), 1.57 – 1.48 (m, 1H), 0.97 – 0.84 (m, 1H). 13C NMR (101 MHz,
Chloroform-\(d\) \(\delta\) 143.5, 139.5, 133.4, 129.7, 129.2, 128.6, 127.9, 126.4, 51.7, 47.0, 40.2, 37.5, 29.7, 24.4, 21.7. HRMS (ESI-TOF) calcd for \(C_{19}H_{24}NO_2S^+\) (M + H\(^+\)) = 330.1522, found 330.1520.

3-((1-tosylpiperidin-3-yl)methyl)pyridine 16:

This compound was purified by column chromatography on alkaline \(Al_2O_3\) (PE:Et\(_2\)O = 1:2), and then on silica gel (PE:acetone = 1:1) to give 38.6 mg (29% yield) colorless oil following the general procedure in 0.4 mmol scale. To achieve relative pure staff, some staff was abandoned on the first column chromatography. So, it was double checked by using NMR yield with 20 uL CH\(_3\)NO\(_2\) solution (1N in Chloroform-\(d\)) as internal standard after removing the DMA by column chromatography on silica gel (PE:acetone = 1:2), which showed 40% NMR yield. \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 8.47 (dd, \(J = 4.7, 1.2\) Hz, 1H), 8.37 (d, \(J = 1.6\) Hz, 1H), 7.61 (d, \(J = 8.2\) Hz, 2H), 7.48 (d, \(J = 7.8\) Hz, 1H), 7.32 (d, \(J = 8.0\) Hz, 2H), 7.23 (dd, \(J = 7.7, 4.9\) Hz, 1H), 3.57 – 3.42 (m, 2H), 2.62 (dd, \(J = 13.8, 6.8\) Hz, 1H), 2.48 – 2.37 (m, 5H), 2.17 (t, \(J = 10.5\) Hz, 1H), 1.99 – 1.83 (m, 1H), 1.80 – 1.73 (m, 1H), 1.67 – 1.50 (m, 2H), 1.01 – 0.90 (m, 1H). \(^{13}\)C NMR (101 MHz, Chloroform-\(d\)) \(\delta\) 150.5, 148.0, 143.6, 136.6, 134.9, 133.3, 129.8, 127.8, 123.6, 51.4, 46.9, 37.2, 37.1, 29.6, 24.2, 21.7. HRMS (ESI-TOF) calcd for \(C_{18}H_{23}N_2O_2S^+\) (M + H\(^+\)) = 331.1475, found: 331.1470.

4-benzyl-2-phenyltetrahydrofuran 17:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 15:1) to give 15.2 mg (64% yield) colorless oil following the general procedure (as a 3.7:1 mixture of \(trans\):\(cis\) diastereomers). The relative configuration was confirmed by using the 2D COSY and NOESY spectra, \(^{13}\)C NMR was assigned according to 2D HSQC spectra. Major diastereomer (\(trans\)): \(^1\)H NMR (400 MHz, Chloroform-\(d\)): \(\delta\) 7.35 – 7.27 (m, 6H, Ar), 7.26 – 7.15 (m, 4H, Ar), 5.09 (dd, \(J = 7.6, 6.4\) Hz, 1H, OCH\(_2\)Ph), 4.18 (dd, \(J = 8.4, 6.8\) Hz, 1H, OCH\(_2\)CHBn), 3.67 (dd, \(J = 8.4, 6.8\) Hz, 1H, OCH\(_2\)CHBn), 2.77 (d, \(J = 7.6\) Hz, 2H, CH\(_2\)Ar), 2.70 – 2.60 (m, 1H, OCH\(_2\)CHBn), 2.17 – 2.09 (m, 1H, OCH\(_2\)CHBn), 2.03 – 1.94 (m, 1H, OCH\(_2\)CHBn).
13C NMR (101 MHz, Chloroform-d) δ 143.9, 140.7, 128.9, 128.6, 128.5, 127.2, 126.3, 125.6, 80.2 (OCHPh), 74.0 (OCH2CHBn), 40.8 (CH2Ar), 40.7 (OCHPhCH2), 39.3 (OCH2CHBn). Minor diastereomer, known peaks from the spectra (cis): 1H NMR (400 MHz, Chloroform-d) δ 7.38 – 7.13 (m, 10H, Ar), 4.91 (dd, J = 9.8, 6.0 Hz, 1H, OCHPh), 4.07 (dd, J = 8.0, 7.1 Hz, 1H, OCH2CHBn), 3.79 (dd, J = 8.1, 7.4 Hz, 1H, OCH2CHBn), 2.77 (s, J = 7.6 Hz, 1H, OCH2CHBn), 2.73 – 2.60 (m, 2H), 2.47 – 2.37 (m, 1H, OCHPhCH2). 13C NMR (101 MHz, Chloroform-d) δ 128.8, 128.5, 125.8, 81.4 (OCHPh), 73.6 (OCH2CHBn), 42.4 (CH2Ar), 42.1 (OCHPhCH2), 39.6 (OCH2CHBn). HRMS (EI) calcd for C17H18O+ (M+) = 238.1358, found 238.1362.

