Electronic Supporting Information

Cp*Co(III)-Catalyzed Amidation of Olefinic and Aryl C-H Bonds: Highly Selective Synthesis of Enamides and Pyrimidones
Yuan Liu, *† Fang Xie † †, Ai-Qun Jia, * and Xingwei Li, *b

*State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry Education, Department of Pharmacy, Hainan University, Haikou 570228, China. E-mail: jiaaiqun@gmail.com

†Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China. E-mail: xwli@dicp.ac.cn.

Table of Contents

I. General Remarks .. S2

II. General procedures for the synthesis of compounds 3, 4 and 5 ... S2

III. Derivatization of amidated products .. S27

IV. Mechanistic Studies ... S28

(a) H/D Exchange Experiments ... S28

(b) Competition Reaction .. S29

V. References ... S30

VI. NMR Spectra of Products ... S31
I. General Remarks

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. All reactions were carried out using Schlenk techniques or in a N₂ filled glovebox. NMR Spectra were recorded on a 400 MHz NMR spectrometer in the solvent indicated. The chemical shift is given in dimensionless δ values and is frequency referenced relative to TMS in ¹H and ¹³C NMR spectroscopy. HRMS data were obtained on a Thermo Scientific LTQ Orbitrap Discovery spectrometer (Bremen, Germany). Column chromatography was performed on silica gel (300-400 mesh) using ethyl acetate/hexanes. N-methoxy-acrylamides¹ and dioxazolones² were prepared according to literature reports.

II. General procedures for the synthesis of compound 3,4 and 5

Typical Reaction Conditions for synthesis of 3: N-methoxy-acrylamide (0.2 mmol), dioxazolones (0.24 mmol), Cp*Co(CO)I₂ (5 mol%), AgNTf₂ (10 mol%), Zn(OAc)₂ (0.2 mmol) and DCE (2 mL) were charged into a pressure tube. The reaction mixture was stirred under N₂ at 40 °C for 12 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/EA to afford the product 3.

(Z)-N-(3-(methoxyamino)-3-oxo-2-phenylprop-1-en-1-yl)benzamide

White solid, Yield 93% (55.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 12.38 (d, J = 10.0 Hz, 1H), 8.16 (s, 1H), 8.02 (d, J = 7.6 Hz, 2H), 7.64 – 7.57 (m, 2H), 7.52 – 7.48 (m, 2H), 7.45 – 7.38 (m, 3H), 7.35 – 7.33 (m, 2H), 3.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 164.7, 136.9, 134.9, 132.8, 132.4, 130.0, 129.2, 128.9, 128.5, 127.8, 110.9, 64.9. HRMS (ESI) Calcd for [C₁₇H₁₆N₂O₃+H]⁺ 297.1234, Found 297.1233.
(Z)-4-Fluoro-N-(3-(methoxyamino)-3-oxo-2-phenylprop-1-en-1-yl)benzamide

White solid, Yield 80% (50.0 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.39 (d, $J = 10.4$ Hz, 1H), 8.34 (s, 1H), 8.05 – 7.99 (m, 2H), 7.56 (d, $J = 10.4$ Hz, 1H), 7.43 – 7.35 (m, 3H), 7.35 – 7.30 (m, 2H), 7.20 – 7.14 (m, 2H), 3.81 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 167.5, 163.6, 136.7, 134.8, 130.3 (d, $J_{CF} = 9.0$ Hz), 129.9, 129.2, 128.6 (d, $J_{CF} = 3.0$ Hz) 128.5, 116.0 (d, $J_{CF} = 22.0$ Hz), 111.2, 64.8. HRMS (ESI) Calcd for [C$_{17}$H$_{15}$FN$_2$O$_3$]+H] $^+$ 315.1139, Found 315.1139.

(Z)-4-Chloro-N-(3-(methoxyamino)-3-oxo-2-phenylprop-1-en-1-yl)benzamide

White solid, Yield 88% (58.2 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.42 (d, $J = 10.4$ Hz, 1H), 8.18 (s, 1H), 7.88 – 7.95 (m, 2H), 7.60 (d, $J = 10.4$ Hz, 1H), 7.49 – 7.46 (m, 2H), 7.45 – 7.38 (m, 2H), 7.34 – 7.32 (m, 2H), 3.82 (s, 3H). 13C NMR (100MHz, CDCl$_3$) δ 167.5, 163.6, 139.2, 136.6, 134.7, 130.8, 129.9, 129.20, 129.19, 129.15, 128.5, 111.4, 64.8. HRMS (ESI) Calcd for [C$_{17}$H$_{13}$ClN$_2$O$_3$]+H] $^+$ 331.0844, Found 331.0844.

(Z)-4-Bromo-N-(3-(methoxyamino)-3-oxo-2-phenylprop-1-en-1-yl)benzamide

White solid, Yield 77% (57.9 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.42 (d, $J = 9.6$ Hz, 1H), 8.20 (s, 1H), 7.88 (d, $J = 8.0$ Hz, 2H), 7.64 (d, $J = 8.0$ Hz, 2H), 7.59 (d, $J = 10.4$ Hz, 1H), 7.43 – 7.41 (m, 2H), 7.34 – 7.32 (m, 2H), 3.81 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 167.5, 163.7, 136.5, 134.7, 132.1,
(Z)-N-(3-(methoxyamino)-3-oxo-2-phenylprop-1-en-1-yl)-4-methylbenzamide
White solid, Yield 91% (56.3 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.33 (d, $J = 10.8$ Hz, 1H), 8.18 (s, 1H), 7.92 (d, $J = 8.0$ Hz, 2H), 7.62 (d, $J = 10.8$ Hz, 1H), 7.44 – 7.38 (m, 3H), 7.36 – 7.32 (m, 2H), 7.30 (d, $J = 8.0$ Hz, 2H), 3.81 (s, 3H), 2.43 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 167.6, 164.6, 143.6, 136.9, 135.0, 129.9, 129.54, 129.51, 129.1, 128.4, 127.8, 110.7, 64.8, 21.6. HRMS (ESI) Calcd for [C$_{18}$H$_{18}$N$_2$O$_3$+H]$^+$ 311.1390, Found 311.1392.

(Z)-4-(Tert-butyl)-N-(3-(methoxyamino)-3-oxo-2-phenylprop-1-en-1-yl)benzamide
Colorless liquid, Yield 83% (58.5 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.33 (d, $J = 10.8$ Hz, 1H), 8.16 (s, 1H), 7.95 (m, 2H), 7.63 (d, $J = 8.0$ Hz, 1H), 7.51 (m, 2H), 7.45 – 7.37 (m, 3H), 7.35 – 7.33 (m, 2H), 3.81 (s, 3H), 1.36 (s, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 167.6, 164.7, 156.5, 137.1, 135.0, 130.0, 129.6, 129.2, 128.4, 127.7, 125.8, 110.6, 64.8, 35.1, 31.1. HRMS (ESI) Calcd for [C$_{21}$H$_{24}$N$_2$O$_3$+H]$^+$ 353.1860, Found 353.1862.

(Z)-4-Methoxy-N-(3-(methoxyamino)-3-oxo-2-phenylprop-1-en-1-yl)benzamide
White solid, Yield 83% (54.2 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.31 (d, $J = 10.8$ Hz, 1H), 8.14 (s, 1H), 7.97 (m, 2H), 7.63 (d, $J = 10.8$ Hz, 1H), 7.46 – 7.37 (m, 3H), 7.35 – 7.32 (m, 2H), 7.00 – 6.97 (m, 2H), 3.88 (s, 3H), 3.82 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 167.7, 164.2, 163.3, 137.2, 135.1, 130.0, 129.9, 129.2, 128.4, 124.7, 114.1, 110.3, 64.9, 55.5. HRMS (ESI) Calcd for [C$_{18}$H$_{18}$N$_2$O$_4$+H]$^+$ 327.1339, Found 327.1339.

(Z)-3-Fluoro-N-(3-(methoxyamino)-3-oxo-2-phenylprop-1-en-1-yl)benzamide

White solid, Yield 89% (56.1 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.39 (d, $J = 10.4$ Hz, 1H), 8.38 (s, 1H), 7.77 – 7.75 (m, 1H), 7.73 – 7.69 (m, 1H), 7.55 (d, $J = 10.4$ Hz, 1H), 7.52 – 7.45 (m, 1H), 7.43 – 7.36 (m, 3H), 7.34 – 7.25 (m, 3H), 3.81 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 167.4, 163.5 (d, $J_{C,F} = 3.0$ Hz), 162.9 (d, $J_{C,F} = 247.0$ Hz), 136.4, 134.74, 134.68, 130.5 (d, $J_{C,F} = 8.0$ Hz), 129.9, 129.2, 128.6, 123.1 (d, $J_{C,F} = 3.0$ Hz), 119.8 (d, $J_{C,F} = 22.0$ Hz), 115.2 (d, $J_{C,F} = 23.0$ Hz), 111.6, 64.8. HRMS (ESI) Calcd for [C$_{17}$H$_{15}$FN$_2$O$_3$+H]$^+$ 315.1139, Found 315.1140.

