Supporting Information for

Rhodium-catalyzed transannulation of N-(per)fluoroalkyl-1,2,3-triazoles in microwave conditions – a general route to N-(per)fluoroalkyl-substituted five-membered heterocycles†

Vladimir Motornov, a,bǂ Athanasios Markos a,cǂ and Petr Beier a,*

†These authors contributed equally to this work.

*a The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic. E-mail: beier@uochb.cas.cz
b Higher Chemical College, D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russian Federation
c Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, CZ-128 43 Prague 2, Czech Republic

Table of contents

General ..2
General procedure for synthesis of N-(per)fluoroalkyl-imidazoles 3a-3q ..2
General procedure for synthesis of N-(per)fluoroalkyl-pyrroles 4a-4i ..6
One-pot two-step procedure for preparation of pyrroles 4e and 4g ..6
Preparation of imidazolone 6 ..8
Preparation of pyrrolone 7 ...8
Copies of 1H, 13C and 19F NMR Spectra ..9
Competition experiment ...96
Stability of N-CF3 imidazole 3g and pyrrole 4b in acidic and basic conditions97
Stability of imidazole 3g ...97
Stability of pyrrole 4b ..103
General

Chloroform stabilized with ethanol (~1%) was dried by activated molecular sieves (3 and 4 Å) and stored under argon. All commercially available chemicals were used as received unless stated otherwise. Starting triazoles were prepared according to procedures published in literature.¹ ² Triazole 1q was supplied by CF Plus Chemicals www.cfplus.cz. Flash column chromatography was performed using silica gel 60 (0.040–0.063 mm). Automated flash column chromatography was performed on Teledyne ISCO CombiFlash Rf+ Lumen Automated Flash Chromatography System with UV/Vis detection. ¹H, ¹³C, and ¹⁹F NMR spectra were measured at ambient temperature using 5 mm diameter NMR tubes. ¹³C spectra were proton decoupled. The chemical shift values (δ) are reported in ppm relative to internal Me₄Si (0 ppm for ¹H and ¹³C NMR) or residual solvents and internal CFCl₃ (0 ppm for ¹⁹F NMR). Coupling constants (J) are reported in Hertz. Structural elucidation was aided by additional acquisition of ¹³C APT and/or various 2D spectra (¹H-¹H COSY, ¹H-¹³C HSQC, ¹H-¹³C HMBC, ¹³C-¹⁹F HMBC). GC-MS spectra were recorded on Agilent 7890A GC (column HP-5MS, 30 m × 0.25 mm × 0.25 μm, 5% phenyl methylpolysiloxane) coupled with 5975C quadrupole mass selective electron impact (EI) detector (70 eV). High resolution MS spectra (HRMS) were recorded on a Waters Micromass AutoSpec Ultima or Agilent 7890A GC coupled with Waters GCT Premier orthogonal acceleration time-of-flight detector using electron impact (EI) ionization. Rhodium catalyst Rh₂(Oct)₄ was used as a 0.01 M solution in dry chloroform. Biotage Initiator EXP EU (300 W power) was used for reactions carried out in a microwave reactor.

General procedure for synthesis of N-(per)fluoroalkyl-imidazoles 3a-3q. Initial N-(per)fluoroalkyl-triazole 1a-1q (0.20 mmol) was dissolved in dry CHCl₃ (2 mL) in a 5 mL microwave tube. Nitrile (2 equiv., 0.40 mmol) and a solution of rhodium (II) octanoate (0.002 mmol; 0.01 M in dry CHCl₃) were added. The vial was capped and heated at 140°C for 20 min in a microwave reactor. The resulting mixture was evaporated on silica gel (100 mg) and purified either by filtration through silica gel (washing with CH₂Cl₂) and further evaporation (55°C, 3 Torr) to remove the nitrile or by CombiFlash automatic column chromatography (EtOAc/cyclohexane, 0:100 to 10:90).

2,4-Diphenyl-1-(trifluoromethyl)-1H-imidazole (3a): Yield: 57%; colorless oil; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.85–7.88 (m, 1H), 7.71–7.75 (m, 1H), 7.57 (q, \(J_{\text{CF}} = 0.9\) Hz, 1H), 7.52–7.46 (m, 3H), 7.45–7.39 (m, 2H), 7.36–7.30 (m, 1H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 147.2, 142.2, 132.4, 130.2, 129.7, 129.3 (q, \(J_{\text{CF}} = 1.5\) Hz), 128.9, 128.6, 128.1, 125.6, 118.4 (q, \(J_{\text{CF}} = 265.1\) Hz, N-CF\(_3\)), 112.5; \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -52.7 (s); HRMS (EI\(^+\)) \(m/z\) calecd for C\(_{19}\)H\(_{13}\)F\(_3\)N\(_2\) [M\(^+\)]: 388.0874, found 388.0875.

2-Phenyl-4-(p-toly1)-1-(trifluoromethyl)-1H-imidazole (3b): Yield: 84%; colorless oil; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.77–7.72 (m, 2H), 7.72–7.67 (m, 2H), 7.54–7.52 (m, 1H), 7.51–7.44 (m, 3H), 7.25–7.21 (m, 2H), 2.39 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 146.9, 142.2, 137.8, 130.0, 129.7, 129.5, 129.4, 129.2 (q, \(J_{\text{CF}} = 1.5\) Hz), 128.4, 125.3, 118.3 (q, \(J_{\text{CF}} = 265.1\) Hz, N-CF\(_3\)), 111.9, 21.3; \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -52.7 (s); HRMS (EI\(^+\)) \(m/z\) calecd for C\(_{17}\)H\(_{13}\)F\(_3\)N\(_2\) [M\(^+\)]: 302.1031, found 302.1032.

