Supplementary Information

Tetrahydro-3H-pyrazolo[4,3-a]phenanthridine-based CDK inhibitor

1. Supplemental Figures

Figure S1. Dose-response curves of the inhibition of the indicated CDKs by staurosporine

Table S1. In vitro kinase selectivity of HSD992

		%			%			%	1			%			%
Entry	Kinase	inhibition	Entry	Kinase	inhibition	Ent	y Kinase	inhibition		Entry	Kinase	inhibition	Entry	Kinase	inhibition
1	CDK3/cyclin E	89	61	CDK1/cyclin E	22	12	CDK18/cyclin Y	11	1	181	CDK6/cyclin D1	5	241	ALK3/BMPR1A	0
2	CDK2/cyclin E	87	62	CDK5/p25	22	12	2 PDGFRa	11	1	182	MYO3b	5	242	MEK2	0
3	CDK2/Cyclin A1	84	63	Aurora B	22	12	B ABL2/ARG	11	1	183	MRCKb/CDC42BPB	4	243	KSR2	0
4	CDK2/cvclin O	76	64	MLCK/MYLK	21	12	HCK	11	1	184	SIK2	4	244	PLK3	0
5	CDK9/cvclin K	72	65	PDGFRb	21	12	5 SRPK1	10	1	185	CK1a1	4	245	CAMK1b	0
6	CDK2/cyclin A	68	66	EPHA1	20	12	ARK5/NUAK1	10	1	186	EPHA8	4	246	GRK2	0
7	PKG1h	67	67	STK16	20	12	CAMK2a	10	1	187	MARK3	4	247	JNK3	0
8	DVRK2	67	68	p70S6Kb/RPS6KB2	20	12	PKCh1	10	1	188	TSSK2	3	248		
<u>a</u>	GCK/MAP4K2	67	69	EPHA4	20	12	FGER3	10	-	180	CK1a2	3	240	NEK5	0
10		66	70	PKCh2	19	13		10	-	100		3	250	CK1a1	0
11	EDHB3	65	70	ECEP1	10	13		10	-	101	ABL1	3	250	74070	0
12		63	71	DIDKE	10	12		10	-	102		2	251		
12		62	72		19	13		10	-	192		2	252		
13		63	73		19	13		10	-	193		3	255		
14		63	74	FL14/VEGFR3	10	13		10	-	194		3	254		
15	RIPK2	62	/5	Pfikgi	18	13		10	-	195		3	200	DTRK4	0
16	PKCd	62	76	NEK9	18	13	CDK//cyclin H	10	-	196	FER	2	256	TYRO3/SKY	0
17	PKCeta	57	77	EPHA7	18	13	C-MEI	10	-	197	ERK1	2	257	JNK2	0
18	CLK4	57	78	FGFR2	17	13	B TBK1	10	4	198	CHK1	2	258	FRK/PTK5	0
19	MAK	57	79	IR	17	13	ESK1	9	4	199	SNARK/NUAK2	2	259	EGFR	0
20	PBK/TOPK	57	80	HIPK1	17	14	WNK2	9	4	200	MKK4	2	260	MEKK1	0
21	DMPK2	53	81	SIK1	17	14	MST2/STK3	9	4	201	SSTK/TSSK6	2	261	STK25/YSK1	0
22	p70S6K/RPS6KB1	52	82	AKT1	17	14	2 CSK	9	4	202	CAMK2a	2	262	PKAcg	0
23	STK39/STLK3	50	83	FYN	17	14	MLK1/MAP3K9	9	4	203	BLK	1	263	BRAF	0
24	ROCK2	49	84	c-Src	16	14	CDK4/cyclin D1	8	-	204	MARK2/PAR-1Ba	1	264	MAPKAPK5/PRAK	0
25	LOK/STK10	48	85	MLCK2/MYLK2	16	14	5 ASK1/MAP3K5	8	4	205	AKT2	1	265	CDK14/cyclin Y	0
26	EPHB4	47	86	AKT3	16	14	BRSK2	8	4	206	MAPKAPK3	1	266	FLT1/VEGFR1	0
27	DDR1	45	87	HIPK2	16	14	/ IKKe/IKBKE	8		207	ERBB2/HER2	1	267	MARK4	0
28	PRKX	44	88	MYO3A	16	14	3 ULK2	8		208	IGF1R	1	268	SNRK	0
29	VRK1	44	89	PAK2	16	14	NEK4	8		209	CAMK1g	1	269	CAMK1d	0
30	RSK4	43	90	HGK/MAP4K4	15	15) BTK	8		210	EPHB2	0	270	FGFR4	0
31	TAOK2/TAO1	42	91	PLK4/SAK	15	15	PKCa	8		211	MINK/MINK1	0	271	PAK3	0
32	MUSK	42	92	CDC7/DBF4	15	15	2 ERK2/MAPK1	8		212	JAK1	0	272	PKCmu/PRKD1	0
33	NEK1	41	93	CAMKK1	15	15	B LCK	8		213	LYN	0	273	SYK	0
34	PIM1	40	94	FGR	15	15	L CLK3	8		214	COT1/MAP3K8	0	274	GRK5	0
35	TNIK	36	95	NEK3	14	15	5 SGK1	8		215	ALK2/ACVR1	0	275	TIE2/TEK	0
36	TAOK1	34	96	CDK5/p35	14	15	B LIMK1	7		216	SBK1	0	276	LYN B	0
37	Aurora A	34	97	JNK1	14	15	LCK2/ICK	7		217	RIPK3	0	277	LIMK2	0
38	KHS/MAP4K5	34	98	PKCtheta	14	15	IRAK4	7		218	P38a/MAPK14	0	278	TLK2	0
39	AXL	34	99	TAK1	14	15	MKK6	7		219	DAPK2	0	279	WNK3	0
40	LKB1	33	100	STK33	14	16) CK1d	7		220	MEK3	0	280	SIK3	0
41	ROCK1	31	101	MST1/STK4	14	16	PLK2	7		221	ALK4/ACVR1B	0	281	MEK1	0
42	CDK19/cyclin C	31	102	RAF1	13	16	2 FES/FPS	7		222	MLK4	0	282	DDR2	0
43	BRK	31	103	GRK4	13	16	GRK1	7	1	223	ERK5/MAPK7	0	283	NEK2	0
44	ERK7/MAPK15	31	104	DMPK	13	16	SRPK2	6		224	CK1a1L	0	284	DAPK1	0
45	SLK/STK2	30	105	EPHA3	13	16	5 CK1epsilon	6]	225	TTBK1	0	285	IRR/INSRR	0
46	CDK9/cyclin T1	29	106	DCAMKL1	13	16	6 MST4	6	1	226	TGFBR2	0	286	OSR1/OXSR1	0
47	PYK2	28	107	GLK/MAP4K3	13	16	GRK6	6	1	227	VRK2	0	287	PDK1/PDPK1	0
48	CDK1/cyclin A	28	108	STK38/NDR1	12	16	B PAK6	6	1	228	CTK/MATK	0	288	PIM2	0
49	STK32C/YANK3	26	109	MNK1	12	16	STK22D/TSSK1	6	1	229	ALK1/ACVRL1	0	289	DCAMKL2	0
50	RSK1	26	110	CDK4/cvclin D3	12	17) PKN2/PRK2	6	1	230	ALK5/TGFBR1	0	290	MKK7	0
51	c-Kit	26	111	STK38L/NDR2	12	17	KDR/VEGFR2	6	1	231	GRK3	0	291	PAK1	0
52	CDK17/cvclin Y	26	112	NEK8	12	17	2 TYK2	6	1	232	PHKa2	0	292	IKKa/CHUK	0
53	STK32B/YANK2	26	113	MSSK1/STK23	12	17	B ARAF	6	1	233	TESK2	0	293	NEK7	0
54	RFT	25	114	NEK6	12	17	CK2a	6	1	234	ALK6/BMPR1B	0	294	CDK16/cyclin Y	0
55	TYK1/I TK	25	115	ТХК	12	17	5 HIPK3	5	1	235	TSSK3/STK22C	0	295	PAK5	1 0
56	HIPK4	24	116	MI K2/MAP3K10	12	17	PIK1	5	1	236	ITK	0	296	KSR1	1 0
57	CK2a2	24	117	Aurora C	12	17	P38d/MAPK13	5	1	237	ZIPK/DAPK3	0	200	WNK1	n n
58		24	118	FMS	12	17	7ΔK/MITK	5	1	238		0	201	EBB4/HER4	0
59	c-MER	24	110		11	17		5	1	230	MST3/STK2/		200		
59		23	100	DLIVIMAF JR 12	11				1	239	MDCKa/CDC420DA		299		1 0
00		43	120	г гоод	11	18	ACD PRACE	>	1	∠40		U	00	JAKZ	

Figure S2. Overlay of ATP (green) and HSD992 (black) in the catalytic pocket of CDK2 (PDB entry 1HCK). Some residues in the active site have been shown and labeled. Figure generated in PyMOL visualization software (The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC).

Figure S3. In vitro kinase inhibition by HSD992. The cell lines substantially inhibited by HSD992 are driven by ABL1, FGFR1-4 and RET kinases. However, HSD992 does not inhibit the *in vitro* activity of these driver kinases.