(Z)-3-Chloro-N-(3-(methoxyamino)-3-oxo-2-phenylprop-1-en-1-yl)benzamide

Colorless liquid, Yield 88% (58.2 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.37 (d, $J = 10.4$ Hz, 1H), 8.25 (s, 1H), 8.00 (t, $J = 1.6$ Hz, 1H), 7.87 – 7.85 (m, 1H), 7.59 – 7.54 (m, 2H), 7.46 – 7.38 (m, 4H), 7.34 – 7.32 (m, 2H), 3.81 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 167.4, 163.4, 134.6, 135.2, 134.7, 134.2, 132.8, 130.1, 129.9, 129.2, 128.6, 128.2, 125.6, 111.7, 64.8. HRMS (ESI) Calcd for [C$_{17}$H$_{15}$ClN$_2$O$_3$+H]$^+$ 331.0844, Found 331.0846.
(Z)-N-(3-(methoxyamino)-3-oxo-2-phenylprop-1-en-1-yl)-3-methylbenzamide

Colorless liquid, Yield 92% (57.1 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.28 (d, J = 10.4 Hz, 1H), 8.26 (s, 1H), 7.81 – 7.79 (m, 2H), 7.60 (d, J = 10.4 Hz, 1H), 7.43 – 7.36 (m, 5H), 7.35 – 7.32 (m, 2H), 3.81 (s, 3H), 2.44 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 167.5, 164.9, 138.8, 136.8, 135.0, 133.6, 132.3, 129.9, 129.1, 128.7, 128.40, 128.39, 124.8, 110.9, 64.8, 21.4. HRMS (ESI) Calcd for [C$_{18}$H$_{18}$N$_2$O$_3$+H]$^+$ 311.1390, Found 311.1392.

(Z)-N-(3-(methoxyamino)-3-oxo-2-phenylprop-1-en-1-yl)-3-(trifluoromethyl)benzamide

White solid, Yield 98% (71.2 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.47 (d, J = 10.4 Hz, 1H), 8.37 (s, 1H), 8.30 (s, 1H), 8.14 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 7.6 Hz, 1H), 7.65 (t, J = 7.8 Hz, 1H), 7.57 (d, J = 10.4 Hz, 1H), 7.43 – 7.37 (m, 3H), 7.36 – 7.31 (m, 2H), 3.81 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 167.3, 163.3, 136.3, 134.6, 133.4, 131.6 (q, J_{C-F} = 32.0 Hz), 130.4, 129.9, 129.5, 129.3, 129.2, 128.6, 125.3 (q, J_{C-F} = 3.0 Hz), 123.6 (q, J_{C-F} = 271.0 Hz), 112.0, 64.8. HRMS (ESI) Calcd for [C$_{18}$H$_{15}$F$_3$N$_2$O$_3$+H]$^+$ 365.1108, Found 365.1110.

(Z)-2-Fluoro-N-(3-(methoxyamino)-3-oxo-2-phenylprop-1-en-1-yl)benzamide

White solid, Yield 87% (54.9 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.30 (t, J = 10.4 Hz, 1H), 8.33 (s, 1H), 8.10 (td, J_1 = 7.2 Hz, J_2 = 1.6 Hz, 1H), 7.62 – 7.52 (m, 2H), 7.42 – 7.34 (m, 3H), 7.34 – 7.28 (m,
7H), 7.23 – 7.18 (m, 1H), 3.79 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 166.7, 161.7 (d, $J_{CF} = 3.0$ Hz), 161.1 (d, $J_{CF} = 251.0$ Hz), 135.6, 135.1, 134.5 (d, $J_{CF} = 9.0$ Hz), 132.1 (d, $J_{CF} = 1.0$ Hz), 129.9, 129.1, 128.4, 124.8 (d, $J_{CF} = 3.0$ Hz), 120.1 (d, $J_{CF} = 11.0$ Hz), 116.6 (d, $J_{CF} = 24.0$ Hz), 112.1, 64.7. HRMS (ESI) Calcd for [C$_{17}$H$_{15}$FN$_2$O$_3$+H]$^+$ 315.1139, Found 315.1140.

![3am](Z)-N-methoxy-2-phenyl-3-(2-phenylacetamido)acrylamide

Colorless liquid, Yield 80% (49.4 mg). 1H NMR (400 MHz, CDCl$_3$) δ 11.25 (d, $J = 10.8$ Hz, 1H), 8.16 (s, 1H), 7.40 – 7.28 (m, 9H), 7.23 – 7.21 (m, 2H), 3.71 (s, 3H), 3.68 (s, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 169.5, 166.9, 135.8, 134.9, 133.7, 129.8, 129.3, 129.10, 129.05, 128.4, 127.5, 110.9, 64.7. HRMS (ESI) Calcd for [C$_{18}$H$_{18}$N$_2$O$_3$+H]$^+$ 311.1390, Found 311.1389.

![3an](Z)-N-(3-(methoxyamino)-3-oxo-2-phenylprop-1-en-1-yl)thiophene-2-carboxamide

Yellow solid, Yield 52% (33.2 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.24 (d, $J = 10.6$ Hz, 1H), 8.24 (s, 1H), 7.78 – 7.77 (dd, $J_1 = 3.6$ Hz, $J_2 = 0.8$ Hz, 1H), 7.62 (dd, $J_1 = 4.8$ Hz, $J_2 = 0.8$ Hz, 1H), 7.52 (d, $J = 10.6$ Hz, 1H), 7.43 – 7.36 (m, 3H), 7.33 – 7.31 (m, 2H), 7.16 – 7.14 (m, 1H), 3.81 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 167.4, 159.5, 137.7, 136.4, 134.8, 132.4, 129.94, 129.93, 129.2, 128.5, 128.1, 110.7, 64.8. HRMS (ESI) Calcd for [C$_{15}$H$_{14}$N$_2$O$_3$S+H]$^+$ 303.0798, Found 303.0798.

![3ba](Z)-N-(2-(4-fluorophenyl)-3-(methoxyamino)-3-oxoprop-1-en-1-yl)benzamide

White solid, Yield 91% (57.2 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.35 (d, $J = 10.8$ Hz, 1H), 8.22 (s, 1H), 8.02 – 7.98 (m, 2H), 7.61 – 7.56 (m, 2H), 7.52 – 7.49 (m, 2H), 7.33 – 7.28 (m, 2H), 7.13 – 7.07
(m, 2H), 3.81 (s, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 167.5, 164.7, 162.8 (d, $J_{C-F} = 247.0$ Hz), 137.0, 132.9, 132.2, 131.8 (d, $J_{C-F} = 8.0$ Hz), 130.8 (d, $J_{C-F} = 4.0$ Hz), 128.9, 127.8, 116.2 (d, $J_{C-F} = 22.0$ Hz), 109.8, 64.8. HRMS (ESI) Calcd for [C$_{17}$H$_{14}$F$_2$N$_2$O$_3$+H]$^+$ 315.1139, Found 315.1139.

(Z)-N-(2-(4-chlorophenyl)-3-(methoxyamino)-3-oxoprop-1-en-1-yl)benzamide

White solid, Yield 78% (51.5 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.35 (d, $J = 10.8$ Hz, 1H), 8.25 (s, 1H), 8.02–7.97 (m, 2H), 7.62–7.56 (m, 2H), 7.52–7.49 (m, 2H), 7.40–7.35 (m, 2H), 7.29–7.25 (m, 2H), 3.81 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 167.3, 164.7, 137.1, 134.6, 133.3, 132.9, 132.2, 131.3, 129.4, 128.9, 127.8, 109.8, 64.9. HRMS (ESI) Calcd for [C$_{17}$H$_{15}$ClN$_2$O$_3$+H]$^+$ 331.0844, Found 331.0841.

(Z)-N-(3-(methoxyamino)-3-oxo-2-(p-tolyl)prop-1-en-1-yl)benzamide

White solid, Yield 77% (47.7 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.35 (d, $J = 10.8$ Hz, 1H), 8.26 (s, 1H), 8.03–7.99 (m, 2H), 7.61–7.56 (m, 2H), 7.52–7.48 (m, 2H), 7.23–7.19 (m, 4H), 3.80 (s, 3H), 2.38 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 167.7, 164.7, 138.4, 136.5, 132.7, 132.4, 131.8, 129.9, 129.8, 128.9, 127.8, 110.9, 64.8, 21.2. HRMS (ESI) Calcd for [C$_{18}$H$_{17}$N$_2$O$_3$+H]$^+$ 311.1390, Found 311.1389.