4-(4-Methoxyphenyl)-2-phenyl-1-(trifluoromethyl)-1H-imidazole (3c): Yield: 72%; pale yellow oil; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.80–7.75 (m, 2H), 7.70–7.65 (m, 2H), 6.99–6.91 (m, 2H), 3.85 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 159.7, 147.0, 142.0, 130.2, 129.7, 129.3 (q, \(J_{\text{CF}} = 1.5\) Hz), 128.6, 126.9, 125.1, 118.4 (q, \(J_{\text{CF}} = 265.1\) Hz, N-CF\(_3\)), 114.3, 111.4, 55.5; \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -52.7 (s, 3F), -114.5 (s, 1F); HRMS (EI\(^+\)) \(m/z\) calecd for C\(_{16}\)H\(_{10}\)F\(_3\)N\(_2\)O [M\(^+\)]: 318.0980, found 318.0981.

4-(4-Fluorophenyl)-2-phenyl-1-(trifluoromethyl)-1H-imidazole (3d): Yield: 64%; colorless oil; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.86–7.78 (m, 2H), 7.72–7.63 (m, 2H), 7.54–7.44 (m, 4H), 6.91–6.85 (m, 2H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 157.1, 147.3, 141.4, 130.3, 129.6, 129.3 (q, \(J_{\text{CF}} = 1.4\) Hz), 128.7 (d, \(J_{\text{CF}} = 3.2\) Hz), 128.6, 127.3 (d, \(J_{\text{CF}} = 8.1\) Hz), 118.3 (q, \(J_{\text{CF}} = 265.5\) Hz, N-CF\(_3\)), 115.8 (d, \(J_{\text{CF}} = 21.7\) Hz), 112.1; \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -52.7 (s, 3F), -114.5 (s, 1F); HRMS (EI\(^+\)) \(m/z\) calecd for C\(_{16}\)H\(_{10}\)F\(_3\)N\(_2\) [M\(^+\)]: 306.0780, found 306.0778.

2-Phenyl-1-(trifluoromethyl)-4-(4- trifluoromethyl)phenyl)-1H-imidazole (3e): Yield: 63%; pale yellow oil; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.99–7.93 (m, 2H), 7.74–7.63 (m, 5H), 7.55–7.45 (m, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 147.6, 140.8, 135.9 (q, \(J_{\text{CF}} = 1.4\) Hz), 130.4, 130.0 (q, \(J_{\text{CF}} = 32.8\) Hz), 129.4, 129.3 (q, \(J_{\text{CF}} = 1.4\) Hz), 128.7, 125.9 (q, \(J_{\text{CF}} = 3.8\) Hz), 125.7 (q, \(J_{\text{CF}} = 272.0\) Hz), 125.7, 118.3 (q, \(J_{\text{CF}} = 265.7\) Hz, N-CF\(_3\)), 113.6; \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -52.7 (s, 3F), -63.0 (s, 3F); HRMS (EI\(^+\)) \(m/z\) calecd for C\(_{19}\)H\(_{10}\)F\(_3\)N\(_2\) [M\(^+\)]: 356.0748, found 356.0746.

4-(4-Nitrophenyl)-2-phenyl-1-(trifluoromethyl)-1H-imidazole (3f): Yield: 52%; yellow solid; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.33–8.25 (m, 2H), 8.05–7.99 (m, 2H), 7.76–7.73 (m, 1H), 7.71–7.67 (m, 2H), 7.57–7.46 (m, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 148.0, 147.4, 140.0, 138.7, 130.6, 129.3 (q, \(J_{\text{CF}} = 1.5\) Hz), 129.1, 128.7, 126.0, 124.4, 118.2 (q, \(J_{\text{CF}} = 266.2\) Hz, N-CF\(_3\)), 114.7; \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -52.8 (s); HRMS (EI\(^+\)) \(m/z\) calecd for C\(_{16}\)H\(_{10}\)F\(_3\)N\(_2\)O [M\(^+\)]: 333.0725, found 333.0726.

2-(4-Methoxyphenyl)-4-(p-toly1)-1-(trifluoromethyl)-1H-imidazole (3g): Yield: 78%; white solid; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.77–7.69 (m, 2H), 7.67–7.58 (m, 2H), 7.49 (q, \(J_{\text{CF}} = 0.8\) Hz, 1H), 7.24–7.20 (m, 2H), 7.05–6.94 (m, 2H), 3.87 (s, 3H), 2.38 (s, 3H);
13C NMR (101 MHz, CDCl$_3$) δ 161.1, 147.0, 142.0, 137.8, 130.8 (q, $J_{C,F} = 1.5$ Hz), 129.7, 129.5, 125.4, 122.2, 118.4 (q, $J_{C,F} = 264.9$ Hz, N-CF$_3$), 114.0, 111.8, 55.5, 21.4; 19F NMR (376 MHz, CDCl$_3$) δ -52.7 (s); HRMS (EI+) m/z calcd for C$_{18}$H$_{15}$F$_3$N$_2$O [M]+: 332.1136, found 332.1134.

2-(3-Methoxyphenyl)-4-(p-tolyl)-1-(trifluoromethyl)-1H-imidazole (3h): Yield: 94%; pale yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.79–7.70 (m, 2H), 7.51 (q, $^4J_{H,F} = 0.9$ Hz, 1H), 7.41–7.35 (m, 1H), 7.28–7.21 (m, 4H, signal overlap with solvent), 7.04 (ddd, $^3J = 8.3$, 2.6, 1.0 Hz, 1H), 3.86 (s, 3H), 2.38 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 159.6, 146.9, 142.2, 137.9, 130.9, 129.6 (3C), 125.4, 121.7 (q, $J_{C,F} = 1.5$ Hz), 118.4 (q, $J_{C,F} = 265.2$, N-CF$_3$), 116.3, 114.6 (q, $J_{C,F} = 1.2$ Hz), 112.0 (q, $J_{C,F} = 1.2$ Hz), 55.5, 21.4; 19F NMR (376 MHz, CDCl$_3$) δ -52.6 (s); HRMS (EI+) m/z calcd for C$_{18}$H$_{15}$F$_3$N$_2$O [M]+: 332.1136, found 332.1133.