2. Experimental Section

Biology

In vitro kinase inhibition assay

The kinase inhibition assay was performed using the kinase profiling service of Reaction Biology Corporation (Malvern, PA, USA). Briefly, DMSO stock solutions of compounds were diluted into reaction mixture containing 100 μ M ATP and kinase in a single dose mode at a concentration of 0.5 μ M. Alternatively, compounds were tested in 10-dose IC50 duplicate mode with a 3-fold serial dilution starting at 3.33 μ M. The kinase activity was determined relative to DMSO control. IC50 data were fit to a non-linear regression using GraphPad Prism 4 Software (GraphPad, La Jolla, CA, USA).

Cell culture

Purdue University compound ND992 was dissolved in DMSO in 20 mM stock. The reference compound staurosporine was dissolved in DMSO in 1 mM stock. Staurosporine was purchased from Sigma-Aldrich (Saint Louis, MI). Cell Titer-Glo[®] 2.0 Luminescent cell viability assay reagent was purchased from Promega (Madison, WI, USA). KMS-11 cell line was purchased from Japan Cell Bank. UACC-62 cell line was purchased from Addexbio. HCC-78 and NOMO-1 cell lines were purchased from Reactive-Bioarray. LC-2/Ad was purchased from Sigma-Aldrich. Other cell lines were purchased from American Type Culture Collection. Apart from DMS114, HLY-1, NCI-H1703, NCI-H520, and LC-2/Ad, all cell lines were tested at Reaction Biology Corporation. Cell culture media are listed in the following table. Media were routinely supplemented with 100 μ g/mL of penicillin, and 100 μ g/mL of streptomycin. Cultures were maintained at 37°C in a humidified atmosphere of 5% CO₂ and 95% air.

Cell line	Medium
NK-92	EMEM without ribonucleosides and deoxyribonucleosides +
	12.5%FBS + 12.5%Horse serum + 0.2mM Myo-inositol + 0.1mM B-
	mercaptoethanol + 0.02mM folic acid + 100unit/ml recombinant
	human IL-2 + 1.5g/L sodium bicarbonate
MDA-MB-361	DMEM/F12 + 10%FBS
MDA-MB-468	DMEM + 10%FBS
HS578T	DMEM + 10%FBS + 0.01mg/ml Bovine insulin
A549	F12K + 10%FBS
MDA-MB-157	F12K + 10%FBS
HS578Bst	Hybri-care + 10%FBS + EGF 30ng/ml
BT474	Hybri-Care + 1.5 g/L sodium bicarbonate + 10%FBS
HT-29	McCoy's 5A + 10%FBS
SK-BR-3	McCoy's 5A + 10%FBS
SK-OV3	McCoy's 5A + 10%FBS
Hep G2	EMEM + 10%FBS
U87MG	EMEM + 10%FBS
A-498	EMEM + 10%FBS
SK-MEL-2	EMEM + 10%FBS

Table S1. Culture method for cell lines used in this study

ZR-75-1	RPMI + 10%FBS
SNU-182	RPMI + 10%FBS
KMS-11	RPMI + 10%FBS
UACC-62	RPMI + 10%FBS
SU-DHL-1	RPMI + 10%FBS
SU-DHL-6	RPMI + 10%FBS
Molt-4	RPMI + 10%FBS
HCC-78	RPMI + 10%FBS
NCI-H441	RPMI + 10%FBS
NOMO-1	RPMI + 10%FBS
LnCap	RPMI + 10%FBS
BT-549	RPMI + 10%FBS + 0.01mg/ml Bovine Insulin
OVCAR3	RPMI + 20%FBS + 0.01mg/ml Bovine Insulin
DMS114	Waymouth + 10%FBS
LC-2/Ad	RPMI/F12 + 10%FBS
NCI-H1703	RPMI + 10%FBS
NCI-H1755	RPMI + 10%FBS
NCI-H520	RPMI + 10%FBS
HLY-1	RPMI + 10%FBS
К562	IMDM + 10%FBS

Antiproliferative activity of compounds

Compound ND992 was diluted in DMSO solution with 10-dose and 3-fold dilution in a source plate starting at 20 mM. The reference compound staurosporine was diluted in DMSO solution with 10-dose and 3-fold dilution in a source plate starting at 10 mM (for adherent cell lines) and 1 mM (for suspension cell lines). 12.5 nL of each test compound was delivered from the source plate to each well of the 384-well cell culture plates by Echo 550 (Labcyte, San Jose, CA, USA). 25 μ L of culture media containing 2000 cells was added to each of the wells in duplicates of the cell culture plate. The cells were incubated with the compounds at 37°C, 5% CO₂ for 72 hours. 25 μ L of Cell Titer Glo 2.0 reagent was added to each well. The contents were mixed on an orbital shaker for 2 min and incubated at room temperature for 15 min to stabilize luminescent signal. Luminescence was recorded by Envision 2104 Multilabel Reader (PerkinElmer, Santa Clara, CA). The number of viable cells in culture was determined based on quantitation of the ATP present in each culture well. The IC50 curves were plotted and IC50 values were calculated using the GraphPad Prism 4 program based on a sigmoidal dose-response equation.

Molecular Docking with GOLD program

The PDB file for CDK2 (1HCK) was obtained from the RCSB Protein Data bank (<u>www.rcsb.org</u>). **HSD992** was drawn in ChemDraw Professional software version 16.0 and Chem3D software version 16.0 (PerkinElmer Informatics) was used to generate an energy minimized 3D structure saved as a mol2 file. GOLD docking was run from the Hermes visualizer. For protein preparation, the wizard option was used to add hydrogens, delete water molecules and the crystalized ligand. **HSD992** was then docked into

the binding site using the default 10 genetic algorithms and the ChemPLP scoring function. Following the docking, PyMOL visualization software (The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC) was used to generate the figures.

Chemistry

General Considerations General Considerations All reagents and solvents were purchased from commercial suppliers and used them as received, unless otherwise stated. The ¹H and ¹³C NMR spectra were obtained in CD₃OD or (CD₃)₂SO as solvent using a 500 MHz spectrometer with Me₄Si as an internal standard. Chemical shifts were reported in parts per million (δ) downfield from internal standard Me₄Si. Data for ¹H NMR spectra were reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, or combinations thereof. High resolution mass spectra (HRMS) were recorded using electron spray ionization (ESI) technique and as TOF mass analyzer. All the new synthesized compounds were characterized using ¹H NMR, ¹³C NMR, and HRMS data. Substrate 2-amino-benzthiazole-6-carbaldehyde (95% purity) was purchased from Chemcia Scientific, LLC.

Synthesized compounds

9

N

11

Mé

10

12

NН

N

N

18

MeOOC

NH₂

NH₂

N H

Br N(

Ň

N

N H

31

27

20

0=

N H

N N H

32

28

ЮH

O

,OH

∶N ∕O

General procedure for the multicomponent reaction:

A screw capped 20 mL vial charged with amine (1 mmol) and aldehyde (1 mmol) in 5 mL of absolute ethanol was refluxed for 2 h. After complete conversion of substrates to imine, cyclic ketone (2.5 mmol) and a catalytic amount of conc. hydrochloric acid was added. The reaction was continued to reflux for 12 h. The resultant reaction mixture was concentrated under reduced pressure and was purified by flash silica gel chromatography (dichloromethane:methanol (99:01 to 80:20) to give the desired cyclized compound. (Note: In some cases, product may get precipitated out as solid after completion of reaction which was filtered, washed with ethanol and further purified using flash silica gel column chromatography).

Compounds characterization data

5-(8,9,10,11-Tetrahydro-3H-pyrazolo[4,3-a]phenanthridin-7-yl)benzo[d]thiazol-2-amine

Pale yellow solid (137 mg, 37%). ¹H NMR (500 MHz, DMSO- d_6) δ 8.55 (s, 1H), 7.88 – 7.78 (m, 3H), 7.55 (s, 2H), 7.45 – 7.36 (m, 2H), 3.32 (s, 2H), 2.82 (t, *J* = 6.1 Hz, 2H), 1.99 (qq, *J* = 5.2, 2.7 Hz, 2H), 1.74 (dp, *J* = 9.1, 3.2, 2.8 Hz, 2H); ¹³C NMR (126 MHz, DMSO) δ 167.61, 156.90, 152.94, 143.53, 142.39, 138.63, 136.32, 133.93, 131.17, 129.60, 127.25, 122.13, 121.64, 117.32, 116.50, 114.34, 29.75, 29.18, 22.66, 22.62; HRMS (ESI) m/z calcd for C₂₁H₁₈N₅S [M + H]⁺ 372.1283, found 372.1269.

5-(8,9,10,11-Tetrahydro-3H-pyrazolo[4,3-a]phenanthridin-7-yl)thiazol-2-amine

Yellow solid (166 mg, 52%). ¹H NMR (500 MHz, DMSO- d_6) δ 8.50 (s, 1H), 7.79 (d, J = 9.1 Hz, 1H), 7.66 (d, J = 9.4 Hz, 1H), 7.51 (s, 1H), 7.23 (s, 2H), 3.28 – 3.22 (m, 2H), 2.96 (t, J = 6.2 Hz, 2H), 1.99 – 1.93 (m, 2H), 1.90 – 1.82 (m, 2H); ¹³C NMR (126 MHz, DMSO) δ 170.46, 148.47, 143.26, 142.39, 140.03, 138.39, 136.08, 129.21, 128.99, 128.03, 120.39, 116.44, 114.43, 29.95, 28.90, 22.52, 22.24; HRMS (ESI) m/z calcd for C₁₇H₁₆N₅S [M + H]⁺ 322.1126, found 322.1123.