(Z)-N-(2-(4-(tert-butyl)phenyl)-3-(methoxyamino)-3-oxoprop-1-en-1-yl)benzamide
White solid, Yield 54% (37.8 mg). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 12.38 (d, \(J = 10.8\) Hz, 1H), 8.25 (s, 1H), 8.04 – 8.00 (m, 2H), 7.61 (d, \(J = 10.8\) Hz, 1H), 7.58 – 7.56 (m, 1H), 7.52 – 7.48 (m, 2H), 7.44 – 7.42 (m, 2H), 7.27 – 7.25 (m, 2H), 3.82 (s, 3H), 1.35 (s, 9H). \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 167.7, 164.7, 151.6, 136.6, 132.7, 132.5, 131.8, 129.6, 128.9, 127.8, 126.1, 110.9, 64.8, 34.7, 31.3. HRMS (ESI) Calcd for [C\(_{21}\)H\(_{24}\)N\(_2\)O\(_3\)+H]\(^+\) 353.1860, Found 353.1861.

![3fa](image)

(Z)-N-(3-(methoxyamino)-2-(4-methoxyphenyl)-3-oxoprop-1-en-1-yl)benzamide

White solid, Yield 77% (50.0 mg). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 12.35 (d, \(J = 10.4\) Hz, 1H), 8.33 (s, 1H), 8.03 – 7.98 (m, 2H), 7.61 – 7.53 (m, 2H), 7.51 – 7.48 (m, 2H), 7.26 – 7.21 (m, 2H), 6.94 – 6.89 (m, 2H), 3.81 (s, 3 H), 3.80 (s, 3H). \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 167.8, 164.6, 159.7, 136.3, 132.7, 132.4, 131.2, 128.8, 127.8, 126.8, 114.5, 110.6, 64.8, 55.3. HRMS (ESI) Calcd for [C\(_{18}\)H\(_{18}\)N\(_2\)O\(_4\)+H]\(^+\) 327.1339, Found 327.1340.

![3ga](image)

(Z)-N-(2-(3-fluorophenyl)-3-(methoxyamino)-3-oxoprop-1-en-1-yl)benzamide

White solid, Yield 98% (64.4 mg). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 12.36 (d, \(J = 10.4\) Hz, 1H), 8.32 (s, 1H), 8.01 – 7.99 (m, 2H), 7.64 – 7.56 (m, 2H), 7.53 – 7.49 (m, 2H), 7.41 – 7.34 (m, 1H), 7.14 – 7.03 (m, 3H), 3.82 (s, 3H). \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 167.1, 164.7, 162.9 (d, \(J_{CF} = 247.0\) Hz), 137.3, 137.1 (d, \(J_{CF} = 8.0\) Hz), 132.9, 132.2, 130.8 (d, \(J_{CF} = 9.0\) Hz), 128.9, 127.8, 125.6 (d, \(J_{CF} = 3.0\) Hz), 117.0 (d, \(J_{CF} = 22.0\) Hz), 115.5 (d, \(J_{CF} = 21.0\) Hz), 109.8 (d, \(J_{CF} = 1.0\) Hz), 64.9. HRMS (ESI) Calcd for [C\(_{19}\)H\(_{19}\)FN\(_2\)O\(_3\)+H]\(^+\) 315.1139, Found 315.1142.

![3ha](image)

(Z)-N-(2-(3-chlorophenyl)-3-(methoxyamino)-3-oxoprop-1-en-1-yl)benzamide
White solid, Yield 73% (48.2 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.35 (d, $J = 10.4$ Hz, 1H), 8.29 (s, 1H), 8.03 – 7.97 (m, 2H), 7.62 – 7.58 (m, 2H), 7.53 – 7.49 (m, 2H), 7.38 – 7.31 (m, 3H), 7.24 – 7.20 (m, 1H), 3.82 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 167.1, 164.7, 137.4, 136.8, 135.0, 132.9, 132.2, 130.4, 130.0, 128.9, 128.6, 128.1, 127.8, 109.7, 64.9. HRMS (ESI) Calcd for [C$_{17}$H$_{15}$ClN$_2$O$_3$ + H]$^+$ 331.0844, Found 331.0846.

3ia (Z)-N-(2-(3-bromophenyl)-3-(methoxyamino)-3-oxoprop-1-en-yl)benzamide

White solid, Yield 82% (61.2 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.35 (d, $J = 10.4$ Hz, 1H), 8.26 (s, 1H), 8.02 – 7.98 (m, 2H), 7.62 – 7.58 (m, 2H), 7.52 – 7.48 (m, 2H), 7.28 – 7.27 (m, 2H), 3.82 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 167.1, 164.7, 137.5, 137.0, 132.94, 132.88, 132.2, 131.6, 130.6, 128.9, 128.5, 127.8, 123.2, 109.6, 64.9. HRMS (ESI) Calcd for [C$_{17}$H$_{15}$BrN$_2$O$_3$ + H]$^+$ 375.0339, Found 375.0338.

3ja (Z)-N-(3-(methoxyamino)-2-(3-methoxyphenyl)-3-oxoprop-1-en-yl)benzamide

White solid, Yield 90% (58.3 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.39 (d, $J = 10.6$ Hz, 1H), 8.35 (s, 1H), 8.02 – 8.00 (m, 2H), 7.65 – 7.56 (m, 2H), 7.52 – 7.48 (m, 2H), 7.31 (t, $J = 8.0$ Hz, 1H), 6.92 – 6.90 (m, 2H), 6.87 – 6.84 (m, 1H), 3.82 (s, 3H), 3.81 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 167.4, 164.7, 160.0, 136.7, 136.2, 132.8, 132.4, 130.2, 128.9, 127.8, 122.1, 115.5, 114.0, 110.9, 64.8, 55.4. HRMS (ESI) Calcd for [C$_{18}$H$_{18}$N$_2$O$_4$ + H]$^+$ 327.1339, Found 327.1337.

3ka (Z)-N-(2-(2-fluorophenyl)-3-(methoxyamino)-3-oxoprop-1-en-yl)benzamide
White solid, Yield 80% (49.5 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.42 (d, $J = 10.4$ Hz, 1H), 8.24 (s, 1H), 8.03 – 7.98 (m, 2H), 7.62 – 7.57 (m, 2H), 7.52 – 7.49 (m, 2H), 7.41 – 7.34 (m, 1H), 7.31 – 7.27 (m, 1H), 7.21 – 7.17 (m, 1H), 7.15 – 7.11 (m, 1H), 3.80 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 166.9, 164.7, 160.5 (d, $J_{C,F} = 246.0$ Hz), 138.1, 132.9, 132.6 (d, $J_{C,F} = 2.0$ Hz), 132.2, 130.9 (d, $J_{C,F} = 8.0$ Hz), 128.9, 127.8, 124.9 (d, $J_{C,F} = 3.0$ Hz), 122.3 (d, $J_{C,F} = 16.0$ Hz), 116.3 (d, $J_{C,F} = 22.0$ Hz), 104.4, 64.8.

HRMS (ESI) Calcd for [C$_{17}$H$_{15}$F$_{2}$N$_{2}$O$_{3}$]+H$^+$ 315.1139, Found 315.1139.

![3la](image)

(Z)-N-(2-(2-chlorophenyl)-3-(methoxyamino)-3-oxoprop-1-en-1-yl)benzamide

White solid, Yield 78% (51.6 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.38 (d, $J = 10.4$ Hz, 1H), 8.07 (s, 1H), 8.02 – 8.01 (m, 2H), 7.62 – 7.53 (m, 2H), 7.52 – 7.49 (m, 2H), 7.47 – 7.45 (m, 1H), 7.37 – 7.31 (m, 3H), 3.80 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 166.6, 164.7, 137.1, 135.4, 133.3, 132.88, 132.86, 132.2, 130.4, 130.2, 128.9, 127.9, 127.6, 108.5, 64.7. HRMS (ESI) Calcd for [C$_{17}$H$_{15}$ClN$_{2}$O$_{3}$]+H$^+$ 331.0844, Found 331.0845.

![3ma](image)

(Z)-N-(3-(methoxyamino)-3-oxo-2-(o-tolyl)prop-1-en-1-yl)benzamide

White solid, Yield 78% (47.0 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.39 (d, $J = 10.4$ Hz, 1H), 8.03 – 8.02 (m, 2H), 7.95 (s, 1H), 7.61 – 7.57 (m, 1H), 7.55 – 7.47 (m, 3H), 7.33 – 7.18 (m, 4H), 3.77 (s, 3H), 2.29 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 167.4, 164.7, 138.2, 136.7, 133.5, 132.8, 132.4, 131.4, 130.7, 129.1, 128.9, 127.8, 126.7, 109.8, 64.7, 19.9. HRMS (ESI) Calcd for [C$_{18}$H$_{18}$N$_{2}$O$_{3}$]+H$^+$ 311.1390, Found 311.1392.