2-(4-Chlorophenyl)-4-(p-tolyl)-1-(trifluoromethyl)-1H-imidazole (3i): Yield: 82%; colorless oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.75–7.68 (m, 2H), 7.67–7.59 (m, 2H), 7.52 (q, $^4J_{H,F} = 0.9$ Hz, 1H), 7.50–7.42 (m, 2H), 7.25–7.21 (m, 2H), 2.38 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 145.8, 142.5, 138.1, 136.5, 130.7 (q, $J_{C,F} = 1.4$ Hz), 129.6, 129.4, 128.9, 128.2, 125.4, 118.3 (q, $J_{C,F} = 265.1$ Hz, N-CF$_3$), 112.2, 21.4; 19F NMR (376 MHz, CDCl$_3$) δ -52.7 (s); HRMS (EI+) m/z calcd for C$_{17}$H$_{12}$ClF$_3$N$_2$O [M]+: 336.0641, found 336.0642.

4-(4-Methoxyphenyl)-2-(4-nitrophenyl)-1-(trifluoromethyl)-1H-imidazole (3j): Yield: 33%; purification by column chromatography on C18 reverse-phase silica (H$_2$O/MeCN, 80:20 to 20:80); yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 8.37–8.32 (m, 2H), 7.95–7.88 (m, 2H), 7.81–7.73 (m, 2H), 7.53 (q, $^4J_{H,F} = 0.9$ Hz, 1H), 7.03–6.92 (m, 2H), 3.85 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 160.0, 148.7, 144.4, 142.9, 135.7, 130.3, 126.9, 124.6, 123.8 (m), 118.3 (q, $J_{C,F} = 265.6$ Hz, N-CF$_3$), 114.4 (m), 112.4, 55.5 (q, $J_{C,F} = 10.8$ Hz); 19F NMR (376 MHz, CDCl$_3$) δ -52.4 (s); HRMS (EI+) m/z calcd for C$_{17}$H$_{12}$F$_3$N$_3$O$_3$ [M]+: 363.0831, found 363.0828.

2-Methyl-4-(p-tolyl)-1-(trifluoromethyl)-1H-imidazole (3k): Yield: 71%; colorless oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.67–7.57 (m, 2H), 7.33 (s, 1H), 7.23–7.16 (m, 2H), 2.59 (q, $^3J_{H,F} = 1.4$ Hz, 3H), 2.37 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 144.6, 141.4, 137.7, 129.7, 129.5, 125.2, 118.5 (q, $J_{C,F} = 263.8$ Hz, N-CF$_3$), 110.8, 21.4, 14.4 (q, $J_{C,F} = 2.4$ Hz); 19F NMR (376 MHz, CDCl$_3$) δ -56.2 (s); HRMS (EI+) m/z calcd for C$_{12}$H$_{11}$F$_3$N$_2$ [M]+: 240.0874, found 240.0876.
2-(3,4-Dimethoxybenzyl)-4-(p-toly1)-1-(trifluoromethyl)-1H-imidazole (3I): Yield: 56%; yellow oil; 1H NMR (400 MHz, CDCl3) δ 7.71–7.65 (m, 2H), 7.35 (d, JHH = 0.8 Hz, 1H), 7.23–7.19 (m, 2H), 6.86 (s, 1H), 6.79 (d, JHH = 1.0 Hz, 2H), 4.20 (d, JHH = 1.1 Hz, 2H), 3.85 (s, 3H), 3.84 (s, 3H), 2.37 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 149.0, 148.1, 146.6, 141.7, 137.8, 129.8, 129.6, 129.5, 128.5, 125.3, 120.9–120.5 (m), 118.4 (q), 1F NMR (264.6 Hz, N-CF3), 111.9 (m), 111.2 (m), 56.9 (q, JCF = 11.2 Hz), 34.5–33.8 (m), 21.4 (q, JCF = 7.9 Hz); 19F NMR (376 MHz, CDCl3) δ -55.1 (s); HRMS (EI) m/z caleed for C20H19F3N2O [M]+: 376.1399, found 376.1397.

Ethyl 2-phenyl-1-(trifluoromethyl)-1H-imidazole-4-carboxylate (3m): Yield: 65%, colorless oil; 1H NMR (400 MHz, CDCl3) δ 7.97 (q, JHF = 0.9 Hz, 1H), 7.67–7.59 (m, 2H), 7.55–7.41 (m, 3H), 4.42 (q, JHF = 7.2 Hz, 2H), 1.39 (t, JHH = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 161.9, 147.6, 134.2, 130.7, 129.4 (q, JCF = 1.3 Hz), 128.6, 128.5, 122.9 (q, JCF = 1.2 Hz), 117.9 (q, JCF = 267.1 Hz, N-CF3), 61.4, 14.5; 19F NMR (376 MHz, CDCl3) δ -55.1 (s); HRMS (EI) m/z caleed for C10H13F3N2O [M]+: 284.0773, found 284.0770.

4-(4-Methoxyphenyl)-1-(perfluoroethyl)-1H-imidazole (3n): Yield: 92%; yellow solid; 1H NMR (400 MHz, CDCl3) δ 7.82–7.73 (m, 2H), 7.62–7.54 (m, 2H), 7.52–7.41 (m, 3H), 7.39–7.35 (m, 1H), 7.01–6.90 (m, 2H), 3.84 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 159.8, 148.2, 142.8, 130.5, 130.0 (2C), 128.2, 126.9, 125.0, 117.6 (q, JCF = 288.0 Hz, 2JCF = 44.9 Hz, CF3), 114.3, 111.6, 110.6 (tq, JCF = 269.2 Hz, 2JCF = 44.9 Hz, N-CF3), 55.5; 19F NMR (376 MHz, CDCl3) δ 84.8 (s, 3F), -93.9 (s, 2F); HRMS (EI) m/z caleed for C18H15F3N2O [M]+: 368.0948, found 368.0954.