7-(1H-Pyrrolo[2,3-b]pyridin-5-yl)-8,9,10,11-tetrahydro-3H-pyrazolo[4,3-a]phenanthridine

Off-white solid (203 mg, 60%). ¹H NMR (500 MHz, DMSO- d_6) δ 12.09 (s, 1H), 8.78 (s, 1H), 8.54 (d, J = 2.1 Hz, 1H), 8.37 (d, J = 2.1 Hz, 1H), 8.17 (q, J = 9.2 Hz, 2H), 7.65 (t, J = 3.0 Hz, 1H), 6.61 (dd, J = 3.5, 1.8 Hz, 1H), 3.51 – 3.44 (m, 2H), 2.86 (t, J = 6.2 Hz, 2H), 2.09 – 2.01 (m, 2H), 1.86 – 1.73 (m, 2H); ¹³C NMR (126 MHz, DMSO) δ 151.20, 149.00, 143.45, 136.93, 132.02, 130.20, 128.42, 122.92, 122.10, 119.30, 115.16, 115.08, 101.14, 30.71, 28.46, 21.95, 21.88; HRMS (ESI) m/z calcd for C₂₁H₁₈N₅ [M + H]⁺ 340.1562, found 340.1551.

5-(8,9,10,11-Tetrahydro-3H-pyrazolo[4,3-a]phenanthridin-7-yl)-1H-benzo[d]imidazol-2(3H)-one

Off-white solid (178 mg, 50%). ¹H NMR (500 MHz, DMSO- d_6) δ 8.55 (s, 1H), 7.84 (d, J = 9.1 Hz, 1H), 7.78 (d, J = 9.1 Hz, 1H), 7.16 – 7.09 (m, 2H), 7.00 (d, J = 7.8 Hz, 1H), 3.28 (t, J = 6.5 Hz, 2H), 2.77 (t, J = 6.1 Hz, 2H), 2.00 – 1.95 (m, 2H), 1.73 – 1.66 (m, 2H); ¹³C NMR (126 MHz, DMSO) δ 157.16, 156.09, 143.72, 142.21, 139.73, 134.99, 133.77, 130.00, 129.94, 129.53, 129.35, 122.16, 121.65, 116.30, 115.27, 109.89, 108.18, 29.70, 29.28, 22.65, 22.62; HRMS (ESI) m/z calcd for C₂₁H₁₈N₅O [M + H]⁺ 356.1511, found 356.1507.

2-Methyl-6-(8,9,10,11-tetrahydro-3H-pyrazolo[4,3-a]phenanthridin-7-yl)benzo[d]thiazole

Off-white solid (207 mg, 56%).¹H NMR (500 MHz, DMSO- d_6) δ 8.83 (s, 1H), 8.47 (d, J = 1.8 Hz, 1H), 8.26 (d, J = 9.2 Hz, 1H), 8.21 (d, J = 9.2 Hz, 1H), 8.12 (d, J = 8.4 Hz, 1H), 7.83 (dd, J = 8.4, 1.8 Hz, 1H), 3.51 (t, J = 6.4 Hz, 2H), 2.85 – 2.78 (m, 2H), 2.04 (dq, J = 8.8, 6.1, 4.4 Hz, 2H), 1.79 (tq, J = 9.4, 6.1, 4.2 Hz, 2H); ¹³C NMR (126 MHz, DMSO) δ 170.38, 154.36, 150.99, 136.08, 135.88, 131.87, 129.54, 128.07, 124.74, 124.31, 123.33, 122.34, 122.00, 121.15, 115.41, 114.98, 112.01, 40.49, 40.32, 40.25, 40.16, 39.99, 39.82, 39.66, 39.49, 30.86, 28.22, 21.86, 21.70, 20.47; HRMS (ESI) m/z calcd for C₂₂H₁₉N₄S [M + H]⁺ 371.1330, found 371.1320.

6-(2-Methyl-8,9,10,11-tetrahydro-3H-pyrrolo[3,2-a]phenanthridin-7-yl)benzo[d]thiazol-2-amine

Pale yellow solid (76 mg, 20%). ¹H NMR (500 MHz, MeOD- d_4) δ 7.72 (dd, J = 1.8, 0.6 Hz, 1H), 7.67 (dd, J = 8.9, 0.7 Hz, 1H), 7.62 (d, J = 8.9 Hz, 1H), 7.49 (dd, J = 8.2, 0.6 Hz, 1H), 7.39 (dd, J = 8.2, 1.7 Hz, 1H), 6.87 (t, J = 0.9 Hz, 1H), 3.45 (t, J = 6.5 Hz, 2H), 2.76 (t, J = 6.2 Hz, 2H), 2.54 – 2.53 (m, 3H), 2.03 (ddt, J = 10.1, 7.4, 3.8 Hz, 2H), 1.84 – 1.74 (m, 2H); ¹³C NMR (126 MHz, MeOD) δ 168.99, 155.62, 151.48, 143.70, 142.35, 134.68, 133.75, 133.15, 130.60, 127.26, 126.73, 122.27, 121.26, 121.14, 120.64, 116.83, 115.28, 104.03, 29.95,

28.70, 22.51, 22.21, 12.08; HRMS (ESI) m/z calcd for $C_{23}H_{21}N_4S$ [M + H]⁺ 385.1487, found 385.1495.

6-(8,9,10,11-Tetrahydro-3*H*-pyrrolo[3,2-*a*]phenanthridin-7-yl)benzo[*d*]thiazol-2-amine

Pale yellow solid (115 mg, 31%). ¹H NMR (500 MHz, DMSO- d_6) δ 11.73 (d, J = 2.2 Hz, 1H), 7.83 (s, 1H), 7.77 (d, J = 8.9 Hz, 1H), 7.62 (d, J = 8.8 Hz, 1H), 7.52 (s, 2H), 7.48 (t, J = 2.9 Hz, 1H), 7.39 (s, 2H), 7.12 (t, J = 2.5 Hz, 1H), 3.38 (t, J = 6.5 Hz, 2H), 2.80 (t, J = 6.1 Hz, 2H), 2.02 – 1.92 (m, 2H), 1.77 – 1.67 (m, 2H); ¹³C NMR (126 MHz, DMSO) δ 167.48, 155.93, 152.75, 143.41, 142.23, 134.61, 133.18, 131.12, 127.69, 127.23, 124.12, 123.90, 122.33, 122.08, 120.38, 117.29, 116.41, 106.26, 30.01, 29.30, 22.94, 22.64; HRMS (ESI) m/z calcd for C₂₂H₁₉N₄S [M + H]⁺ 371.1330, found 371.1327.

4-(1,2,4,9-Tetrahydropyrano[3,4-c]pyrrolo[3,2-f]quinolin-5-yl)phenol

Yellow solid (193 mg, 61%). ¹H NMR (500 MHz, DMSO- d_6) δ 10.36 (s, 1H), 8.22 (d, J = 9.0 Hz, 1H), 8.03 (d, J = 9.0 Hz, 1H), 7.81 (t, J = 2.9 Hz, 1H), 7.59 (d, J = 8.5 Hz, 2H), 7.30 (t, J = 2.4 Hz, 1H), 7.03 (d, J = 8.5 Hz, 2H), 4.17 (t, J = 5.7 Hz, 2H), 3.61 (t, J = 5.8 Hz, 2H), 3.42 (s, 2H); ¹³C NMR (126 MHz, DMSO) δ 159.90, 149.19, 133.51, 132.49, 131.49, 130.87, 127.07, 126.51, 122.13, 120.36, 119.93, 116.30, 115.93, 115.62, 105.92, 66.43, 64.15, 29.76; HRMS (ESI) m/z calcd for C₂₀H₁₇N₂O₂ [M + H]⁺

317.1290, found 317.1290.

N-(6-(8,9,10,11-tetrahydro-3H-pyrazolo[4,3-a]phenanthridin-7-yl)benzo[d]thiazol-2-yl)acetamide

Compound **1** (HSD992) (93 mg, 0.25 mmol) was dissolved in a mixture of DMF (2 mL) and triethylamine (2 equiv), followed by addition of acetyl chloride (30 mg, 1.5 mmol). The reaction was continued for overnight at room temperature. After completion of reaction, reaction mixture was extracted with ethyl acetate (2 X 20 mL) and washed with brine solution and the crude was purified with dichloromethane:methanol (90:10) by flash coloumn chromatography to get the desired product as yellow solid (73 mg, 70%).

¹H NMR (500 MHz, Methanol-*d*₄) δ 8.76 (s, 1H), 8.38 (d, *J* = 9.3 Hz, 1H), 8.31 – 8.24 (m, 1H), 8.20 (d, *J* = 9.3 Hz, 1H), 7.88 – 7.84 (m, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 4.32 (s, 3H), 3.67 (t, *J* = 6.3 Hz, 2H), 2.95 (t, *J* = 6.1 Hz, 2H), 2.26 – 2.18 (m, 2H), 1.99 – 1.87 (m, 2H); ¹³C NMR (126 MHz, MeOD) δ 170.98, 155.22, 149.49, 141.56, 138.36, 135.15, 134.18, 132.65, 129.29, 127.49, 125.42, 124.19, 123.58, 118.90, 118.87, 115.92, 114.54, 35.36, 31.10, 27.83, 21.22, 21.15; HRMS (ESI) m/z calcd for $C_{23}H_{20}N_5O_2S$ [M + H]⁺414.1389, found 414.1399.