![3na](image)
(Z)-N-(2-benzyl-3-(methoxyamino)-3-oxoprop-1-en-1-yl)benzamide
Colorless liquid, Yield 89% (55.0 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.36 (d, $J = 10.4$ Hz, 1H), 8.06 (s, 1H), 8.01 (d, $J = 10.4$ Hz, 1H), 7.59 – 7.55 (m, 1H), 7.51 – 7.47 (m, 2H), 7.37 – 7.33 (m, 2H), 7.30 – 7.25 (m, 3H), 3.66 (s, 3H), 3.58 (s, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 168.7, 164.7, 137.8, 137.2, 132.5, 132.7, 132.4, 125.9, 125.8, 125.7, 128.8, 127.7, 109.2, 64.8, 22.7, 13.7. HRMS (ESI) Calcd for [C$_{18}$H$_{18}$N$_2$O$_3$+H]$^+$ 311.1390, Found 311.1397.

![30a](image)

(Z)-N-(2-(methoxycarbamoyl)but-1-en-1-yl)benzamide
White solid, Yield 76% (37.7 mg). 1H NMR (400 MHz, CDCl$_3$) δ 12.28 (d, $J = 10.3$ Hz, 1H), 8.52 (s, 1H), 8.03 – 7.95 (m, 2H), 7.61 – 7.50 (m, 2H), 7.53 – 7.43 (m, 2H), 3.86 (s, 3H), 2.23 (q, $J = 7.4$ Hz, 2H), 1.19 (t, $J = 7.4$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 168.4, 164.7, 134.5, 132.58, 132.57, 128.8, 127.7, 109.2, 64.8, 22.7, 13.7. HRMS (ESI) Calcd for [C$_{13}$H$_{16}$N$_2$O$_3$+Na]$^+$ 271.1053, Found 271.1059.

![Diagram](image)

Typical Reaction Conditions for synthesis of 4: N-methoxy-acrylamide (0.2 mmol), dioxazolone (0.21 mmol), Cp*Co(CO)_2I$_2$ (2.5 mol%), AgNTf$_2$ (5 mol%), Zn(OAc)$_2$ (1.0 equiv) and DCE (2 mL) were charged into a pressure tube. The reaction mixture was stirred under N$_2$ at 110 ºC for 12 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/EA to afford the product 4.

![4aa](image)

3-Methoxy-2,5-diphenylpyrimidin-4(3H)-one
Yellow solid, Yield 90% (50.2 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.14 (s, 1H), 7.95 – 7.91 (m, 2H), 7.77 – 7.73 (m, 2H), 7.57 – 7.43 (m, 5H), 7.41 – 7.37 (m, 1H), 3.82 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 157.5, 156.4, 149.0, 132.7, 131.4, 131.3, 129.6, 128.64, 128.56, 128.44, 128.42, 127.4, 64.1. HRMS (ESI) Calcd for [C$_{17}$H$_{14}$N$_2$O$_2$+H]$^+$ 279.1128, Found 279.1128.

![4ab]

2-(4-Fluorophenyl)-3-methoxy-5-phenylpyrimidine-4(3H)-one

Yellow solid, Yield 81% (48.0 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.12 (s, 1H), 8.00 – 7.97 (m, 2H), 7.75 – 7.73 (m, 2H), 7.48 – 7.44 (m, 2H), 7.41 – 7.38 (m, 1H), 7.23 – 7.18 (m, 2H), 3.83 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 164.6 (d, $\nu_{CF} = 252.0$ Hz), 157.4, 155.4, 148.8, 132.6, 132.1 (d, $\nu_{CF} = 9.0$ Hz), 128.7, 128.6, 128.4, 127.5, 127.3 (d, $\nu_{CF} = 3.0$ Hz), 115.7 (d, $\nu_{CF} = 22.0$ Hz), 64.0. HRMS (ESI) Calcd for [C$_{17}$H$_{13}$FNO$_2$+H]$^+$ 297.1034, Found 297.1036.

![4ac]

2-(4-Chlorophenyl)-3-methoxy-5-phenylpyrimidine-4(3H)-one

Yellow solid, Yield 78% (48.8 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.12 (s, 1H), 7.94 – 7.89 (m, 2H), 7.75 – 7.71 (m, 2H), 7.52 – 7.42 (m, 4H), 7.42 – 7.36 (m, 1H), 3.83 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 157.3, 155.4, 148.8, 137.8, 132.6, 131.1, 129.6, 128.8, 128.7, 128.6, 128.4, 127.7, 64.1. HRMS (ESI) Calcd for [C$_{17}$H$_{13}$ClNO$_2$+H]$^+$ 313.0738, Found 313.0738.

![4ad]

2-(4-Bromophenyl)-3-methoxy-5-phenylpyrimidine-4(3H)-one

Yellow solid, Yield 80% (57.0 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.12 (s, 1H), 7.85 – 7.83 (m, 2H), 7.74 – 7.72 (m, 2H), 7.67 – 7.65 (m, 2H), 7.47 – 7.44 (m, 2H), 7.42 – 7.38 (m, 1H), 3.84 (s, 3H). 13C
NMR (100 MHz, CDCl$_3$) δ 157.3, 155.4, 148.8, 132.6, 131.8, 131.2, 130.1, 128.8, 128.6, 128.4, 127.7, 126.3, 64.2. HRMS (ESI) Calcd for [C$_{17}$H$_{13}$BrN$_2$O$_2$+H]$^+$ 357.0233, Found 357.0231.

3-Methoxy-5-phenyl-2-(p-tolyl)pyrimidin-4(3H)-one

Yellow solid, Yield 74% (43.0 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.13 (s, 1H), 7.87 – 7.83 (m, 2H), 7.75 – 7.73 (m, 2H), 7.48 – 7.42 (m, 2H), 7.41 – 7.36 (m, 1H), 7.32 – 7.30 (m, 2H), 3.82 (s, 3H), 2.45 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 157.6, 156.6, 149.0, 142.0, 132.8, 129.6, 129.165, 129.162, 128.6, 128.5, 128.4, 127.0, 63.9, 21.6. One signal is missing due to overlap. HRMS (ESI) Calcd for [C$_{18}$H$_{16}$N$_2$O$_2$+H]$^+$ 293.1285, Found 293.1287.

2-(4-(Tert-butyl)phenyl)-3-methoxy-5-phenylpyrimidin-4(3H)-one

Yellow solid, Yield 70% (46.6 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.05 (s, 1H), 7.83 – 7.81 (m, 2H), 7.69 – 7.63 (m, 2H), 7.45 – 7.43 (m, 2H), 7.39 – 7.35 (m, 2H), 7.32 – 7.28 (m, 1H), 3.76 (s, 3H), 1.29 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 157.6, 156.5, 149.0, 142.0, 132.8, 129.6, 129.165, 129.39, 128.35, 127.0, 125.5, 64.0, 35.0, 31.2. One signal is missing due to overlap. HRMS (ESI) Calcd for [C$_{21}$H$_{22}$N$_2$O$_2$+H]$^+$ 335.1754, Found 335.1757.

2-Methoxy-2-(4-methoxyphenyl)-5-phenylpyrimidin-4(3H)-one

Yellow solid, Yield 60% (36.0 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.12 (s, 1H), 8.00 – 7.95 (m, 2H), 7.75 – 7.73 (m, 2H), 7.47 – 7.42 (m, 2H), 7.40 – 7.37 (m, 1H), 7.03 – 6.99 (m, 2H), 3.89 (s, 3H), 3.83 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 162.2, 157.6, 156.1, 149.1, 132.9, 131.6, 128.53, 128.47, 128.4, 126.5, 123.4, 113.9, 63.8, 55.5. HRMS (ESI) Calcd for [C$_{19}$H$_{16}$N$_2$O$_3$+H]$^+$ 309.1234, Found 309.1235.
3-Methoxy-5-phenyl-2-(4-(trifluoromethyl)phenyl)pyrimidin-4(3H)-one

Yellow solid, Yield 70% (48.1 mg).\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.15 (s, 1H), 8.07 (d, \(J = 8.0\) Hz, 2H), 7.79 (d, \(J = 8.4\) Hz, 2H), 7.77 – 7.72 (m, 2H), 7.50 – 7.44 (m, 2H), 7.44 – 7.39 (m, 1H), 3.85 (s, 3H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 157.2, 155.1, 148.7, 134.6, 133.0 (q, \(J_{C,F} = 33.0\) Hz), 132.4, 130.1, 128.9, 128.6, 128.4, 128.3, 125.4 (q, \(J_{C,F} = 11.0\) Hz), 123.7 (q, \(J_{C,F} = 270.0\) Hz), 64.3. HRMS (ESI) Calcd for [C\(_{18}\)H\(_{13}\)F\(_3\)N\(_2\)O\(_2\)+H]\(^+\) 347.1002, Found 347.1004.