1-(Perfluoropropyl)-2,4-diphenyl-1H-imidazole (3o): Yield: 71%, white solid; 1H NMR (500 MHz, CDCl3) δ 7.91–7.84 (m, 2H), 7.61–7.55 (m, 2H), 7.51–7.39 (m, 6H), 7.37–7.31 (m, 1H); 13C NMR (101 MHz, CDCl3) δ 148.4, 142.7, 132.2, 130.4, 130.1, 128.9, 122.2 (2C), 125.6, 117.4 (qtt, 1JCF = 287.7 Hz, 2JCF = 33.3 Hz, 3JCF = 2.1 Hz, CF3), 112.9, 112.4 (t, 1JCF = 269.8 Hz, 2JCF = 32.1 Hz, N-CF3), 110.2–105.6 (m); 19F NMR (376 MHz, CDCl3) δ -80.6 (t, 3JCF = 9.7 Hz, 3F), -89.8 (q, 1JCF = 9.7 Hz, 2F), -126.1 (s, 2F); HRMS (EI) m/z caleed for C18H15F3N2O [M]+: 388.0810, found 388.0809.

2-Phenyl-1-(1,1,2,2-tetrafluoro-2-phenoxymethyl)-4-(p-toly1)-1H-imidazole (3p): Yield: 57%; brown oil; 1H NMR (400 MHz, CDCl3) δ 7.81–7.73 (m, 2H), 7.68–7.62 (m, 2H), 7.56 (s, 1H), 7.52–7.38 (m, 3H), 7.40–7.30 (m, 2H), 7.30–7.19 (m, 3H, signal overlap with solvent), 7.10–7.02 (m, 2H), 2.38 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 148.6, 148.4, 142.3, 137.7, 131.2, 130.1, 129.9 (2C), 129.7, 129.5, 128.0, 127.0, 125.4, 121.5, 116.3 (tt, 1JCF = 277.3 Hz, 2JCF = 40.8 Hz), 113.2, 111.9 (tt, 1JCF = 268.8 Hz, 2JCF = 40.8 Hz), 21.4; 19F NMR (376 MHz, CDCl3) δ -86.3 (t, 3JCF = 4.2 Hz, 2F), -93.7 (t, 3JCF = 4.2 Hz, 2F); HRMS (EI) m/z caleed for C24H18F3N2O [M]+: 426.1355, found 426.1356.

1-(2-(2,4-Diphenyl-1H-imidazol-1-yl)-1,1,2,2-tetrafluoroethyl)-1H-pyrazole (3q): Yield: 70%; red oil; 1H NMR (400 MHz, CDCl3) δ 7.83–7.76 (m, 2H), 7.72 (qd, J = 1.5, 0.6 Hz, 1H), 7.64–7.58 (m, 1H), 7.54–7.35 (m, 1H), 7.35–7.26 (m, 1H), 7.25 (s, 1H, signal overlap with solvent), 6.42 (dd, J = 2.7, 1.7 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 148.3, 143.9, 142.4, 132.4, 130.5, 130.0, 129.8, 129.1, 128.8, 128.0 (2C), 125.5, 113.1, 112.6 (tt, 1JCF = 271.3 Hz, 2JCF = 42.1 Hz), 112.5 (tt, 1JCF = 269.2 Hz, 2JCF = 42.1 Hz), 108.9; 19F NMR (376 MHz, CDCl3) δ -92.1 (t, 3JCF = 4.7 Hz, 2F), -98.2 (t, 3JCF = 4.7 Hz, 2F); HRMS (EI) m/z caleed for C20H14F4N4 [M]+: 386.1155, found 386.1156.
General procedure for synthesis of N-(per)fluoroalkyl-pyrroles 4a-4i. N-(per)fluoroalkyl-triazole I (0.20 mmol) was dissolved in dry CHCl₃ (2 mL) in a 5 mL microwave tube. Vinyl ether (10 equiv., 2.0 mmol) and a solution of rhodium (II) octanoate (0.002 mmol; 0.01 M in dry CHCl₃) were added. The vial was capped and heated at 140°C for 20 min in a microwave reactor. The resulting mixture was evaporated on silica gel (100 mg) and purified by CombiFlash automatic column chromatography (cyclohexane).

In case of derivatives 4e and 4g the non-eliminated products were observed. For preparation of the desired pyrroles was developed one-pot two-step procedure.

![Diagram](https://via.placeholder.com/150)

One-pot two-step procedure for preparation of pyrroles 4e and 4g. N-perfluoroalkyl-triazole (0.20 mmol) was dissolved in dry CHCl₃ (2 mL) in a 5 mL microwave tube. Vinyl ether (10 equiv., 2.0 mmol) and a solution of rhodium (II) octanoate (0.002 mmol; 0.01 M in dry CHCl₃) were added. The vial was capped and heated at 140°C for 20 min in a microwave reactor. Then TsOH·H₂O (0.40 mmol; 76.1 mg) was added. The resulting suspension was stirred at rt for 2 h filtered, evaporated on silica gel (100 mg) and purified by CombiFlash automatic column chromatography (cyclohexane).

3-Phenyl-1-(trifluoromethyl)-1H-pyrrole (4a): Yield: 96%; white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.55–7.48 (m, 2H), 7.41–7.34 (m, 2H), 7.30–7.21 (m, 2H), 7.03 (dd, J = 3.3, 2.3 Hz, 1H), 6.63 (ddq, J = 3.3, 1.6, 0.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 133.9, 128.9, 128.4, 127.0, 125.8, 119.5 (q, ¹JCF = 260.1 Hz, N-CF₃), 118.8, 113.9, 110.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.5 (s); HRMS (EI⁺) m/z calcd for C₁₁H₈F₃N [M⁺]: 211.0609, found 211.0611.

