
S1 
 

Electronic Supplementary Information 

Highly effective Electrosynthesis of Hydrogen Peroxide from 

Oxygen on Redox-active Cationic Covalent Triazine Network 

Lan-Zhen Peng,‡a,b Pei Liu,‡b,c Qing-Qing Cheng,b Wen-Jing Hu,b Yahu A. Liu,d Jiu-Sheng Li,b 
Biao Jiang,b Xue-Shun Jia,a Hui Yang*,b,c and Ke Wen*,b,c 

a Department of Chemistry, Shanghai University, Shanghai 200444, China 

b Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China. Emails: 

yangh@sari.ac.cn, wenk@sari.ac.cn,  

c School of Physical Science of Technology, ShanghaiTech University, Shanghai 201210, China  

d Medicinal Chemistry, ChemBridge Research Laboratories, San Diego, CA 92127, USA  

 

  

Electronic Supplementary Material (ESI) for Chemical Communications.
This journal is © The Royal Society of Chemistry 2018

mailto:yangh@sari.ac.cn
mailto:wenk@sari.ac.cn


S2 
 

1. Physical Characterization 

Solvents and reagents were purchased from Energy Chemical or Sinopharm 

Chemical Reagent Co., Ltd without further purification. 1H NMR and 13C NMR 

spectra were recorded on a 400 MHz Bruker Avance-III NMR Spectrometer or a 500 

MHz one. The FT-IR spectra were obtained on a PerkinElmer Spectrum Two FT-IR 

spectrometer using attenuated total reflection (ATR) technique. The 13C 

Cross-Polarization Magic Angle Spinning (CP-MAS) NMR spectra were performed 

on a Bruker ASX 500 MHz at 125.8 MHz and a MAS frequency of 25 kHz. 

Thermogravimetric analysis (TGA) was carried out on a SDT Q600 

thermogravimetric analyzer, and the samples were heated to 1000 °C at a rate of 

10 °C min-1 under nitrogen atmosphere.  

The scanning electron microscopy (SEM) and energy dispersive X-ray 

absorption spectroscopy (EDS) analyses were conducted on a Hitachi S-4800 

cold-cathode field-emission scanning electron microscopy (FE-SEM) at 2.0 KeV - 

10.0 KeV. Bruker AXS D8 ADVANCE X-ray diffractometer with a Cu Kα (λ = 1.5418 

Å) radiation source operated at 40 kV and 40 mA were used to collect Powder X-ray 

diffraction (XRD). Diffraction patterns were collected at a scanning rate of 2° per min 

with a step size of 0.02°. Nitrogen adsorption/desorption isotherms were measured by 

a JW-BK122W Area and Pore Size Distribution Analyzer at 77K after the samples 

were degassed at 120 °C for 24 h under vacuum. Specific surface areas were 

determined through Brunauer–Emmett–Teller (BET) model, and pore size 

distributions (PSDs) were calculated using Barret-Joyner-Halenda (BJH) theory. 

X-ray Photoelectron Spectroscopy (XPS) was used to collect on a Thermo Scientific 

K-Alpha X-ray photoelectron spectrometer with the monochromatic Al Kα source (12 

kV, 4 mA, h = 1486.6 eV) under ultrahigh vacuum (10−7 Pa), referenced to the C 1s 

signal at 284.6 eV. EPR spectra were recorded on a JES FA200 EPR spectrometer. 

Elemental analysis (C, H, N) was carried out on an elementar vario MICRO cube 

Elemental Analyzer. 

2. Electrochemical measurements 
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The working electrode was prepared and the electrocatalytic activity and 

selectivity of H2O2 were evaluated, referenced to our previous report.1 The catalyst 

ink was prepared by mixing cCTF:Cl- catalyst (12 mg), water (0.6 mL), isopropanol 

(0.3 mL), and Nafion solution (10 wt%, 0.1 mL), followed by ultrasonication. Then, 

10 μL of dispersion was dropped onto the pre-polished RDE or RRDE and left to air 

dry overnight at room temperature. The linear sweep voltammetry (LSV) curves were 

recorded in O2-saturated 0.1 M KOH solution with different rotating speeds and at a 

scan rate of 10 mV s-1. All electrochemical measurements were performed using a 

CHI 730E workstation. The glass carbon and Ag/AgCl were used as the counter and 

reference electrodes, respectively. 

The Koutecky–Levich (K-L) plots were carried out at different rotating speeds 

and electron transfer numbers were obtained by the K-L equation: 

I-1=Ik
-1+ (0.62nFCO2DO2

2/3γ-1/6)-1ω-1/2 

where I is the measured current, Ik is the kinetic current, n is the number of transferred 

electrons, F is the Faraday constant (96,500 C mol-1), CO2 is the concentration of 

oxygen (1.2 × 10-6 mol cm-3), DO2 is the diffusion coefficient of oxygen (1.9 × 10-5 

cm2 s-1), γ is the kinematic viscosity (0.011 cm2 s-1) in 0.1 M KOH solution and ω 

(rad/s) is the rotating speed of the electrode.  