6-(3-methyl-8,9,10,11-tetrahydro-3H-pyrazolo[4,3-a]phenanthridin-7-yl)benzo[d]thiazol-2-

amine

Off-white solid (138 mg, 36%).¹H NMR (500 MHz, DMSO- d_6) δ 8.50 (d, J = 0.9 Hz, 1H), 8.02 – 7.95 (m, 1H), 7.91 – 7.85 (m, 2H), 7.63 (s, 2H), 7.46 – 7.36 (m, 2H), 4.17 (s, 3H), 3.31 (t, J = 6.5 Hz, 2H), 2.82 (t, J = 6.1 Hz, 2H), 2.01 – 1.95 (m, 2H), 1.83 – 1.66 (m, 2H); ¹³C NMR (126 MHz, DMSO) δ 167.75, 156.84, 152.94, 143.09, 142.79, 138.18, 135.06, 133.62, 131.17, 129.90, 129.18, 127.28, 122.20, 121.53, 117.29, 117.17, 114.03, 36.31, 29.76, 29.17, 22.58, 22.54. HRMS (ESI) m/z calcd for C₂₂H₂₀N₅S [M + H]⁺ 386.1439, found 386.1435.

6-(1-Methyl-8,9,10,11-tetrahydro-3*H*-pyrazolo[4,3-α]phenanthridin-7-yl)benzo[*d*]thiazol-2-amine

Off-white solid (116 mg, 30%). ¹H NMR (500 MHz, MeOD- d_4) δ 7.77 (d, J = 9.1 Hz, 1H), 7.75 – 7.68 (m, 2H), 7.53 – 7.47 (m, 1H), 7.38 (dd, J = 8.2, 1.8 Hz, 1H), 3.52 – 3.42 (m, 2H), 2.90 (s, 3H), 2.81 (q, J = 4.3, 3.1 Hz, 2H), 1.89 – 1.82 (m, 4H); ¹³C NMR (126 MHz, MeOD) δ 169.08, 156.70, 151.68, 143.60, 143.42, 143.25, 141.25, 133.99, 130.75, 128.98, 128.59, 126.61, 123.95, 121.19, 116.95, 115.76, 113.89, 31.88, 27.83, 22.07, 21.90, 17.96; HRMS (ESI) m/z calcd for C₂₂H₂₀N₅S [M + H]⁺ 386.1439, found 386.1447.

7-(2-Aminobenzo[d]thiazol-6-yl)-8,9,10,11-tetrahydro-3H-pyrazolo[4,3-a]phenanthridine-1-carbonitrile

Pale yellow solid (174 mg, 45%). ¹H NMR (500 MHz, DMSO- d_6) δ 7.93 – 7.85 (m, 3H), 7.71 (s, 2H), 7.41 (d, *J* = 1.4 Hz, 2H), 3.50 (t, *J* = 6.5 Hz, 2H), 2.82 (t, *J* = 6.1 Hz, 2H), 1.91 (qd, *J* = 8.0, 6.6, 4.5 Hz, 2H), 1.74 (dp, *J* = 6.4, 4.3, 3.0 Hz, 2H); ¹³C NMR (126 MHz, DMSO) δ 167.91, 158.23, 152.69, 144.42, 143.50, 139.88, 133.26, 131.59, 131.03, 129.99, 127.25, 122.19, 120.97, 120.20, 117.80, 117.26, 116.41, 114.67, 31.84, 28.91, 22.12, 21.96; HRMS (ESI) m/z calcd for C₂₂H₁₇N₆S [M + H]⁺ 397.1235, found 397.1245.

Methyl 7-(2-aminobenzo[d]thiazol-6-yl)-8,9,10,11-tetrahydro-3H-pyrazolo[4,3-a]phenanthridine-1-carboxylate

Off-white solid (126 mg, 30%); ¹H NMR (500 MHz, MeOD- d_4) δ 7.90 (d, J = 9.1 Hz, 1H), 7.80 (d, J = 9.1 Hz, 1H), 7.75 (d, J = 1.7 Hz, 1H), 7.50 (d, J = 8.2 Hz, 1H), 7.40 (dd, J = 8.2, 1.8 Hz, 1H), 4.03 (s, 3H), 3.15 (t, J = 6.1 Hz, 2H), 2.82 (t, J = 6.4 Hz, 2H), 1.87 – 1.80 (m, 2H), 1.79 – 1.72 (m, 2H); ¹³C NMR (126 MHz, MeOD) δ 169.18, 166.71, 157.69, 151.84, 144.55, 143.72, 142.35, 133.71, 130.80, 129.60, 128.44, 126.65, 121.94, 121.24, 116.99, 113.56, 112.70, 100.49, 51.92, 29.50, 27.49, 21.91, 21.88; HRMS (ESI) m/z calcd for C₂₃H₂₀N₅O₂S [M + H]⁺ 430.1338, found 430.1322.

6-(5-Fluoro-8,9,10,11-tetrahydro-3H-pyrazolo[4,3-a]phenanthridin-7-yl)benzo[d]thiazol-2-amine

Off-white solid (148 mg, 38%). ¹H NMR (500 MHz, DMSO- d_6) δ 8.56 (s, 1H), 7.91 – 7.84 (m, 1H), 7.70 (d, *J* = 9.8 Hz, 1H), 7.57 (d, *J* = 2.4 Hz, 2H), 7.45 – 7.38 (m, 2H), 3.36 – 3.32 (m, 2H), 2.84 (t, *J* = 6.1 Hz, 2H), 2.04 – 1.97 (m, 2H), 1.79 – 1.71 (m, 2H); ¹³C NMR (126 MHz, DMSO) δ 167.68, 158.36(d, *J* = 253.26 Hz), 157.08, 153.14, 142.83, 136.79, 136.49, 134.35, 133.64, 131.24, 131.14, 127.29, 122.53, 122.22, 117.37, 113.06, 98.20, 29.80, 29.24, 22.52, 22.44; HRMS (ESI) m/z calcd for C₂₁H₁₇FN₅S [M + H]⁺ 390.1189, found 390.1184.

6-(8,9,10,11-Tetrahydro-3*H*-[1,2,3]triazolo[4,5-*a*]phenanthridin-7-yl)benzo[*d*]thiazol-2-amine

Off-white solid (112 mg, 30%).¹H NMR (500 MHz, DMSO- d_6) δ 8.03 (d, J = 9.1 Hz, 1H), 7.92 – 7.88 (m, 2H), 7.57 (s, 2H), 7.44 (dd, J = 8.2, 1.7 Hz, 1H), 7.40 (d, J = 8.2 Hz, 1H), 3.69 (t, J = 6.5 Hz, 2H), 2.85 (t, J = 6.2 Hz, 2H), 2.02 – 1.98 (m, 2H), 1.79 – 1.73 (m, 2H); ¹³C NMR (126 MHz, DMSO) δ 167.75, 158.87, 153.15, 145.33, 143.19, 139.18, 133.64, 131.24, 130.36, 130.18, 127.24, 122.15, 118.50, 117.37, 116.27, 29.93, 29.07, 22.66, 22.39. HRMS (ESI) m/z calcd for C₂₀H₁₇N₆S [M + H]⁺ 373.1235, found 373.1243.

7-(1H-Indol-2-yl)-8,9,10,11-tetrahydro-3H-pyrazolo[4,3-a]phenanthridine

Yellow solid (264 mg, 78%). ¹H NMR (500 MHz, DMSO- d_6) δ 12.12 (s, 1H), 8.76 (s, 1H), 8.38 – 8.08 (m, 2H), 7.70 (d, J = 8.0 Hz, 1H), 7.57 (dd, J = 8.2, 1.0 Hz, 1H), 7.30 – 7.21 (m, 2H), 7.09 (td, J = 7.4, 6.9, 1.0 Hz, 1H), 3.45 (t, J = 6.4 Hz, 2H), 3.18 – 3.15 (m, 2H), 2.11 – 1.99 (m, 2H), 1.92 – 1.81 (m, 2H);¹³C NMR (126 MHz, DMSO) δ 143.78, 137.55, 134.89, 131.22, 130.49, 128.14, 124.23, 122.63, 121.72, 120.53, 119.45, 115.27, 112.54, 108.05, 30.84, 28.26, 21.91, 21.86, 21.86; HRMS (ESI) m/z calcd for C₂₂H₁₉N₄ [M + H]⁺ 339.1610, found 339.1618.

4-(2,3,4,8-Tetrahydro-1H-pyrrolo[3,2-b]phenanthridin-5-yl)phenol

Off white solid (178 mg, 54%). ¹H NMR (500 MHz, DMSO- d_6) δ 11.81 (s, 1H), 8.85 (s, 2H), 7.81 (d, J = 8.8 Hz, 1H), 7.66 (d, J = 8.8 Hz, 1H), 7.51 (t, J = 2.8 Hz, 1H), 7.13 (t, J = 2.5 Hz, 1H), 3.99 (s, 3H), 3.37 (t, J = 6.5 Hz, 2H), 2.84 (t, J = 6.2 Hz, 2H), 1.99 – 1.91 (m, 2H), 1.75 (dd, J = 7.5, 4.3 Hz, 2H); ¹³C NMR (126 MHz, DMSO) δ 164.77, 159.82, 149.96, 143.68, 142.81, 133.37, 129.18, 127.97, 124.12, 124.09, 122.80, 120.25, 116.84, 106.43, 55.22, 29.96, 28.70, 22.75, 22.49; HRMS (ESI) m/z calcd

for $C_{20}H_{19}N_4O [M + H]^+ 331.1558$, found 331.1553.