3-(4-Methoxyphenyl)-1-(trifluoromethyl)-1H-pyrrole (4b): Yield: 93%; white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.40 (m, 2H), 7.16 (t, J = 2.0 Hz, 1H), 7.01 (dd, J = 3.3, 2.3 Hz, 1H), 6.96–6.88 (m, 2H), 6.57 (ddq, J = 3.2, 1.7, 0.7 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 128.1, 126.9, 126.7, 119.1 (q, ¹JC,F = 260.2 Hz, N-CF₃), 118.7, 114.4, 113.1, 110.5, 55.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.5 (s); HRMS (EI⁺) m/z calcd for C₁₃H₁₀F₃NO [M⁺]: 241.0714, found 241.0712.

3-(p-Tolyl)-1-(trifluoromethyl)-1H-pyrrole (4c): Yield: 82%; white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.39 (m, 2H), 7.25–7.16 (m, 3H), 7.02 (dd, J = 3.2, 2.3 Hz, 1H), 6.60 (ddq, J = 3.2, 1.5, 0.7 Hz, 1H).
Hz, 1H), 2.37 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 136.7, 131.1, 129.6, 128.4, 125.6, 119.1 (q, $^1J_{C,F}$ = 260.2 Hz, N-CF$_3$), 118.7, 113.5, 110.6, 21.3; 19F NMR (376 MHz, CDCl$_3$) δ -57.5 (s); HRMS (EI+) m/z calcd for C$_{12}$H$_{10}$F$_3$N [M$^+$]: 225.0765, found 225.0762.

3-(4-Fluorophenyl)-1-(trifluoromethyl)-1H-pyrazole (4d): Yield: 80%; white solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.50–7.42 (m, 2H), 7.19 (t, J = 2.0 Hz, 1H), 7.10–7.04 (m, 2H), 7.03 (dd, J = 3.2, 2.3 Hz, 1H), 6.57 (ddq, J = 3.3, 1.5, 0.7 Hz, 1H); 13C NMR (101 MHz, CDCl$_3$) δ 162.1 (d, $^1J_{C,F}$ = 245.7 Hz), 130.1 (d, $^1J_{C,F}$ = 3.3 Hz), 127.5, 127.3 (d, $^3J_{C,F}$ = 8.0 Hz), 119.2 (q, $^1J_{C,F}$ = 260.8 Hz, N-CF$_3$), 118.9, 115.8 (d, $^2J_{C,F}$ = 21.6 Hz), 113.7, 110.5; 19F NMR (376 MHz, CDCl$_3$) δ -57.5 (s, 3F), -116.2 (s, 1F); HRMS (EI+) m/z calcd for C$_{12}$H$_{10}$F$_3$N [M$^+$]: 229.0515, found 229.0514.

2-Ethoxy-1-(perfluoroethyl)-4-phenyl-2,3-dihydro-1H-pyrrrole (4e'): not isolated; 1H NMR (400 MHz, CDCl$_3$) δ 7.38–7.28 (m, 4H), 7.24–7.18 (m, 1H), 6.56 (s, 1H), 5.45 (d, J = 7.6 Hz, 1H), 3.62 (dq, J = 9.2, 7.0 Hz, 1H), 3.52 (dq, J = 9.2, 7.0 Hz, 1H), 3.32–3.20 (m, 1H), 2.85 (m, 1H), 1.22 (t, J = 7.0 Hz, 3H); 19F NMR (376 MHz, CDCl$_3$) δ -83.3 (s, 3F), -93.4 (d, $^2J_{F,F}$ = 212.9 Hz, 1F), -95.8 (d, $^3J_{F,F}$ = 212.9 Hz, 1F).

1-(Perfluoroethyl)-3-phenyl-1H-pyrrrole (4f): Yield: 89%; white solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.58–7.48 (m, 2H), 7.42–7.34 (m, 2H), 7.31–7.22 (m, 1H), 7.20 (tt, J = 1.7, 0.8 Hz, 1H), 7.02–6.95 (m, 1H), 6.67 (ddt, J = 3.4, 1.7, 0.9 Hz, 1H); 13C NMR (101 MHz, CDCl$_3$) δ 133.9, 129.0, 128.6, 127.0, 125.8, 119.3, 117.8 (qt, $^1J_{C,F}$ = 287.6 Hz, $^2J_{C,F}$ = 47.0 Hz, CF$_3$), 114.4 110.9, 110.8 (tq, $^1J_{C,F}$ = 263.8 Hz, $^2J_{C,F}$ = 41.8 Hz, N-CF$_2$); 19F NMR (376 MHz, CDCl$_3$) δ -85.9 (s, 3F), -99.1 (s, 2F); HRMS (EI+) m/z calcd for C$_{12}$H$_{10}$F$_3$N [M$^+$]: 261.0577, found 261.0578.

1-(1,1,2,2-Tetrafluoro-2-(3-phenyl-1H-pyrrol-1-yl)ethyl)-1H-pyrazole (4f): Yield: 92%; colorless oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.77 (tq, J = 1.5, 0.7 Hz, 1H), 7.58–7.51 (m, 1H), 7.48–7.43 (m, 2H), 7.39–7.32 (m, 2H), 7.28–7.19 (m, 1H), 6.96 (ddt, J = 2.3, 1.6, 0.7 Hz, 1H), 6.77 (ddd, J = 3.3, 1.9, 0.6 Hz, 1H), 6.57 (ddt, J = 3.2, 1.8, 1.0 Hz, 1H), 6.41 (ddt, J = 2.8, 1.7, 0.6 Hz, 1H); 13C NMR (101 MHz, CDCl$_3$) δ 143.6, 134.0, 129.1, 128.9, 128.1, 126.8, 119.3, 114.4, 112.8 (tt, $^1J_{C,F}$ = 268.1 Hz, $^2J_{C,F}$ = 40.9 Hz), 112.7 (tt, $^1J_{C,F}$ = 269.2 Hz, $^3J_{C,F}$ = 43.5 Hz), 110.3, 108.6; 19F NMR (376 MHz, CDCl$_3$) δ -97.8 (t, $^1J_{F,F}$ = 5.6 Hz, 2F), -100.1 (t, $^3J_{F,F}$ = 5.6 Hz, 2F); HRMS (EI+) m/z calcd for C$_{12}$H$_{10}$F$_3$N$_3$ [M$^+$]: 309.0889, found 309.0888.