Hydrogen peroxide selectivity and electron transfer number (n) were calculated 

based on RRDE measurement using the following equations: 

H2O2 (%) =200jr/(N jd+jr) 

n= 4jd/(jd+jr/N)  

Where jd is the disk current, jr is the ring current, and N (N= 0.34) is the collection 

efficiency which was corrected under the same electrochemical conditions with 

Fe2+/Fe3+ couple.2 A potential of the ring electrode was maintained at 1.4 V/RHE 

promising the ring positive current. 
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3. Experiment Section 
3.1. Synthesis the cCTN:Cl- catalyst and characterization  

A mixture of 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT)3 (354.0 mg, 1.0 

mmol) with 1,1’-bis(4-cyanophenyl)-[4,4’-bipyridine]-1,1’-diiumdichloride 

(DNP++-2Cl-)4 (841.5 mg, 1.5 mmol) in a mixed solvent of MeCN and H2O (50 mL, 

10:1, v/v) in a sealed tube was sonicated for 30 min, then the reaction kettle was 

sealed off and heated at 120 °C for 72 h (Scheme S1). After cooling down naturally to 

room temperature, a reddish brown precipitate was collected by filtration and washed 

with THF, and dried at 120 °C under vacuum to afford cCTN:Cl- (0.71 g, 59.2%).  

 

 

Scheme S1. Synthesis of the cationic viologen-based redox-active covalent triazine 

networks via Zincke reaction under solvothermal condition. 
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Fig. S1. 13C CP/MAS solid state NMR spectrum of cCTN:Cl-. 
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Fig. S2. Thermogravimetric analysis of TAPT, DNP++-2Cl-, cCTN:Cl- under nitrogen. 
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Fig. S3. Field-Emission Scanning Electron Microscopy (FE-SEM) image of cCTN:Cl- 
(A) powder morphology; (B) supernatant acetonitrile solution of cCTN:Cl-, which 
was dispersed by ultrasonication; (C) and (D)high-resolution TEM of cCTN:Cl-.  
 

 
Fig. S4. PXRD pattern of cCTN:Cl- , indicated that the morphology is amorphous.  
 



S7 
 

 
Fig. S5. (A) XPS survey spectrum of cCTN:Cl-, (B) High-resolution XPS spectra of C 
1s, (C) N 1s; (D) Cl 2p for cCTN:Cl-. The N1s spetra for cCTN:Cl- are deconvoluted 
to four peaks. The peaks located at 398.3 and 399.7 eV are belong to the triazine ring 
and some reduced viologen species; the peaks of Quanternary-N are assigned to the 
nitrogen atom of dicationic viologen moieties; the N-oxide peaks of 405.7 eV are 
originated from the nitrogen groups. 
 

Fig. S6. The EDS elemental mapping of cCTN:Cl- showed the ions were dispersed 
evenly. 
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Fig. S7. (A) N2 adsorption isotherm of cCTN:Cl- at 77K; (B) Pore size distribution of 

cCTN:Cl- from N2 adsorption isotherm using Barrett-Joyner-Halenda (BJH) theory. 

Fig. S8 (A) CV of cCTFs in N2-saturated 0.1M KOH solution at different scan rates 

(B) CV of cCTFs in O2-saturated 0.1M KOH solution at a scan rate of 50 mV S-1; (C) 

Polarization curves of the ORR on cCTN:Cl- and cCTFs at 1600 rpm in O2-saturated 

0.1 M KOH solution (solid lines) and the ring current for H2O2 production (dash 

lines); (D) H2O2 selectivity and electron transfer number of the ORR on the 

electrocatalysts of cCTN:Cl-, cCTFs, respectively. These results demonstrate that the 

material made by the ionothermal method have the more positive onset potential for 

ORR activity (0.80 V vs. RHE) than cCTN:Cl‾’s onset potential (0.75 V vs. RHE), but 

the selectivity (~70%) is much lower than cCTN:Cl‾ (~85%) toward ORR to produce 

H2O2 in alkaline solution. 
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Fig. S9. (A) XPS survey spectrum of cCTN:Cl-; (B) High-resolution XPS spectra of C 

1s, (C) N 1s; (D) Cl 2p for cCTN:Cl- after 8 h stability test.  

 

Table S1. Combustion elemental analysis of cCTN:Cl- 

Theoretical value Elemental analysis 
 C% N% H% C% N% H% 
Calc. C36H25Cl3N6 66.73 12.97 3.89 55.51 13.30 4.69 
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