2,2'-((4-(8,9,10,11-Tetrahydro-3H-pyrrolo[3,2-a]phenanthridin-7-yl)phenyl)azanediyl)diethanol

Yellow solid (209 mg, 70%).¹H NMR (500 MHz, MeOD- d_4) δ 8.00 (d, J = 8.9 Hz, 1H), 7.77 (d, J = 8.9 Hz, 1H), 7.59 (d, J = 3.1 Hz, 1H), 7.48 – 7.43 (m, 2H), 7.28 (d, J = 3.2 Hz, 1H), 6.95 (d, J = 8.9 Hz, 2H), 3.79 (t, J = 6.0 Hz, 4H), 3.65 (t, J = 6.0 Hz, 4H), 3.57 (t, J = 6.5 Hz, 2H), 2.90 (t, J = 6.2 Hz, 2H), 2.12 – 2.06 (m, 2H), 1.84 (td, J = 6.2, 3.2 Hz, 2H); ¹³C NMR (126 MHz, MeOD) δ 152.36, 151.09, 149.41, 136.32, 133.50, 130.36, 129.04, 124.91, 122.68, 121.37, 120.18, 118.91, 115.34, 111.33, 106.08, 58.85, 53.41, 30.85, 28.37, 21.94, 21.66; HRMS (ESI) m/z calcd for C₂₅H₂₈N₃O₂ [M + H]⁺402.2181, found 402.2179.

7-(1-Methyl-1H-imidazol-5-yl)-8,9,10,11-tetrahydro-3H-pyrrolo[3,2-a]phenanthridine

Off- white solid (151 mg, 50%). ¹H NMR (500 MHz, MeOD- d_4) δ 7.79 (d, J = 7.9 Hz, 2H), 7.66 (d, J = 8.9 Hz, 1H), 7.40 (d, J = 3.1 Hz, 1H), 7.18 (s, 1H), 7.12 (d, J = 3.1 Hz, 1H), 3.60 (s, 3H), 3.38 (t, J = 6.5 Hz, 2H), 2.75 (t, J = 6.3 Hz, 2H), 2.00 – 1.94 (m, 2H), 1.81 (q, J = 6.0, 5.6 Hz, 2H). ¹³C NMR (126 MHz, Methanol- d_4) δ 144.67, 144.01, 142.83, 138.47, 133.43, 130.97, 129.25, 128.07, 122.97, 122.14, 120.11, 116.34, 105.94, 31.45, 29.82, 27.83, 22.28, 21.90; HRMS (ESI) m/z calcd for C₁₉H₁₉N₄ [M + H]⁺ 303.1609, found 303.1599.

N-(4-(8,9,10,11-Tetrahydro-3H-pyrrolo[3,2-a]phenanthridin-7-yl)phenyl)methanesulfonamide

NHMs

Pale yellow solid (245 mg, 74%). ¹H NMR (500 MHz, MeOD- d_4) δ 7.78 (dd, J = 9.0, 0.8 Hz, 1H), 7.70 (d, J = 8.9 Hz, 1H), 7.48 – 7.43 (m, 2H), 7.41 (d, J = 3.1 Hz, 1H), 7.39 – 7.34 (m, 2H), 7.18 (dd, J = 3.2, 0.9 Hz, 1H), 3.47 (t, J = 6.5 Hz, 2H), 2.75 (t, J = 6.2 Hz, 2H), 2.08 – 1.99 (m, 2H), 1.85 – 1.76 (m, 2H); ¹³C NMR (126 MHz, MeOD) δ 155.50, 143.69, 142.59, 139.11, 136.56, 133.23, 129.82,

127.48, 122.76, 121.96, 120.26, 119.66, 115.91, 105.76, 37.83, 29.92, 28.63, 22.47, 22.15; HRMS (ESI) m/z calcd for $C_{22}H_{22}N_3O_2S$ [M + H]⁺ 392.1433, found 392.1435.

4-(8,9,10,11-Tetrahydrothieno[3,2-a]phenanthridin-7-yl)phenol

Off-white solid (245 mg, 74%). ¹H NMR (500 MHz, DMSO- d_6) δ 9.96 (s, 1H), 8.36 (d, J = 8.9 Hz, 1H), 8.32 (d, J = 5.6 Hz, 1H), 8.08 (d, J = 5.5 Hz, 1H), 7.97 (d, J = 8.9 Hz, 1H), 7.46 (d, J = 8.5 Hz, 2H), 6.94 (d, J = 8.5 Hz, 2H), 3.49 (q, J = 6.5 Hz, 2H), 2.80 (t, J = 6.2 Hz, 2H), 1.94 (dp, J = 6.6, 4.6, 2.8 Hz, 2H), 1.79 – 1.65 (m, 2H); ¹³C NMR (126 MHz, DMSO) δ 158.82, 139.74, 133.74, 131.22, 130.02, 128.68, 127.46, 125.78, 123.88, 115.49, 31.70, 29.13, 22.58, 21.88; HRMS (ESI) m/z calcd for C₂₁H₁₈NOS [M

+ H]⁺ 332.1109, found 332.1118.

7-(Pyridin-4-yl)-8,9,10,11-tetrahydro-3H-pyrrolo[3,2-a]phenanthridine

Off white solid (183 mg, 61%).¹H NMR (500 MHz, DMSO- d_6) δ 11.81 (s, 1H), 8.67 (dt, J = 4.4, 1.5 Hz, 2H), 7.81 (d, J = 8.8 Hz, 1H), 7.65 (d, J = 8.9 Hz, 1H), 7.60 – 7.55 (m, 2H), 7.54 – 7.48 (m, 1H), 7.14 (s, 1H), 3.40 (t, J = 6.6 Hz, 2H), 2.77 (t, J = 6.1 Hz, 2H), 2.01 – 1.94 (m, 2H), 1.75 (q, J = 5.9 Hz, 2H); ¹³C NMR (126 MHz, DMSO) δ 153.34, 149.84, 149.10, 143.44, 142.78, 133.41, 127.19, 124.49, 124.16, 124.08, 122.90, 120.26, 116.87, 106.42, 29.94, 28.67, 22.76, 22.39; HRMS (ESI) m/z calcd for C₂₀H₁₈N₃ [M + H]⁺

300.1500, found 300.1508.

4-(8,9,10,11-Tetrahydro-3H-pyrrolo[3,2-a]phenanthridin-7-yl)aniline

 NH_2

Bright yellow solid (194 mg, 62%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.09 (d, *J* = 8.9 Hz, 1H), 7.93 (d, *J* = 8.8 Hz, 1H), 7.72 (s, 1H), 7.40 (d, *J* = 8.2 Hz, 2H), 7.26 (s, 1H), 6.75 (d, *J* = 8.3 Hz, 2H), 5.79 (s, 2H), 3.51 (t, *J* = 6.5 Hz, 2H), 3.32 (s, 2H), 2.85 (t, *J* = 6.2 Hz, 2H), 2.09 – 1.95 (m, 2H), 1.81 – 1.68 (m, 2H); ¹³C NMR (126 MHz, DMSO) δ 151.31, 133.58, 133.58, 131.48, 129.37, 129.33, 127.94, 126.34, 122.49, 120.03, 118.73, 113.57, 106.60, 31.13, 28.60, 22.25, 21.94; HRMS (ESI) m/z calcd for C₂₁H₂₀N₃ [M + H]⁺ 314.1657, found 314.1651.

7-(1H-Indazol-5-yl)-8,9,10,11-tetrahydro-3H-pyrrolo[3,2-a]phenanthridine

White solid (173 mg, 51%). ¹H NMR (500 MHz, DMSO- d_6) δ 11.76 (s, 1H), 8.12 (s, 1H), 7.91 (s, 1H), 7.80 (d, J = 8.8 Hz, 1H), 7.66 (d, J = 8.8 Hz, 1H), 7.61 (d, J = 8.5 Hz, 1H), 7.54 (dd, J = 8.5, 1.5 Hz, 1H), 7.48 (t, J = 2.8 Hz, 1H), 7.11 (t, J = 2.6 Hz, 1H), 3.37 (d, J = 6.9 Hz, 2H), 2.77 (t, J = 6.2 Hz, 2H), 1.99 – 1.91 (m, 2H), 1.73 – 1.64 (m, 2H); ¹³C NMR (126 MHz, DMSO) δ 156.34, 143.43, 142.27, 139.73, 134.40, 134.08, 133.20, 128.24, 127.74, 124.12, 123.87, 123.10, 122.38, 121.28, 120.41, 116.42, 109.84, 106.27, 30.01, 29.35, 22.91, 22.62; HRMS (ESI) m/z calcd for C₂₂H₁₉N₄ [M + H]⁺ 339.1610,

found 339.1618.