Ethyl 5-ethyl-1-(trifluoromethyl)-4,5-dihydro-1H-pyrrrole-3-carboxylate (4g'): not isolated; 1H NMR (400 MHz, CDCl$_3$) δ 7.12–7.08 (m, 1H), 5.41 (ddq, J = 8.1, 2.3, 0.9 Hz, 1H), 4.19 (q, J = 7.2 Hz, 2H), 3.68–3.56 (m, 1H), 3.54–3.44 (m, 1H), 3.11–2.99 (m, 1H), 2.83–2.74 (m, 1H), 1.28 (t, $^1J_{H,F}$ = 7.1 Hz, 3H), 1.20 (t, $^3J_{H,F}$ = 7.0 Hz, 3H); 19F NMR (376 MHz, CDCl$_3$) δ -57.9 (s).
Ethyl 1-(trifluoromethyl)-1H-pyrole-3-carboxylate (4g): Yield: 92%; colorless oil; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.60 (dd, \(J = 2.3, 1.6\) Hz, 1H), 6.96 (dd, \(J = 3.3, 2.3\) Hz, 1H), 6.72 (ddq, \(J = 3.3, 1.7, 0.9\) Hz, 1H), 4.30 (q, \(J_{CH} = 7.1\) Hz, 2H), 1.35 (t, \(J_{CH} = 7.1\) Hz, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 163.6, 122.5, 118.5, 118.5 (q, \(J_{CF} = 262.6\) Hz, N-CF\(_3\)), 112.6, 60.6, 14.5; \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -57.9 (s); HRMS (EI+) \(m/z\) calcd for C\(_8\)H\(_3\)F\(_3\)NO\(_2\) [M]+: 207.0507, found 207.0506.

2-Methyl-4-(p-tolyl)-1-(trifluoromethyl)-1H-pyrole (4i): Yield: 63%; white solid; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.42–7.33 (m, 2H), 7.17 (dddd, \(J = 7.6, 2.0, 1.2, 0.6\) Hz, 2H), 7.13 (dt, \(J = 1.9, 0.6\) Hz, 1H), 6.34–6.28 (m, 1H), 2.38 (dq, \(J = 2.0, 1.4\) Hz, 3H), 2.36 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 136.4, 131.3, 129.7, 125.4, 119.5 (q, \(J_{CF} = 261.0\) Hz, N-CF\(_3\)), 113.5 (q, \(J = 2.1\) Hz), 110.4 (q, \(J = 1.6\) Hz), 21.3, 12.7 (q, \(J = 2.4\) Hz); \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -55.7 (s); HRMS (EI+) \(m/z\) calcd for C\(_{13}\)H\(_{12}\)F\(_3\)N [M]+: 239.0922, found 239.0924.

Preparation of imidazolone 6

N-perfluoroalkyl-triazole 1b (0.20 mmol) was dissolved in dry CHCl\(_3\) (2 mL) in a 5 mL microwave tube. Phenyl isocyanate (2 equiv., 0.4 mmol) and a solution of rhodium (II) octanoate (0.002 mmol; 0.01 M in dry CHCl\(_3\)) were added. The vial was capped and heated at 120°C for 20 min in a microwave reactor. The resulting mixture was evaporated on silica gel (100 mg) and purified by CombiFlash automatic column chromatography using the (EtOAc/cyclohexane).

3-Phenyl-4-(p-tolyl)-1-(trifluoromethyl)-1,3-dihydro-2H-imidazol-2-one (6): Yield: 75%; brown oil; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.38–7.28 (m, 3H), 7.21–7.15 (m, 2H), 7.08–7.02 (m, 2H), 6.98–6.92 (m, 2H), 6.56 (s, 1H), 2.31 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 149.6, 138.9, 134.2, 129.5, 129.2, 128.0, 127.7, 127.4, 127.1, 125.0, 118.5 (q, \(J_{CF} = 263.0\) Hz, N-CF\(_3\)), 103.3 (q, \(J = 1.4\) Hz), 21.4; \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -59.1 (s); HRMS (EI+) \(m/z\) calcd for C\(_{17}\)H\(_{13}\)F\(_3\)N\(_2\)O [M]+: 318.0980, found 318.0979.

Preparation of pyrrolone 7

N-perfluoroalkyl-triazole 1b (0.20 mmol) was dissolved in dry CHCl\(_3\) (2 mL) in a 5 mL microwave tube. Ketene t-butyldimethylsilyl methyl acetal (2 equiv., 0.4 mmol) and a solution of rhodium (II) octanoate (0.002 mmol; 0.01 M in dry CHCl\(_3\)) were added. The vial was capped and heated at 120°C for 15 min in microwave reactor. Then 1M solution of TBAF (5 equiv., 1 mmol) in THF was added and resulting solution was stirred for 1 h, evaporated on silica gel (100 mg) and purified by CombiFlash automatic column chromatography (EtOAc/cyclohexane).
4-(p-Tolyl)-1-(trifluoromethyl)-1,5-dihydro-2H-pyrrrol-2-one (7): Yield: 63%; slightly yellow crystals; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.46–7.39 (m, 2H), 7.30–7.22 (m, 2H, signal overlap with solvent), 6.39–6.33 (m, 1H), 4.64–4.59 (m, 2H), 2.41 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 169.5, 157.2, 142.2, 130.0, 127.7, 126.1, 119.6 (q, \(^1\)J\(_{\text{C-F}}\) = 261.3 Hz, N-CF\(_3\)), 118.0 (q, \(J = 2.0\) Hz), 49.5, 21.6; \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -57.7 (s); HRMS (EI+) m/z calcd for C\(_{12}\)H\(_{10}\)F\(_3\)NO [M]+: 241.0714, found 241.0711.