4-(1-Methoxy-6-oxo-5-phenyl-1,6-dihydropyrimidin-2-yl)benzonitrile

Yellow solid, Yield 68% (41.4 mg).\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.14 (s, 1H), 8.08 – 8.06 (m, 2H), 7.83 – 7.81 (m, 2H), 7.75 – 7.73 (m, 2H), 7.49 – 7.40 (m, 3H), 3.86 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 157.0, 154.5, 148.6, 135.3, 132.3, 132.2, 130.3, 129.0, 128.7, 128.6, 128.4, 118.0, 115.0, 64.4. HRMS (ESI) Calcd for [C\(_{18}\)H\(_{13}\)N\(_2\)O\(_2\)+H]\(^+\) 304.1081, Found 304.1081.

2-(3-Fluorophenyl)-3-methoxy-5-phenylpyrimidin-4(3H)-one

Yellow liquid, Yield 92% (54.7 mg).\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.13 (s, 1H), 7.77 – 7.71 (m, 3H), 7.70 – 7.65 (m, 1H), 7.53 – 7.43 (m, 3H), 7.42 – 7.37 (m, 1H), 7.30 – 7.24 (m, 1H), 3.85 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 162.3 (d, \(J_{C,F} = 246.0\) Hz), 157.3, 155.1 (d, \(J_{C,F} = 2.0\) Hz), 148.8, 133.1 (d, \(J_{C,F} = 8.0\) Hz), 132.5, 130.2 (d, \(J_{C,F} = 8.0\) Hz), 128.8, 128.6, 128.4, 127.9, 125.4 (d, \(J_{C,F} = 3.0\) Hz), 118.5 (d, \(J_{C,F} = 21.0\) Hz), 116.8 (d, \(J_{C,F} = 24.0\) Hz), 64.2. HRMS (ESI) Calcd for [C\(_{17}\)H\(_{13}\)F\(_2\)N\(_2\)O\(_2\)+H]\(^+\) 297.1034, Found 297.1034.
2-(3-Chlorophenyl)-3-methoxy-5-phenylpyrimidin-4(3H)-one

Yellow solid, Yield 82% (50.7 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.12 (s, 1H), 7.95 – 7.93 (m, 1H), 7.86 – 7.82 (m, 1H), 7.75 – 7.73 (m, 2H), 7.55 – 7.52 (m, 1H), 7.49 – 7.43 (m, 3H), 7.42 – 7.37 (m, 1H), 3.85 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 157.2, 155.1, 148.7, 134.5, 132.8, 132.5, 131.5, 129.74, 129.69, 128.8, 128.6, 128.4, 128.0, 127.7, 64.3. HRMS (ESI) Calcd for [C$_{17}$H$_{13}$ClN$_2$O$_2$+H]$^+$ 313.0738, Found 313.0739.

2-Methoxy-5-phenyl-2-(m-tolyl)pyrimidin-4(3H)-one

Yellow solid, Yield 95% (55.8 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.13 (s, 1H), 7.77 – 7.71 (m, 4H), 7.48 – 7.44 (m, 2H), 7.42 – 7.36 (m, 3H), 3.82 (s, 3H), 2.45 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 157.5, 156.8, 149.0, 138.3, 132.8, 132.1, 131.2, 130.0, 128.61, 128.56, 128.4, 128.3, 127.3, 126.6, 64.1, 21.5. HRMS (ESI) Calcd for [C$_{18}$H$_{16}$N$_2$O$_2$+H]$^+$ 293.1285, Found 293.1287.

3-Methoxy-5-phenyl-2-(3-(trifluoromethyl)phenyl)pyrimidin-4(3H)-one

Yellow solid, Yield 75% (52.6 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.25 (s, 1H), 8.17 – 8.15 (m, 2H), 7.84 – 7.82 (m, 1H), 7.77 – 7.72 (m, 2H), 7.66 (t, J = 7.9 Hz, 1H), 7.49 – 7.44 (m, 2H), 7.44 – 7.38 (m, 1H), 3.86 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 157.2, 154.9, 148.7, 132.8, 132.4, 132.0, 131.1 ($q, J_{C,F} = 32.0$ Hz), 129.1, 128.9, 128.6, 128.4, 128.2, 128.0 ($q, J_{C,F} = 3.0$ Hz), 126.7 ($q, J_{C,F} = 4.0$ Hz), 123.7 ($q, J_{C,F} = 271.0$ Hz), 64.3. HRMS (ESI) Calcd for [C$_{18}$H$_{13}$F$_3$N$_2$O$_2$+H]$^+$ 347.1002, Found 347.1001.
2-(2-Fluorophenyl)-3-methoxy-5-phenylpyrimidin-4(3H)-one

Yellow solid, Yield 60% (35.8 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.13 (s, 1H), 7.77 – 7.72 (m, 2H), 7.61 – 7.52 (m, 2H), 7.49 – 7.38 (m, 3H), 7.33 – 7.29 (m, 1H), 7.25 – 7.21 (m, 1H), 3.87 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 159.9 (d, $J_{C\text{-}F} = 251.0$ Hz), 157.1, 153.4, 148.7, 132.8 (d, $J_{C\text{-}F} = 9.0$ Hz), 132.5, 130.5 (d, $J_{C\text{-}F} = 2.0$ Hz), 128.8, 128.7, 128.6, 128.5, 124.3 (d, $J_{C\text{-}F} = 4.0$ Hz), 120.2 (d, $J_{C\text{-}F} = 15.0$ Hz), 116.1 (d, $J_{C\text{-}F} = 21.0$ Hz), 64.5 (d, $J_{C\text{-}F} = 1.0$ Hz). HRMS (ESI) Calcd for [C$_{17}$H$_{13}$FN$_2$O$_2$+H]$^+$ 297.1034, Found 297.1034.

2-Benzyl-3-methoxy-5-phenylpyrimidin-4(3H)-one

Yellow liquid, Yield 60% (35.2 mg). 1H NMR (400 MHz, CDCl$_3$) δ 7.99 (s, 1H), 7.68 – 7.63 (m, 2H), 7.45 – 7.39 (m, 2H), 7.39 – 7.33 (m, 5H), 7.32 – 7.26 (m, 1H), 4.20 (s, 2H), 3.86 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 158.8, 157.6, 148.7, 134.9, 132.7, 129.2, 128.9, 128.52, 128.51, 128.4, 127.6, 127.5, 64.3, 39.5. HRMS (ESI) Calcd for [C$_{18}$H$_{16}$N$_2$O$_2$+H]$^+$ 293.1285, Found 293.1285.

3-Methoxy-5-phenyl-2-(thiophen-2-yl)pyrimidin-4(3H)-one

Yellow solid, Yield 55% (31.2 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.19 – 8.18 (m, 1H), 8.08 (s, 1H), 7.75 – 7.71 (m, 2H), 7.67 – 7.66 (m, 1H), 7.48 – 7.42 (m, 2H), 7.39 – 7.36 (m, 1H), 7.22 – 7.20 (m, 1H), 4.16 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 157.4, 150.5, 149.3, 133.4, 133.2, 133.0, 132.9, 128.6, 128.5, 128.4, 128.3, 125.8, 64.0. HRMS (ESI) Calcd for [C$_{15}$H$_{12}$N$_2$O$_2$S+H]$^+$ 285.0692, Found 285.0691.
5-(4-Fluorophenyl)-3-methoxy-2-phenylpyrimidin-4(3H)-one
Yellow solid, Yield 70% (41.0 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.11 (s, 1H), 7.95 – 7.90 (m, 2H), 7.76 – 7.72 (m, 2H), 7.60 – 7.49 (m, 3H), 7.17 – 7.12 (m, 2H), 3.82 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 163.0 (d, $J_{C-F} = 247.0$ Hz), 157.4, 156.6, 148.7, 131.4, 131.2, 130.2 (d, $J_{C-F} = 8.0$ Hz), 129.5, 128.7 (d, $J_{C-F} = 3.0$ Hz), 128.5, 126.5, 115.6 (d, $J_{C-F} = 21.0$ Hz), 64.1. HRMS (ESI) Calcd for [C$_{17}$H$_{13}$FN$_2$O$_2$+H]$^+$ 297.1034, Found 297.1035.