4,5-cis-3-benzyloctahydrobenzofuran 18:

This compound was purified by column chromatography on silica gel (PE:EtOAc = 15:1) to give 11.2 mg (52% yield) colorless oil following the general procedure from trans-1-(allyloxy)-2-bromocyclohexane. The structure and conformation were determined by comparison to the reported spectra7 to show a trans:cis diastereomeric ratio of 1.6:1. When the general procedure was followed with the cis- diastereomer of the substrate, 5.7 mg (27% yield) colorless oil with identical NMR spectra and trans:cis ratio of 1.5:1 was obtained. Major diastereomer, trans: 1H NMR (400 MHz, Chloroform-d) δ 7.30 – 7.24 (m, 2H, Ar), 7.23 – 7.14 (m, 3H, Ar), 4.08 (t, J = 8.1, 1H), 4.02 (q, J = 4.7 Hz, 1H), 3.52 (dd, J = 8.6, 4.7 Hz, 1H), 2.77 (dd, J = 14.2, 7.5 Hz, 1H), 2.60 (dd, J = 13.7, 8.5 Hz, 1H), 2.35 – 2.24 (m, 1H), 1.89 – 1.70 (m, 2H), 1.62 – 1.43 (m, 4H), 1.42 – 1.10 (m, 3H). 13C NMR (101 MHz, Chloroform-d) δ 140.8, 128.9, 128.57, 126.1, 76.4, 72.1, 45.8, 43.1, 40.0, 28.5, 27.6, 23.8, 21.3. Minor diastereomer, selected peak of cis: 1H NMR (400 MHz, Chloroform-d) δ 7.30 – 7.24 (m, 2H, Ar), 7.23 – 7.14 (m, 3H, Ar), 3.98 – 3.94 (m, 1H), 3.90 (t, J = 7.9 Hz, 1H), 3.69 – 3.62 (m, 1H), 2.76 – 2.66 (m, 1H), 2.65 – 2.57 (m, 1H), 1.97 (d, J = 12.5 Hz, 1H), 1.89 – 1.70 (m, 2H), 1.62 – 1.43 (m, 4H), 1.42 – 1.10 (m, 3H). 13C NMR (101 MHz, Chloroform-d) δ 141.1, 128.9, 128.60, 126.2, 78.5, 71.1, 45.8, 40.1, 33.7, 28.8, 24.7, 22.3. HRMS (EI) calcd for C15H20O+ (M+) = 216.1514, found 216.1511.