Copies of \(^1\)H, \(^{13}\)C and \(^{19}\)F NMR Spectra

\(^1\)H NMR (400 MHz, CDCl\(_3\)) of 3a

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) of 3a

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)) of 3a
13C NMR (101 MHz, CDCl$_3$) of 3a
19F NMR (376 MHz, CDCl$_3$) of 3a
1H NMR (400 MHz, CDCl$_3$) of 3b
13C NMR (101 MHz, CDCl$_3$) of 3b
19F NMR (376 MHz, CDCl$_3$) of 3b
1H NMR (400 MHz, CDCl$_3$) of 3c

![NMR Spectrum]

3c
13C NMR (101 MHz, CDCl$_3$) of 3c
$^{19}\text{F NMR (376 MHz, CDCl\textsubscript{3}) of 3c}$
1H NMR (400 MHz, CDCl$_3$) of 3d
13C NMR (101 MHz, CDCl$_3$) of 3d
19F NMR (376 MHz, CDCl$_3$) of 3d

![NMR Spectrum](image_url)
1H NMR (400 MHz, CDCl$_3$) of 3e
13C NMR (101 MHz, CDCl$_3$) of 3e
19F NMR (376 MHz, CDCl$_3$) of 3e
1H NMR (400 MHz, CDCl$_3$) of 3f
13C NMR (101 MHz, CDCl$_3$) of 3f
19F NMR (376 MHz, CDCl$_3$) of 3f
1H NMR (400 MHz, CDCl$_3$) of 3g

![NMR spectrum of 3g]
13C NMR (101 MHz, CDCl$_3$) of 3g
19F NMR (376 MHz, CDCl$_3$) of 3g
1H NMR (400 MHz, CDCl$_3$) of 3h
13C NMR (101 MHz, CDCl$_3$) of 3h
19F NMR (376 MHz, CDCl$_3$) of 3h
1H NMR (400 MHz, CDCl$_3$) of $3i$
13C NMR (101 MHz, CDCl$_3$) of 3i
19F NMR (376 MHz, CDCl$_3$) of 3i
1H NMR (400 MHz, CDCl$_3$) of 3j

![NMR spectrum of 3j](image-url)
13C NMR (101 MHz, CDCl$_3$) of 3j
19F NMR (376 MHz, CDCl$_3$) of 3j

![NMR Spectrum]
1H NMR (400 MHz, CDCl$_3$) of 3k
13C NMR (101 MHz, CDCl$_3$) of 3k

![Chemical Structure](image)

- 14.40
- 14.43
- 14.45
- 14.47
- 21.38
- 110.83
- 114.54
- 117.15
- 119.77
- 122.39
- 125.21
- 129.53
- 129.73
- 137.70
- 141.43
- 144.55

N
N
C
H
3
C
H
3
F
F
3k
19F NMR (376 MHz, CDCl$_3$) of 3k

![Chemical structure of 3k](image)
1H NMR (400 MHz, CDCl$_3$) of 31
13C NMR (101 MHz, CDCl$_3$) of 3l
NMR (376 MHz, CDCl$_3$) of 3l

![NMR Spectrum of 3l](image)

Chemical Structure of 3l

![Chemical Structure](image)
1H NMR (400 MHz, CDCl$_3$) of 3m
13C NMR (101 MHz, CDCl$_3$) of 3m

![NMR spectrum of 3m](image)
19F NMR (376 MHz, CDCl$_3$) of $3m$
1H NMR (400 MHz, CDCl$_3$) of 3n
13C NMR (101 MHz, CDCl$_3$) of 3n
19F NMR (376 MHz, CDCl$_3$) of 3n
1H NMR (500 MHz, CDCl$_3$) of 3o
APT 13C NMR (101 MHz, CDCl$_3$) of 3o
19F NMR (376 MHz, CDCl$_3$) of 3o
1H NMR (400 MHz, CDCl₃) of 3p

3p

14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
13C NMR (101 MHz, CDCl$_3$) of 3p
$^{19}\text{F NMR (376 MHz, CDCl}_3\text{)}$ of 3p

![Chemical Structure of 3p](image)

δ (ppm): 2.03, 2.04

N

F

O

F

F

C

H_3

3p
1H NMR (400 MHz, CDCl$_3$) of 3q

![Chemical structure of 3q](image)
13C NMR (101 MHz, CDCl$_3$) of 3q
$^{19}\text{F NMR (376 MHz, CDCl}_3\text{)}$ of 3q
1H NMR (400 MHz, CDCl$_3$) of 4a

![NMR Spectrogram](image-url)
13C NMR (101 MHz, CDCl$_3$) of 4a
$^{19}\text{F NMR (376 MHz, CDCl}_3\text{) of 4a}$

![Chemical structure of 4a with fluorine atoms indicated](image)
1H NMR (400 MHz, CDCl$_3$) of 4b

![NMR spectrum of 4b](image_url)
13C NMR (101 MHz, CDCl$_3$) of 4b
19F NMR (376 MHz, CDCl$_3$) of 4b
1H NMR (400 MHz, CDCl$_3$) of 4c
13C NMR (101 MHz, CDCl$_3$) of 4c
19F NMR (376 MHz, CDCl$_3$) of 4c