5-(4-Chlorophenyl)-3-methoxy-2-phenylpyrimidin-4(3H)-one
Yellow solid, Yield 70% (43.2 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.13 (s, 1H), 7.95 – 7.90 (m, 2H), 7.73 – 7.68 (m, 2H), 7.60 – 7.49 (m, 3H), 7.45 – 7.40 (m, 2H), 3.82 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 157.3, 156.8, 148.9, 134.7, 131.5, 131.1, 129.7, 129.6, 128.8, 128.5, 126.2, 64.1. HRMS (ESI) Calcd for [C$_{17}$H$_{13}$ClN$_2$O$_2$+H]$^+$ 313.0738, Found 313.0737.

3-Methoxy-2-phenyl-5-(p-tolyl)pyrimidin-4(3H)-one
Yellow solid, Yield 51% (29.5 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.12 (s, 1H), 7.95 – 7.90 (m, 2H), 7.66 – 7.64 (m, 2H), 7.59 – 7.48 (m, 3H), 7.28 – 7.26 (m, 2H), 3.81 (s, 3H), 2.40 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 157.5, 156.2, 148.5, 138.7, 131.34, 131.29, 129.8, 129.5, 129.3, 128.4, 128.3, 127.4, 64.0, 21.3. HRMS (ESI) Calcd for [C$_{18}$H$_{16}$N$_2$O$_2$+H]$^+$ 293.1285, Found 293.1284.

5-(4-(Tert-butyl)phenyl)-3-methoxy-2-phenylpyrimidin-4(3H)-one
Yellow liquid, Yield 40% (24.0 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.14 (s, 1H), 7.96 – 7.90 (m, 2H), 7.72 – 7.66 (m, 2H), 7.58 – 7.47 (m, 5H), 3.82 (s, 3H), 1.36 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 157.6, 156.3, 151.8, 148.6, 131.33, 131.30, 129.8, 129.5, 128.4, 128.1, 127.4, 125.6, 64.0, 34.7, 31.3. HRMS (ESI) Calcd for [C$_{21}$H$_{22}$N$_2$O$_2$+H]$^+$ 335.1754, Found 335.1755.
Yellow solid, Yield 60% (37.1 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.10 (s, 1H), 7.94 – 7.89 (m, 2H), 7.75 – 7.69 (m, 2H), 7.58 – 7.49 (m, 3H), 7.02 – 6.96 (m, 2H), 3.85 (s, 3H), 3.81 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 160.0, 157.6, 155.9, 148.0, 131.4, 131.3, 129.7, 129.5, 128.4, 127.1, 125.1, 114.0, 64.0, 55.4. HRMS (ESI) Calcd for [C$_{18}$H$_{16}$N$_2$O$_3$+H]$^+$ 309.1234, Found 309.1236.

Yellow solid, Yield 88% (52.3 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.16 (s, 1H), 7.96 – 7.91 (m, 2H), 7.60 – 7.49 (m, 5H), 7.44 – 7.39 (m, 1H), 7.42 – 7.35 (m, 2H), 3.82 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 162.8 (d, $J_{CF} = 244.0$ Hz), 157.2, 157.0, 149.3, 134.8 (d, $J_{CF} = 8.0$ Hz), 131.5, 131.1, 130.0 (d, $J_{CF} = 9.0$ Hz), 129.6, 128.5, 126.1 (d, $J_{CF} = 2.0$ Hz), 123.9 (d, $J_{CF} = 3.0$ Hz), 115.6 (d, $J_{CF} = 3.0$ Hz), 115.4 (d, $J_{CF} = 5.0$ Hz), 64.1. HRMS (ESI) Calcd for [C$_{17}$H$_{13}$FN$_2$O$_2$+H]$^+$ 297.1034, Found 297.1035.

Yellow solid, Yield 71% (44.0 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.14 (s, 1H), 7.96 – 7.91 (m, 2H), 7.78 – 7.76 (m, 1H), 7.65 – 7.62 (m, 1H), 7.60 – 7.49 (m, 3H), 7.42 – 7.35 (m, 2H), 3.82 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 157.2, 157.1, 149.3, 134.47, 134.46, 131.6, 131.1, 129.8, 129.6, 128.7, 128.5, 128.4, 126.5, 126.0, 64.1. HRMS (ESI) Calcd for [C$_{17}$H$_{13}$ClN$_2$O$_2$+H]$^+$ 313.0738, Found 313.0740.
5-(3-Bromophenyl)-3-methoxy-2-phenylpyrimidin-4(3H)-one

Yellow solid, Yield 66% (47.0 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.13 (s, 1H), 7.94 – 7.92 (m, 3H), 7.70 – 7.67 (m, 1H), 7.61 – 7.49 (m, 4H), 7.32 (t, $J = 7.9$ Hz, 1H), 3.82 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 157.2, 157.1, 149.3, 134.7, 131.58, 131.56, 131.3, 131.1, 130.0, 129.6, 128.5, 127.0, 125.9, 122.6, 64.1. HRMS (ESI) Calcd for [C$_{17}$H$_{13}$BrN$_2$O$_2$+H]$^+$ 357.0233, Found 357.0233.

3-Methoxy-5-(3-methoxyphenyl)-2-phenylpyrimidin-4(3H)-one

Yellow liquid, Yield 77% (47.4 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.15 (s, 1H), 7.96 – 7.90 (m, 2H), 7.57 – 7.50 (m, 3H), 7.39 – 7.34 (m, 2H), 7.31 – 7.29 (m, 1H), 6.97 – 6.94 (m, 1H), 3.86 (s, 3H), 3.82 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 159.6, 157.4, 156.6, 149.1, 134.0, 131.4, 131.2, 129.56, 129.55, 128.5, 127.2, 120.7, 114.6, 113.9, 64.1, 55.4. HRMS (ESI) Calcd for [C$_{18}$H$_{16}$N$_2$O$_3$+H]$^+$ 309.1234, Found 309.1233.

5-(2-Fluorophenyl)-3-methoxy-2-phenylpyrimidin-4(3H)-one

Yellow liquid, Yield 77% (45.3 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.13 (d, $J = 1.6$ Hz, 1H), 7.95 – 7.93 (m, 2H), 7.65 – 7.49 (m, 4H), 7.41 – 7.36 (m, 1H), 7.26 – 7.15 (m, 2H), 3.83 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 160.1 (d, $J_{CF} = 248.0$ Hz), 157.3, 157.0, 151.2 (d, $J_{CF} = 5.0$ Hz), 131.49, 131.45, 131.2, 130.4 (d, $J_{CF} = 9.0$ Hz), 129.6, 128.5, 124.2 (d, $J_{CF} = 4.0$ Hz), 122.8 (d, $J_{CF} = 2.0$ Hz), 120.4 (d, $J_{CF} = 14.0$ Hz), 116.0 (d, $J_{CF} = 22.0$ Hz), 64.1. HRMS (ESI) Calcd for [C$_{18}$H$_{16}$FNP$_2$O$_2$+H]$^+$ 297.1034, Found 297.1032.

5-(2-Chlorophenyl)-3-methoxy-2-phenylpyrimidin-4(3H)-one

Yellow solid, Yield 83% (51.7 mg). 1H NMR (400 MHz, CDCl$_3$) δ 8.03 (s, 1H), 7.98 – 7.93 (m, 2H), 7.60 – 7.48 (m, 4H), 7.45 – 7.41 (m, 1H), 7.37 – 7.32 (m, 2H), 3.83 (s, 3H). 13C NMR (100 MHz,
CDCl$_3$ δ 157.6, 156.8, 151.2, 134.0, 131.72, 131.68, 131.5, 131.2, 130.0, 129.7, 128.4, 126.9, 126.6, 64.1. One signal is missing due to overlap. HRMS (ESI) Calcd for [C$_{17}$H$_{13}$ClN$_2$O$_2$+H]$^+$ 313.0738, Found 313.0735.

![3-Methoxy-2-phenyl-5-(o-tolyl)pyrimidin-4(3H)-one](image)

4ma

3-Methoxy-2-phenyl-5-(o-tolyl)pyrimidin-4(3H)-one

Yellow liquid, Yield 85% (49.3 mg). 1H NMR (400 MHz, CD$_2$Cl$_2$) δ 7.86 – 7.82 (m, 2H), 7.81 (s, 1H), 7.51 – 7.41 (m, 3H), 7.26 – 7.19 (m, 2H), 7.17 – 7.14 (m, 2H), 3.69 (s, 3H), 2.21 (s, 3H). 13C NMR (100 MHz, CD$_2$Cl$_2$) δ 157.1, 156.9, 150.4, 137.7, 132.9, 131.5, 131.2, 130.2, 130.1, 129.6, 129.1, 128.7, 128.3, 125.7, 63.9, 19.7. HRMS (ESI) Calcd for [C$_{18}$H$_{16}$N$_2$O$_2$+H]$^+$ 293.1285, Found 293.1288.