7-(Pyrimidin-5-yl)-8,9,10,11-tetrahydro-3H-pyrazolo[4,3-a]phenanthridine

Yellow solid (144 mg, 48%). ¹H NMR (500 MHz, DMSO-*d*₆) δ ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.26 (s, 1H), 9.07 (s, 2H), 8.55 (s, 1H), 7.89 (d, *J* = 9.0 Hz, 1H), 7.84 (d, *J* = 9.0 Hz, 1H), 3.31 (s, 2H), 2.84 (t, *J* = 6.1 Hz, 2H), 2.03 – 1.94 (m, 2H), 1.80 – 1.71 (m, 2H);¹³C NMR (126 MHz, DMSO) δ 158.00, 157.25, 150.89, 143.91, 142.97, 138.83, 136.49, 134.77, 129.84, 129.50, 122.42, 116.25, 114.94, 29.62, 28.44, 22.43, 22.38; HRMS (ESI) m/z calcd for $C_{19}H_{17}N_4$ [M + H]⁺ 301.1453, found 301.1457.

Benzyl (7-(4-hydroxyphenyl)-8,9,10,11-tetrahydro-3H-pyrazolo[4,3-a]phenanthridin-9-yl)carbamate

Off-white solid (241 mg, 52%). ¹H NMR (500 MHz, MeOD- d_4) δ 8.66 (d, J = 9.1 Hz, 1H), 8.08 (dd, J = 9.2, 6.3 Hz, 1H), 7.93 (dd, J = 9.3, 5.3 Hz, 1H), 7.50 (d, J = 8.2 Hz, 2H), 7.29 – 7.20 (m, 5H), 7.02 (d, J = 8.2 Hz, 2H), 5.01 (s, 2H), 3.97 – 3.84 (m, 1H), 3.67 – 3.56 (m, 1H), 3.54 – 3.41 (m, 1H), 3.18 – 3.08 (m, 1H), 2.95 – 2.82 (m, 1H), 2.42 – 2.29 (m, 1H), 2.11 – 2.01 (m, 1H). ¹³C NMR (126 MHz, MeOD) δ 161.72, 159.87, 156.89, 152.70, 150.63, 139.58, 136.84, 136.35, 130.82, 129.46, 128.03, 127.56, 127.34, 123.73, 122.33, 120.83, 119.33, 118.00, 115.47, 114.97, 66.04, 48.13, 48.08, 47.96, 47.79, 47.62, 47.45, 47.28, 47.11, 45.66, 33.71, 29.28, 26.87; HRMS (ESI) m/z calcd for C₂₈H₂₅N₄O₃ [M + H]⁺ 465.1927, found 465.1927

4-(1-Bromo-8,9,10,11-tetrahydro-3H-pyrazolo[4,3-a]phenanthridin-7-yl)phenol

27

Off-white solid (153 mg, 39%). ¹H NMR (500 MHz, MeOD- d_4) δ 8.18 (d, J = 9.1 Hz, 1H), 8.06 (d, J = 9.2 Hz, 1H), 7.57 (d, J = 8.3 Hz, 2H), 7.07 (d, J = 8.3 Hz, 2H), 3.99 (s, 2H), 2.97 (s, 2H), 1.97 (t, J = 3.5 Hz, 4H). ¹³C NMR (126 MHz, MeOD) δ 160.37, 155.96, 154.60, 151.79, 141.55, 135.37, 132.94, 130.83, 127.59, 123.46, 121.93, 120.38, 119.25, 115.60, 114.56, 36.01, 27.02, 20.91, 20.80; HRMS (ESI) m/z calcd for C₂₀H₁₇BrN₃O [M + H]⁺ 394.0555, found 394.0556.

2-(7-(4-Hydroxyphenyl)-8,9,10,11-tetrahydro-3H-pyrazolo[4,3-a]phenanthridin-9-yl)isoindoline-1,3-dione

Off-white solid (239 mg, 52%). ¹H NMR (500 MHz, DMSO- d_6) δ 9.56 (s, 1H), 8.57 (s, 1H), 7.89 – 7.84 (m, 2H), 7.83 – 7.78 (m, 5H), 7.36 (d, *J* = 8.6 Hz, 2H), 6.82 (d, *J* = 8.6 Hz, 2H), 4.45 – 4.33 (m, 1H), 3.73 – 3.59 (m, 2H), 3.53 – 3.39 (m, 1H), 2.92 – 2.85 (m, 1H), 2.82 – 2.69 (m, 1H), 2.36 – 2.26 (m, 1H); ¹³C NMR (126 MHz, DMSO) δ 168.38, 157.66, 156.88, 143.84, 141.13, 138.66, 136.38, 134.76, 132.01, 131.67, 130.75, 129.58, 127.50, 123.38, 121.10, 116.54, 115.25, 114.60, 47.46, 32.19, 31.15, 26.15; HRMS (ESI) m/z calcd for C₂₈H₂₁N₄O₃ [M + H]⁺ 461.1614, found 461.1619.

Methyl 4-(8,9,10,11-tetrahydro-3H-pyrrolo[3,2-a]phenanthridin-7-yl)benzoate

Off-white solid (105 mg, 30%). ¹H NMR (500 MHz, MeOD- d_4) δ 7.68 (dd, J = 8.9, 0.8 Hz, 1H), 7.62 (d, J = 8.9 Hz, 1H), 7.22 (dd, J = 11.8, 2.0 Hz, 1H), 7.13 (ddd, J = 8.2, 2.1, 0.9 Hz, 1H), 7.03 (dt, J = 8.9, 8.2 Hz, 1H), 6.87 (s, 1H), 3.48 – 3.40 (m, 2H), 2.76 (t, J = 6.2 Hz, 2H), 2.54 (s, 3H), 2.07 – 1.99 (m, 2H), 1.86 – 1.75 (m, 2H); ¹³C NMR (126 MHz, MeOD) δ 154.38, 152.03 (J = 241.92 Hz), 144.97, 144.23, 141.91, 133.92, 133.16, 132.30, 127.16, 125.13, 122.28, 121.10, 120.18, 117.07, 116.57, 116.41, 115.50, 104.05, 29.98, 28.55, 22.44, 22.14, 12.07; HRMS (ESI)

m/z calcd for $C_{22}H_{22}FN_2O$ [M + H]⁺ 349.1716, found 349.1717.

4-(8,9,10,11-Tetrahydro-3H-pyrrolo[3,2-a]phenanthridin-7-yl)benzonitrile

Off-white solid (195 mg, 60%).¹H NMR (500 MHz, DMSO- d_6) δ 11.80 (s, 1H), 7.92 (d, J = 8.5 Hz, 1H), 7.81 (dd, J = 8.9, 0.8 Hz, 1H), 7.75 (d, J = 8.9 Hz, 2H), 7.64 (d, J = 8.9 Hz, 1H), 7.51 (t, J = 2.8 Hz, 1H), 7.15 – 7.11 (m, 1H), 3.38 (t, J = 6.1 Hz, 2H), 2.73 (t, J = 6.1 Hz, 2H), 2.00 – 1.93 (m, 2H), 1.76 – 1.68 (m, 2H); ¹³C NMR (126 MHz, DMSO) δ 154.08, 146.45, 143.42, 142.77, 133.40, 132.39, 130.61, 127.28, 124.14, 124.07, 122.82, 120.26, 119.41, 116.85, 110.74, 106.41, 29.95, 28.81, 22.76, 22.41;

HRMS (ESI) m/z calcd for $C_{22}H_{20}N_3$ [M + H]⁺ 326.1657, found 326.1662.

7-(1H-indol-3-yl)-8,9,10,11-tetrahydro-3H-pyrazolo[4,3-a]phenanthridine

White solid (183 mg, 54%). ¹H NMR (500 MHz, MeOD- d_4) δ 8.72 (s, 1H), 8.14 (d, *J* = 8.7 Hz, 1H), 8.04 – 7.93 (m, 2H), 7.61 – 7.52 (m, 2H), 7.30 – 7.16 (m, 2H), 3.49 (t, *J* = 6.2 Hz, 2H), 2.99 (t, *J* = 6.1 Hz, 2H), 2.22 – 2.10 (m, 2H), 1.87 (q, *J* = 5.7 Hz, 2H); ¹³C NMR (126 MHz, MeOD) δ 152.83, 147.51, 136.55, 135.07, 132.76, 128.62, 125.73, 122.77, 122.39, 120.99, 119.61, 118.86, 115.08, 112.11, 107.22, 30.80, 27.71, 21.46, 21.29; HRMS (ESI) m/z calcd for C₂₂H₁₉N₄ [M + H]⁺ 339.1610, found 339.1618.

3,5-Dimethyl-4-(8,9,10,11-tetrahydro-3H-pyrazolo[4,3-a]phenanthridin-7-yl)isoxazole

White solid (229 mg, 72%). ¹H NMR (500 MHz, MeOD- d_4) δ 8.92 (s, 1H), 8.35 (d, *J* = 9.3 Hz, 1H), 8.06 (dd, *J* = 9.2, 2.4 Hz, 1H), 3.71 – 3.64 (m, 2H), 2.86 – 2.77 (m, 2H), 2.45 (s, 3H), 2.25 – 2.20 (m, 5H), 2.06 – 1.98 (m, 2H); ¹³C NMR (126 MHz, MeOD) δ 170.18, 158.64, 155.86, 140.72, 140.00, 135.64, 134.42, 134.28, 124.70, 121.79, 118.93, 114.70, 108.54, 30.94, 26.68, 21.17, 20.88, 10.39, 8.99; HRMS (ESI) m/z calcd for C₁₉H₁₉N₄O [M + H]⁺ 319.1559, found 319.1563.

tert-Butyl (6-(8,9,10,11-tetrahydro-3H-pyrazolo[4,3-a]phenanthridin-7-yl)pyridin-2-yl)carbamate

White solid (245 mg, 51%). ¹H NMR (500 MHz, MeOD- d_4) δ 8.79 (s, 1H), 8.23 (d, J = 9.3 Hz, 1H), 8.12 – 8.05 (m, 3H), 7.65 (dd, J = 5.7, 2.6 Hz, 1H), 3.53 (d, J = 6.0 Hz, 2H), 3.08 (t, J = 6.1 Hz, 2H), 2.21 – 2.14 (m, 2H), 1.99 – 1.91 (m, 2H), 1.58 (s, 9H); ¹³C NMR (126 MHz, MeOD) δ 154.62, 153.09, 153.05, 147.37, 146.93, 140.49, 139.57, 134.87, 134.39, 132.10, 124.03, 120.98, 119.75, 119.68, 114.62, 114.29, 80.98, 30.97, 27.41, 27.15, 21.16, 21.06; HRMS

(ESI) m/z calcd for $C_{24}H_{26}N_5O_2$ [M + H]⁺416.2087, found 416.2089.