![NMR spectrum of 4c](image)
1H NMR (400 MHz, CDCl$_3$) of 4d
13C NMR (101 MHz, CDCl$_3$) of 4d

![Chemical Structure of 4d]
19F NMR (376 MHz, CDCl$_3$) of 4d
1H NMR (400 MHz, CDCl$_3$) of 4e$^-$
$\text{19F NMR (376 MHz, CDCl}_3\text{) of 4e}'$
1H NMR (400 MHz, CDCl₃) of 4e
13C NMR (101 MHz, CDCl$_3$) of 4e

![Diagram of 4e molecule]
19F NMR (376 MHz, CDCl$_3$) of 4e
1H NMR (400 MHz, CDCl$_3$) of 4f
13C NMR (101 MHz, CDCl$_3$) of 4f
19F NMR (376 MHz, CDCl$_3$) of 4f
1H NMR (400 MHz, CDCl$_3$) of 4g'
19F NMR (376 MHz, CDCl$_3$) of 4g$^-$
1H NMR (400 MHz, CDCl$_3$) of 4g
13C NMR (101 MHz, CDCl$_3$) of 4g
19F NMR (376 MHz, CDCl$_3$) of 4g
1H NMR (400 MHz, CDCl$_3$) of 4h
13C NMR (101 MHz, CDCl$_3$) of 4h
19F NMR (376 MHz, CDCl$_3$) of 4h
1H NMR (400 MHz, CDCl$_3$) of 4i
13C NMR (101 MHz, CDCl$_3$) of 4i
19F NMR (376 MHz, CDCl$_3$) of 4i
1H NMR (400 MHz, CDCl$_3$) of 6

![Diagram of molecule 6]
13C NMR (101 MHz, CDCl$_3$) of 6
19F NMR (376 MHz, CDCl$_3$) of 6

![NMR spectrum of compound 6](image-url)
1H NMR (400 MHz, CDCl$_3$) of 7

C$_3$H$_7$NOF$_3$F
13C NMR (101 MHz, CDCl$_3$) of 7

![Chemical Structure of 7](image-url)
\textbf{\(^{19}\text{F} \) NMR (376 MHz, CDCl\(_3\)) of 7}

\begin{center}
\includegraphics[width=0.4\textwidth]{figure.png}
\end{center}

\textit{Competition experiment}

N-perfluoroalkyl triazole 1d (0.1 mmol; 1 equiv.), N-tosyl triazole 8 (0.1 mmol; 1 equiv.) and benzonitrile (0.1 mmol; 1 equiv.) were dissolved in dry CHCl\(_3\) (2 mL) and a solution of rhodium (II) octanoate (0.001 mmol; 0.01 M in dry CHCl\(_3\)) was added. The vial was capped and mixture was heated at 140°C for 20 min in microwave reactor followed by measurement of \(^{19}\text{F} \{^{1}\text{H}\} \) NMR spectra.
Stability of N-CF$_3$ imidazole 3g and pyrrole 4b in acidic and basic conditions

Stability of imidazole 3g

Imidazole 3g (18 mg; 0.05 mmol) was dissolved in CD$_3$OD (1.06 mL) and PhCF$_3$ was added as an internal standard. Then 19F and 1H NMR spectra were measured. For stability experiment in basic condition, NaOH (10 mg; 0.25 mmol) was added to the prepared solution (500 µL) and after 18 h at 25 °C 19F and 1H NMR spectra were measured. In case of experiment in acidic conditions, 98% H$_2$SO$_4$ in D$_2$O (40 µL) was added to the prepared solution (560 µL) and after 18 h at room temperature 19F and 1H NMR spectra were measured.
1H NMR (400 MHz, CD$_3$OD) of 3g and PhCF$_3$ (as a standard) before experiment
\(^{19}\text{F NMR (376 MHz, CD}_2\text{OD)}\) of \(3g\) and PhCF\(_3\) (as a standard) before experiment.
1H NMR (400 MHz, CD$_3$OD) of 3g and PhCF$_3$ (as a standard) after addition of acid 18 h
19F NMR (376 MHz, CD$_3$OD) of $3g$ and PhCF$_3$ (as a standard) after addition of acid 18 h
1H NMR (400 MHz, CD$_3$OD) of 3g and PhCF$_3$ (as a standard) after addition of base 18 h

ratio H/D = 81:19
19F NMR (376 MHz, CD$_3$OD) of $3g$ and PhCF$_3$ (as a standard) after addition of base 18 h

Stability of pyrrole 4b

Pyrrole 4b (2.4 mg; 0.01 mmol) was dissolved in CD$_3$OD (1.06 mL) and PhCF$_3$ was added as an internal standard. Then 19F and 1H NMR spectra were measured. For stability experiment in basic condition, NaOH (10 mg; 0.25 mmol) was added to the prepared solution (500 µL) and after 18 h at 25 °C 19F and 1H NMR spectra were measured. In case of experiment in acidic conditions, 98% H$_2$SO$_4$ in D$_2$O (40 µL) was added to the prepared solution (560 µL) and after 18 h at room temperature 19F and 1H NMR spectra were measured.
1H NMR (400 MHz, CD$_3$OD) of 4b and PhCF$_3$ (as a standard) before experiment.
19F NMR (376 MHz, CD$_3$OD) of 4b and PhCF$_3$ (as a standard) before experiment
1H NMR (400 MHz, CD\textsubscript{3}OD) of 4b and PhCF\textsubscript{3} (as a standard) after addition of acid 18 h
19F NMR (376 MHz, CD$_3$OD) of 4b and PhCF$_3$ (as a standard) after addition of acid 18 h
1H NMR (400 MHz, CD$_3$OD) of 4b and PhCF$_3$ (as a standard) after addition of base 18 h

![NMR Spectrum](image-url)
19F NMR (376 MHz, CD$_3$OD) of 4b and PhCF$_3$ (as a standard) after addition of base 18 h