![5-Benzyl-3-methoxy-2-phenylpyrimidin-4(3H)-one](image)

4na

5-Benzyl-3-methoxy-2-phenylpyrimidin-4(3H)-one

Yellow liquid, Yield 82% (48.1 mg). 1H NMR (400 MHz, CDCl$_3$) δ 7.84 – 7.82 (m, 2H), 7.72 (s, 1H), 7.55 – 7.44 (m, 3H), 7.36 – 7.29 (m, 4H), 7.26 – 7.21 (m, 1H), 3.87 (s, 2H), 3.75 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 158.4, 156.0, 154.3, 150.4, 138.3, 131.4, 131.1, 129.4, 129.1, 128.7, 128.6, 128.4, 126.6, 64.0, 33.8. HRMS (ESI) Calcd for [C$_{19}$H$_{16}$N$_2$O$_2$+H]$^+$ 293.1285, Found 293.1284.

![3-Methoxy-5-methyl-2-phenylpyrimidin-4(3H)-one](image)

4oa

3-Methoxy-5-methyl-2-phenylpyrimidin-4(3H)-one

White solid, Yield 64% (29.8 mg). 1H NMR (400 MHz, CD$_3$OD) δ 7.90 – 7.89 (m, 1H), 7.83 – 7.79 (m, 2H), 7.61 – 7.50 (m, 3H), 3.71 (s, 3H), 2.12 (d, $J = 0.9$ Hz, 3H). 13C NMR (100 MHz, CD$_3$OD) δ 159.4, 156.3, 148.6, 131.2, 130.9, 129.1, 128.0, 125.2, 63.2, 11.9. HRMS (ESI) Calcd for [C$_{15}$H$_{12}$N$_2$O$_2$+H]$^+$ 217.0972, Found 217.0974.
3-Methoxy-5-ethyl-2-phenylpyrimidin-4(3H)-one

White solid, Yield 67% (30.6 mg). 1H NMR (400 MHz, CDCl$_3$) δ 7.87 – 7.82 (m, 2H), 7.80 (s, 1H), 7.56 – 7.45 (m, 3H), 3.76 (s, 3H), 2.59 (q, J = 8.0 Hz, 2H), 1.26 (t, J = 8.0 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 158.5, 155.6, 147.5, 131.5, 131.0, 130.7, 129.3, 128.3, 63.9, 21.1, 12.6. HRMS (ESI) Calcd for [C$_{13}$H$_{14}$N$_2$O$_2$+H]$^+$ 231.1128, Found 231.1126.

Typical Reaction Conditions for synthesis of 5: N-methoxy-acrylamide (0.2 mmol), dioxazolone (0.71 mmol), Cp*Co(CO)$_2$I$_2$ (10 mol%), AgNTf$_2$ (40 mol%), Zn(OAc)$_2$ (0.2 mmol), 4 Å M.S. (100 mg) and DCE (2 mL) were charged into a pressure tube. The reaction mixture was stirred under N$_2$ at 130 ºC for 16 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/EA to afford the product 5.

N-(2-(1-methoxy-6-oxo-5-phenyl-1,6-dihydropyrimidin-2-yl)phenyl)benzamide

Yellow solid, Yield 81% (64.2 mg). 1H NMR (400 MHz, CDCl$_3$) δ 10.77 (s, 1H), 8.50 (d, J = 8.0 Hz, 1H), 8.14 (s, 1H), 7.92 (d, J = 7.2 Hz, 2H), 7.87 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 7.2 Hz, 2H), 7.60 – 7.42 (m, 7H), 7.28 – 7.25 (m, 1H), 3.81 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 165.2, 157.2, 155.4, 146.9, 137.4, 134.7, 132.4, 132.2, 132.1, 130.9, 129.0, 128.9, 128.7, 128.4, 128.2, 127.2, 123.6, 123.2, 119.5, 64.6. HRMS (ESI) Calcd for [C$_{24}$H$_{16}$N$_5$O$_3$+H]$^+$ 398.1499, Found 398.1497.
4-Chloro-N-(5-chloro-2-(1-methoxy-6-oxo-5-phenyl-1,6-dihydropyrimidin-2-yl)phenyl)benzamide

Yellow solid, Yield 75% (70.0 mg). 1H NMR (400 MHz, CDCl$_3$) δ 11.17 (s, 1H), 8.65 (d, $J = 1.6$ Hz, 1H), 8.11 (s, 1H), 7.89 – 7.84 (m, 3H), 7.74 – 7.72 (m, 2H), 7.51 – 7.42 (m, 5H), 7.26 – 7.23 (m, 1H), 3.82 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 164.2, 157.0, 154.6, 146.4, 138.8, 138.74, 138.70, 132.8, 132.1, 129.3, 129.2, 128.7, 128.6, 128.5, 128.4, 123.8, 122.7, 116.6, 64.6. HRMS (ESI) Calcd for [C$_{24}$H$_{17}$Cl$_2$N$_3$O$_3$+H]$^+$ 466.0720, Found 466.0717.

4-(Tert-butyl)-N-(5-(tert-butyl)-2-(1-methoxy-6-oxo-5-phenyl-1,6-dihydropyrimidin-2-yl)phenyl)benzamide

Yellow solid, Yield 80% (80.9 mg). 1H NMR (400 MHz, CDCl$_3$) δ 10.93 (s, 1H), 8.63 (s, 1H), 8.18 (s, 1H), 7.90 (d, $J = 8.0$ Hz, 2H), 7.86 (d, $J = 8.4$ Hz, 1H), 7.78 (d, $J = 8.0$ Hz, 2H), 7.56 – 7.44 (m, 5H), 7.32 – 7.28 (m, 1H), 3.84 (s, 3H), 1.44 (s, 9H), 1.38 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 165.2, 157.4, 156.3, 155.7, 155.6, 147.1, 137.5, 132.4, 131.9, 130.6, 128.9, 128.6, 128.5, 127.7, 127.0, 125.9, 120.7, 120.2, 116.4, 64.5, 35.4, 35.1, 31.2, 31.1. HRMS (ESI) Calcd for [C$_{32}$H$_{35}$N$_3$O$_3$+H]$^+$ 510.2751, Found 510.2753.
4-Methoxy-N-(5-methoxy-2-(1-methoxy-6-oxo-5-phenyl-1,6-dihydropyrimidin-2-yl)phenyl)benzamide

Yellow solid, Yield 75% (69.2 mg). 1H NMR (400 MHz, CDCl$_3$) δ 11.41 (s, 1H), 8.28 (d, $J = 2.4$ Hz, 1H), 8.14 (s, 1H), 7.96 – 7.89 (m, 3H), 7.76 (d, $J = 7.2$ Hz, 2H), 7.51 – 7.44 (m, 3H), 7.02 (d, $J = 8.8$ Hz, 2H), 6.80 – 6.78 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.4$ Hz, 1H), 3.96 (s, 3H), 3.90 (s, 3H), 3.83 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 165.0, 162.7, 157.4, 155.5, 146.9, 140.3, 132.5, 132.4, 129.1, 128.8, 128.6, 128.4, 127.2, 127.1, 114.1, 110.4, 110.3, 106.4, 64.2, 55.6, 55.5. One signal is missing due to overlap.