4,5-cis-3-benzylhexahydro-4H-furo[2,3-b]pyran 19: This compound was purified by column chromatography on silica gel (PE:EtOAc = 5:1) to give 10.9 mg (50% yield) colorless oil following the general procedure. The conformation was determined by comparison to the reported spectra to show 11.5:1 (cis: trans). For the minor diastereomer, not all 13C NMR peaks could be identified due to overlap with the major diastereomer peaks and lack of signal in 2D HSQC. Major diastereomer, cis: 1H NMR (400 MHz, Chloroform-d) δ 7.29 (t, $J = 7.4$ Hz, 2H), 7.20 (t, $J = 7.5$ Hz, 2H), 7.17 (d, $J = 7.2$ Hz, 1H), 5.28 (d, $J = 3.7$ Hz, 1H), 3.88 (t, $J = 7.7$ Hz, 1H), 3.78 (t, $J = 8.7$ Hz, 2H), 3.65 (d, $J = 11.3$ Hz, 1H), 2.78 – 2.59 (m, 3H), 2.00 – 1.91 (m, 1H), 1.81 – 1.72 (m, 1H), 1.66 – 1.51 (m, 3H). 13C NMR (101 MHz, Chloroform-d) δ 140.3, 128.70, 128.5, 126.36, 102.1, 70.1, 61.2, 42.7, 36.7, 33.5, 23.3, 19.7. Minor diastereomer, trans: 1H NMR (400 MHz, Chloroform-d) δ 7.32 – 7.26 (m, 2H), 7.24 – 7.18 (m, 2H), 7.18 – 7.14 (m, 1H), 5.03 (d, $J = 3.5$ Hz, 1H), 4.17 (t, $J = 8.3$ Hz, 1H), 3.69 – 3.61 (m, 2H), 3.42 (td, $J = 11.5, 2.2$ Hz, 1H), 2.86 (dd, $J = 12.9, 5.1$ Hz, 1H), 2.78 – 2.54 (m, 2H), 1.82 – 1.70 (m, 1H), 1.67 – 1.50 (m, 4H). 13C NMR (101 MHz, Chloroform-d) δ 128.67, 126.40, 102.3, 73.9, 64.6, 44.0, 39.6, 38.9, 22.6, 20.9. HRMS (ESI-TOF) calcd for C$_{14}$H$_{18}$O$_2$ + (M + H$^+$) = 219.1380, found 219.1382.

5. Synthesis of the N-free pyrrolidine derivative 6

A solution of sodium naphthalenide in DME was prepared by adding DME to a mixture of sodium (100 mg, 4.34 mmol) and naphthalene (700 mg, 5.48 mmol) under nitrogen and stirring the resulting mixture for 2 hours to give a blue solution. Then this solution was added to a solution of starting material (53.7 mg, 0.17 mmol) in 1.0 mL DME dropwise at -78 °C under nitrogen until a green color persisted. Then the mixture was left stirring with the reaction allowed to warm to rt for 2 hours. After another 2 hours, 2 drops saturated aqueous NaHCO$_3$ and 500 mg K$_2$CO$_3$ were added to the mixture. After stirring
for 1 hour, the mixture was filtered, washed with Et₂O, and concentrated. Finally, the product was purified by column chromatography on silica gel (MeOH:CH₂Cl₂ = 4:1 to pure MeOH) to give a colorless oil (26.9 mg, 98% yield). ¹H NMR (400 MHz, Chloroform-d) δ 7.29 – 7.24 (m, 2H), 7.24 – 7.18 (m, 1H), 7.18 – 7.13 (m, 2H), 3.46 – 3.24 (m, 3H), 3.13 (td, J = 7.2, 2.8 Hz, 1H), 3.05 – 2.90 (m, 1H), 2.70 – 2.65 (m, 2H), 2.48 – 2.32 (m, 1H), 2.00 – 1.85 (m, 1H), 1.60 – 1.47 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 140.6, 128.8, 128.6, 126.3, 51.2, 45.5, 41.0, 39.7, 31.6. HRMS (EI) calcd for C₁₁H₁₃N (M⁺) = 161.1204, found 161.1202.
6. NMR spectra
cis : trans = 3 : 1
S39
S47