7-Cyclopropyl-8,9,10,11-tetrahydro-3H-pyrazolo[4,3-a]phenanthridine

Off-white solid (181 mg, 69%).¹H NMR (500 MHz, DMSO- d_6) δ 8.45 (s, 1H), 7.73 (d, J = 9.0 Hz, 1H), 7.64 (d, J = 9.1 Hz, 1H), 3.18 (q, J = 5.3, 4.6 Hz, 2H), 2.94 (t, J = 6.2 Hz, 2H), 2.21 (tt, J = 8.1, 4.9 Hz, 1H), 1.96 – 1.88 (m, 2H), 1.86 – 1.81 (m, 2H), 1.10 – 0.99 (m, 2H), 0.97 – 0.87 (m, 2H) ; ¹³C NMR (126 MHz, DMSO) δ 157.71, 143.33, 140.97, 138.28, 135.75, 129.57, 129.38, 120.82, 116.55, 113.67, 29.49, 26.38, 22.40, 22.37, 13.67, 9.14; HRMS (ESI) m/z calcd for C₁₇H₁₈N₃ [M + H]⁺ 264.1501, found 264.1509.

4-(8,9,10,11-Tetrahydro-3H-pyrazolo[4,3-a]phenanthridin-7-yl)benzonitrile

Off-white solid (182 mg, 56%). ¹H NMR (500 MHz, DMSO- d_6) δ 8.78 (s, 1H), 8.20 (t, J = 7.4 Hz, 2H), 8.10 (d, J = 8.1 Hz, 2H), 7.94 (d, J = 8.2 Hz, 2H), 3.48 – 3.44 (m, 2H), 2.73 (t, J = 6.2 Hz, 2H), 2.07 – 1.97 (m, 2H), 1.84 – 1.72 (m, 2H); ¹³C NMR (126 MHz, DMSO) δ 150.26, 140.30, 138.64, 136.93, 135.01, 132.87, 131.23, 130.97, 123.45, 122.31, 119.99, 118.89, 115.01, 113.13, 30.63, 28.01, 21.85, 21.68; HRMS (ESI) m/z calcd for C₂₁H₁₇N₄ [M + H]⁺ 325.1453, found 325.1455.

7-(1H-Indazol-5-yl)-8,9,10,11-tetrahydro-3H-pyrazolo[4,3-a]phenanthridine

Off-white solid (224 mg, 65%). ¹H NMR (500 MHz, DMSO- d_6) δ 8.56 (s, 1H), 8.12 (s, 1H), 7.92 (s, 1H), 7.83 (d, *J* = 5.8 Hz, 2H), 7.61 (d, *J* = 8.6 Hz, 1H), 7.55 (d, *J* = 8.6 Hz, 1H), 3.32 – 3.26 (m, 2H), 2.78 (t, *J* = 6.1 Hz, 2H), 2.01 – 1.92 (m, 2H), 1.74 – 1.65 (m, 2H); ¹³C NMR (126 MHz, DMSO) δ 157.30, 143.71, 142.28, 139.80, 138.66, 136.27, 134.45, 133.55, 129.66, 129.54, 128.17, 123.07, 121.71, 121.43, 116.44, 114.31, 109.93, 29.69, 29.22, 22.64, 22.59; HRMS (ESI) m/z calcd for C₂₁H₁₈N₅ [M + H]⁺ 340.1562, found 340.1565.

7-(3-(Trifluoromethyl)-1H-pyrazol-4-yl)-8,9,10,11-tetrahydro-3H-imidazo[4,5-a]phenanthridine

Off-white solid (75 mg, 21%). ¹H NMR (500 MHz, MeOD- d_4) δ 8.30 (s, 1H), 7.99 (d, J = 1.2 Hz, 1H), 7.93 (d, J = 9.0 Hz, 1H), 7.83 (d, J = 8.9 Hz, 1H), 3.68 (d, J = 6.7 Hz, 2H), 2.68 (t, J = 6.3 Hz, 2H), 2.08 – 1.98 (m, 2H), 1.91 – 1.83 (m, 2H); ¹³C NMR (126 MHz, MeOD) δ 149.00, 145.68, 143.27, 142.66, 140.11, 130.25, 130.05, 124.01, 122.80 (q, J = 270.51 Hz), 118.99, 118.30, 115.91, 112.78, 94.71, 29.26, 27.75, 22.04, 21.86. HRMS (ESI) m/z calcd for C₁₈H₁₅F₃N₅ [M + H]⁺ 358.1280, found 358.1286.

2-(Trifluoromethyl)-7-(3-(trifluoromethyl)-1H-pyrazol-4-yl)-8,9,10,11-tetrahydro-3H-imidazo[4,5-a]phenanthridine

Off-white solid (106 mg, 25%). ¹H NMR (500 MHz, MeOD- d_4) δ 7.99 (s, 1H), 7.90 (d, J = 9.1 Hz, 1H), 7.85 (d, J = 9.1 Hz, 1H), 3.91 – 3.75 (m, 2H), 2.68 (t, J = 6.3 Hz, 2H), 2.07 – 1.92 (m, 2H), 1.94 – 1.77 (m, 2H). ¹³C NMR (126 MHz, MeOD) δ 149.46, 144.26, 143.57, 140.04, 139.76, 137.30, 131.82, 130.86, 130.17, 126.46, 124.94(q, J = 269.64 Hz), 120.67, 120.32(q, J = 268.64 Hz), 118.93, 114.85, 29.42, 27.82, 21.99, 21.94. HRMS (ESI) m/z calcd for C₁₉H₁₄F₆N₅ [M + H]⁺

426.1153, found 426.1155.

4-(8,9,10,11-Tetrahydro-3H-pyrazolo[4,3-a]phenanthridin-7-yl)benzamide

Off-white solid (172 mg, 50%).¹H NMR (500 MHz, DMSO- d_6) δ 8.60 (s, 1H), 8.05 (s, 1H), 7.97 (d, J = 8.0 Hz, 2H), 7.86 (d, J = 9.1 Hz, 1H), 7.81 (d, J = 9.1 Hz, 1H), 7.63 (d, J = 8.0 Hz, 2H), 7.41 (s, 1H), 3.39 – 3.34 (m, 2H), 2.77 (t, J = 6.1 Hz, 2H), 2.04 – 1.98 (m, 2H), 1.79 – 1.69 (m, 2H); ¹³C NMR (126 MHz, DMSO) δ 168.13, 156.17, 144.02, 143.77, 142.55, 133.95, 129.63, 129.40, 129.29, 127.64, 122.07, 116.23, 29.68, 28.86, 22.58, 22.49; HRMS (ESI) m/z calcd for C₂₁H₂₁N₄O

[M + H]⁺ 345.1715, found 345.1719.

4-(3-(2-Hydroxyethyl)-8,9,10,11-tetrahydro-3H-pyrazolo[4,3-a]phenanthridin-7-yl)phenol

Off-white solid (177 mg, 49%). ¹H NMR (500 MHz, DMSO- d_6) δ 9.59 (s, 1H), 8.51 (s, 1H), 7.96 (d, *J* = 9.1 Hz, 1H), 7.81 (d, *J* = 9.1 Hz, 1H), 7.39 (d, *J* = 8.5 Hz, 2H), 6.86 – 6.82 (m, 2H), 4.55 (t, *J* = 5.6 Hz, 2H), 3.88 – 3.82 (m, 2H), 3.32 – 3.27 (m, 2H), 2.79 (t, *J* = 6.2 Hz, 2H), 2.01 – 1.96 (m, 2H), 1.77 – 1.70 (m, 2H); ¹³C NMR (126 MHz, DMSO) δ 157.58, 157.01, 143.57, 142.09, 138.61, 135.29, 131.97, 130.89, 129.53, 129.38, 121.31, 117.15, 115.09, 114.17, 60.84, 51.76, 29.69, 29.23, 22.64; HRMS (ESI) m/z calcd for C₁₂H₂₄N₃O₂ [M + H]* 362.1869, found 362.1871.

4-(9-(Trifluoromethyl)-8,9,10,11-tetrahydro-3*H*-pyrazolo[4,3-*a*]phenanthridin-7-yl)phenol

Off-white solid (165 mg, 43%).¹H NMR (500 MHz, DMSO- d_6) δ 10.27 (s, 1H), 8.60 (s, 1H), 8.11 – 7.90 (m, 2H), 7.57 (d, *J* = 8.2 Hz, 2H), 7.03 (d, *J* = 8.3 Hz, 2H), 3.54 – 3.43 (m, 1H), 3.40 – 3.28 (m, 1H), 3.10 – 2.97 (m, 1H), 2.90 – 2.82 (m, 1H), 2.79 – 2.68 (m, 1H), 2.39 – 2.30 (m, 1H), 1.94 – 1.79 (m, 1H); ¹³C NMR (126 MHz, DMSO) δ 159.74, 152.87, 148.17, 137.78, 131.71, 129.43(q, *J* = 278.46 Hz), 127.87, 122.81, 121.71, 115.86, 115.01, 37.62(q, *J* = 26.46 Hz), 29.44, 27.22, 20.90; HRMS (ESI) m/z calcd for C₂₁H₁₉F₃N₃O [M + H]⁺ 386.1480, found 386.1484.

7-(3-(Trifluoromethyl)-1H-pyrazol-4-yl)-8,9,10,11-tetrahydro-3H-[1,2,3]triazolo[4,5-a]phenanthridine

Off-white solid (72 mg, 20%). ¹H NMR (500 MHz, MeOD- d_4) δ 8.40 (d, J = 9.2 Hz, 1H), 8.33 (s, 1H), 8.05 (d, J = 9.2 Hz, 1H), 4.01 (t, J = 6.4 Hz, 2H), 2.82 (t, J = 6.3 Hz, 2H), 2.13 (dp, J = 9.3, 3.1 Hz, 2H), 2.02 – 1.93 (m, 2H); ¹³C NMR (126 MHz, MeOD) δ 154.39, 145.35, 140.07, 139.75, 138.56, 137.77, 134.33, 132.14, 122.37(q, J = 269.6 Hz), 121.20, 120.95, 116.39, 111.31, 30.87, 27.26, 21.12, 21.07; HRMS (ESI) m/z calcd for C₁₇H₁₄F₃N₆ [M + H]⁺ 359.1232, found 359.1239.

7-(3-(Trifluoromethyl)-1H-pyrazol-4-yl)-8,9,10,11-tetrahydroisothiazolo[4,5-a]phenanthridine

Off-white solid (120 mg, 32%). ¹H NMR (500 MHz, MeOD- d_4) δ 9.94 (s, 1H), 8.78 (d, J = 8.9 Hz, 1H), 8.41 (s, 1H), 8.21 (d, J = 8.9 Hz, 1H), 3.85 (t, J = 6.1 Hz, 2H), 2.87 (t, J = 6.1 Hz, 2H), 2.24 – 2.13 (m, 2H), 2.00 (td, J = 11.2, 9.5, 5.6 Hz, 2H); ¹³C NMR (126 MHz, MeOD) δ 156.17, 155.87, 155.79, 145.11, 140.04, 139.75, 136.42, 135.01, 132.65, 129.80, 125.95, 125.43, 121.58, 120.19, 118.46, 109.79, 32.51, 27.76, 21.37, 20.63; HRMS (ESI) m/z calcd for C₁₈H₁₄F₃N₄S [M + H]⁺ 375.0891, found 375.0899.

3-Methyl-7-(3-(trifluoromethyl)-1H-pyrazol-4-yl)-8,9,10,11-tetrahydro-3H-pyrazolo[4,3-a]phenanthridine

Off-white solid (148 mg, 40%).¹H NMR (500 MHz, MeOD- d_4) δ 8.77 (d, J = 0.9 Hz, 1H), 8.42 (dd, J = 9.3, 0.9 Hz, 1H), 8.38 (d, J = 0.9 Hz, 1H), 8.07 (d, J = 9.3 Hz, 1H), 4.32 (s, 3H), 3.68 (t, J = 6.3 Hz, 2H), 2.82 (t, J = 6.2 Hz, 2H), 2.22 – 2.12 (m, 2H), 2.05 – 1.92 (m, 2H); ¹³C NMR (126 MHz, MeOD) δ 155.03, 142.35, 140.13 (q, J = 37.8 Hz), 138.47, 135.21, 134.39, 134.19, 132.52, 124.04, 122.33 (q, J = 269.6 Hz), 119.30, 118.65, 115.97, 109.85, 35.32, 30.84, 27.26, 21.19, 20.86; HRMS (ESI) m/z calcd for C₁₉H₁₇F₃N₅

[M + H]⁺ 372.1436, found 372.1438.

4-(9-(Trifluoromethyl)-8,9,10,11-tetrahydro-3H-pyrrolo[3,2-a]phenanthridin-7-yl)phenol

Off-white solid (157mg, 41%). ¹H NMR (500 MHz, DMSO- d_6) δ 11.93 (s, 1H), 9.74 (s, 1H), 7.84 (d, J = 8.8 Hz, 1H), 7.67 (s, 1H), 7.60 – 7.50 (m, 1H), 7.39 (d, J = 8.0 Hz, 2H), 7.21 – 7.07 (m, 1H), 6.99 – 6.83 (m, 2H), 3.65 (dd, J = 18.1, 5.8 Hz, 1H), 3.01 – 2.93 (m, 1H), 2.89 – 2.81 (m, 1H), 2.78 – 2.65 (m, 1H), 2.43 – 2.31 (m, 1H), 1.92 – 1.77 (m, 1H); ¹³C NMR (126 MHz, DMSO) δ 157.87, 155.35, 133.27, 131.96, 130.83, 129.75, 127.53, 124.57, 124.44, 121.71, 120.23, 117.24, 115.32, 106.11, 37.63 (q, J = 26.6 Hz), 29.04, 27.78, 21.66; HRMS (ESI) m/z calcd for C₂₂H₂₀F₃N₂O [M + H]⁺ 385.1528, found

385.1532.

4-(9,9-Difluoro-8,9,10,11-tetrahydro-3H-pyrrolo[3,2-a]phenanthridin-7-yl)phenol

Off-white solid (180 mg, 49%).¹H NMR (500 MHz, DMSO- d_6) δ 11.84 (s, 1H), 7.84 (d, J = 8.8 Hz, 1H), 7.67 (d, J = 8.8 Hz, 1H), 7.53 (d, J = 3.0 Hz, 1H), 7.39 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 3.1 Hz, 1H), 6.88 (d, J = 8.1 Hz, 2H), 3.63 (t, J = 7.1 Hz, 2H), 3.33 (t, J = 14.5 Hz, 2H), 2.48 – 2.38 (m, 2H); ¹³C NMR (126 MHz, DMSO) δ 157.78, 155.53, 143.87, 139.53, 133.29, 131.52, 130.80, 125.76, 124.38, 123.95, 123.87, 122.78, 121.98, 121.20, 120.23, 117.15, 115.32, 106.13, 37.50(J =26.46 Hz), 29.55(J =23.94 Hz), 28.22; HRMS (ESI) m/z calcd for C₂₁H₁₉F₂N₂O [M + H]⁺ 353.1465, found 353.1470.

6-(8,9,10,11-Tetrahydro-3*H*-pyrrolo[3,2-*a*]phenanthridin-7-yl)pyridin-3-ol

Off-white solid (107 mg, 34%). ¹H NMR (500 MHz, DMSO- d_6) δ 11.74 (s, 1H), 10.03 (s, 1H), 8.18 (d, J = 2.8 Hz, 1H), 7.77 (d, J = 8.9 Hz, 1H), 7.64 (dd, J = 12.0, 8.7 Hz, 2H), 7.49 (t, J = 2.8 Hz, 1H), 7.29 (dd, J = 8.5, 2.9 Hz, 1H), 7.12 (d, J = 2.5 Hz, 1H), 3.40 – 3.35 (m, 2H), 2.95 (t, J = 6.3 Hz, 2H), 1.96 – 1.92 (m, 2H), 1.78 – 1.69 (m, 2H); ¹³C NMR (126 MHz, DMSO) δ 153.80, 153.32, 151.06, 142.98, 142.40, 136.29, 133.31, 128.21, 125.55, 124.11, 123.92, 123.07, 122.67, 120.36, 116.37, 106.28, 30.10,

28.50, 22.89, 22.51; HRMS (ESI) m/z calcd for $C_{20}H_{18}N_3O$ [M + H]⁺ 316.1450, found 316.1453.

4-(8,9,10,11-Tetrahydrofuro[3,2-a]phenanthridin-7-yl)phenol

Off-white solid (218 mg, 69%). ¹H NMR (500 MHz, DMSO- d_6) δ 8.47 (d, J = 2.1 Hz, 1H), 8.36 (q, J = 9.2 Hz, 2H), 7.79 (d, J = 2.2 Hz, 1H), 7.61 (d, J = 8.6 Hz, 2H), 7.06 (d, J = 8.6 Hz, 2H), 3.56 (t, J = 6.4 Hz, 2H), 2.82 (t, J = 6.2 Hz, 2H), 2.00 (dq, J = 8.7, 5.8, 4.5 Hz, 2H), 1.86 – 1.65 (m, 2H); ¹³C NMR (126 MHz, DMSO) δ 160.63, 153.59, 153.01, 148.23, 132.05, 131.37, 122.86, 121.34, 119.47, 116.00, 110.37, 30.67, 28.32, 21.74, 21.57; HRMS (ESI) m/z calcd for C₂₁H₁₈NO₂ [M + H]⁺ 316.1337, found

316.1343.