HRMS (ESI) Calcd for [C$_{26}$H$_{23}$N$_3$O$_5$+H]$^+$ 458.1710, Found 458.1708.

\[
\text{\includegraphics[width=0.2\textwidth]{5ae.png}}
\]

3-Chloro-N-(4-chloro-2-(1-methoxy-6-oxo-5-phenyl-1,6-dihydropyrimidin-2-yl)phenyl)benzamide

Yellow solid, Yield 62% (58.3 mg). 1H NMR (400 MHz, CDCl$_3$) δ 10.84 (s, 1H), 8.40 (d, $J = 9.0$ Hz, 1H), 8.07 (s, 1H), 7.85 – 7.80 (m, 2H), 7.71 – 7.65 (m, 3H), 7.48 – 7.44 (m, 2H), 7.41 – 7.34 (m, 4H), 3.77 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 163.8, 157.0, 153.9, 146.6, 136.1, 135.9, 135.1, 132.4, 132.2, 131.9, 130.7, 130.3, 129.2, 129.1, 128.9, 128.7, 128.4, 127.6, 125.3, 124.2, 120.3, 64.8. HRMS (ESI) Calcd for [C$_{24}$H$_{17}$Cl$_2$N$_3$O$_3$+H]$^+$ 466.0720, Found 466.0721.

\[
\text{\includegraphics[width=0.2\textwidth]{5af.png}}
\]

N-(2-(1-methoxy-6-oxo-5-phenyl-1,6-dihydropyrimidin-2-yl)-4-methylphenyl)-3-methylbenzamide

Yellow solid, Yield 75% (63.7 mg). 1H NMR (400 MHz, CDCl$_3$) δ 10.41 (s, 1H), 8.33 (d, $J = 8.4$ Hz, 1H), 8.15 (s, 1H), 7.76 – 7.74 (m, 3H), 7.69 – 7.68 (m, 2H), 7.50 – 7.38 (m, 6H), 3.84 (s, 3H), 2.45 (s, 3H), 2.44 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 165.4, 157.3, 155.6, 147.2, 138.7, 134.72, 134.68, 133.4, 133.1, 132.8, 132.3, 131.0, 128.9, 128.7, 128.6, 128.4, 128.064, 128.063, 123.9, 123.3, 120.0,
64.6, 21.5, 21.0. One signal is missing due to overlap. HRMS (ESI) Calcd for [C_{26}H_{23}N_{3}O_{3}+H]^+ 426.1812, Found 426.1813.

\[
\text{5ag}
\]

\[
\text{N-(2-(1-methoxy-6-oxo-5-phenyl-1,6-dihydropyrimidin-2-yl)thiophen-3-yl)thiophene-2-carboxamide}
\]

Yellow solid, Yield 57% (46.7 mg). 1H NMR (400 MHz, CDCl$_3$) δ 13.37 (s, 1H), 8.43 (d, $J = 5.6$ Hz, 1H), 8.15 (s, 1H), 7.78 – 7.74 (m, 3H), 7.66 (d, $J = 5.6$ Hz, 1H), 7.59 (d, $J = 4.8$ Hz, 1H), 7.49 – 7.45 (m, 2H), 7.42 – 7.38 (m, 1H), 7.20 – 7.16 (m, 1H), 4.21 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 159.2, 157.1, 152.6, 147.1, 145.5, 139.4, 133.5, 132.5, 131.3, 129.5, 128.6, 128.3, 128.1, 124.6, 122.4, 107.1, 64.6. One signal is missing due to overlap. HRMS (ESI) Calcd for [C_{20}H_{15}N_{3}S_{2}+H]^+ 410.0628, Found 410.0627.

\[
\text{5ba}
\]

\[
\text{N-(2-(5-(2-fluorophenyl)-1-methoxy-6-oxo-1,6-dihydropyrimidin-2-yl)phenyl)benzamide}
\]

Yellow solid, Yield 65% (53.5 mg). 1H NMR (400 MHz, CDCl$_3$) δ 10.78 (s, 1H), 8.52 (d, $J = 8.4$ Hz, 1H), 8.16 (s, 1H), 7.92 – 7.88 (m, 3H), 7.67 – 7.48 (m, 5H), 7.43 – 7.38 (m, 1H), 7.29 – 7.17 (m, 3H), 3.80 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 165.2, 160.0 (d, $J_{C,F} = 248.0$ Hz), 156.8, 156.1, 149.4 (d, $J_{C,F} = 5.0$ Hz), 137.5, 134.6, 132.5, 132.1, 131.5 (d, $J_{C,F} = 3.0$ Hz), 130.9, 130.8 (d, $J_{C,F} = 8.0$ Hz), 128.9, 127.2, 124.2 (d, $J_{C,F} = 4.0$ Hz), 123.6, 123.3 (d, $J_{C,F} = 2.0$ Hz), 123.1, 119.9 (d, $J_{C,F} = 14.0$ Hz), 119.3, 116.1 (d, $J_{C,F} = 22.0$ Hz), 64.6. HRMS (ESI) Calcd for [C_{24}H_{13}FN_{3}O_{3}+H]^+ 416.1405, Found 416.1406.
5ca

N-(2-(5-(2-chlorophenyl)-1-methoxy-6-oxo-1,6-dihydropyrimidin-2-yl)phenyl)benzamide

Yellow solid, Yield 61% (52.3 mg). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 10.74 (s, 1H), 8.52 (d, \(J = 8.4\) Hz, 1H), 8.07 (s, 1H), 7.93 – 7.89 (m, 3H), 7.63 – 7.59 (m, 1H), 7.56 – 7.45 (m, 5H), 7.37 – 7.35 (m, 2H), 7.30 – 7.26 (m, 1H), 3.81 (s, 3H). \(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 165.2, 156.7, 156.4, 149.6, 137.5, 134.6, 133.8, 132.5, 132.2, 131.7, 131.1, 130.9, 130.3, 130.1, 128.9, 127.2, 127.0, 126.9, 123.6, 123.2, 119.5, 64.6. HRMS (ESI) Calcd for [C\(_{24}\)H\(_{18}\)ClN\(_3\)O\(_3\)H]\(^+\) 432.1109, Found 432.1111.

5da

N-(2-(1-methoxy-6-oxo-5-(o-tolyl)-1,6-dihydropyrimidin-2-yl)phenyl)benzamide

Yellow solid, Yield 62% (50.8 mg). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 10.79 (s, 1H), 8.51 (d, \(J = 8.4\) Hz, 1H), 7.96 (s, 1H), 7.94 – 7.89 (m, 3H), 7.62 – 7.48 (m, 4H), 7.34 – 7.26 (m, 5H), 3.80 (s, 3H), 2.32 (s, 3H). \(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 165.2, 156.9, 155.9, 148.7, 137.5, 137.4, 134.6, 132.4, 132.2, 131.9, 130.9, 130.5, 130.1, 129.9, 129.1, 128.9, 127.1, 125.9, 123.6, 123.2, 119.5, 64.5, 20.1. HRMS (ESI) Calcd for [C\(_{25}\)H\(_{21}\)N\(_3\)O\(_3\)H]\(^+\) 412.1656, Found 412.1658.

5ea

N-(2-(5-(4-fluorophenyl)-1-methoxy-6-oxo-1,6-dihydropyrimidin-2-yl)phenyl)benzamide

Yellow solid, Yield 77% (63.3 mg). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 10.72 (s, 1H), 8.49 (d, \(J = 8.0\) Hz, 1H), 8.11 (s, 1H), 7.91 (d, \(J = 7.6\) Hz, 2H), 7.87 (d, \(J = 8.0\) Hz, 1H), 7.76 – 7.70 (m, 2H), 7.61 – 7.49 (m, 4H), 7.28 – 7.25 (m, 1H), 7.17 – 7.13 (m, 2H), 3.80 (s, 3H). \(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 165.2,
163.1 (d, $J_{CF} = 247.0$ Hz), 157.2, 155.4, 146.8, 137.4, 134.7, 132.4, 132.2, 130.9, 130.3 (d, $J_{CF} = 8.0$ Hz), 128.9, 128.2 (d, $J_{CF} = 3.0$ Hz), 127.2, 127.1, 123.6, 123.2, 119.5, 115.7 (d, $J_{CF} = 22.0$ Hz), 64.6.

HRMS (ESI) Calcd for $[C_{25}H_{18}BrN_3O_4+H]^+$ 476.0604, Found 476.0602.

5fa

N-(2-(5-(3-bromophenyl)-1-methoxy-6-oxo-1,6-dihydropyrimidin-2-yl)phenyl)benzamide

Yellow solid, Yield 58% (54.4 mg). 1H NMR (400 MHz, CDCl$_3$) δ 10.68 (s, 1H), 8.48 (d, $J = 8.0$ Hz, 1H), 8.12 (s, 1H), 7.92 – 7.68 (m, 4H), 7.68 (d, $J = 7.6$ Hz, 1H), 7.61 – 7.50 (m, 5H), 7.33 (t, $J = 8.0$ Hz, 1H), 7.29 – 7.25 (m, 1H), 3.80 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 165.3, 157.0, 155.9, 147.4, 137.4, 134.6, 134.2, 132.6, 132.2, 131.9, 131.2, 130.9, 130.1, 129.0, 127.1, 127.0, 126.7, 123.7, 123.3, 122.7, 119.4, 64.6. HRMS (ESI) Calcd for $[C_{24}H_{18}FN_3O_3+H]^+$ 416.1403, Found 416.1403.

5ga

N-(2-(1-methoxy-5-(3-methoxyphenyl)-6-oxo-1,6-dihydropyrimidin-2-yl)phenyl)benzamide

Yellow solid, Yield 72% (61.2 mg). 1H NMR (400 MHz, CDCl$_3$) δ 10.78 (s, 1H), 8.51 (d, $J = 8.4$ Hz, 1H), 8.15 (s, 1H), 7.92 – 7.90 (m, 2H), 7.88 (d, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.62 – 7.48 (m, 4H), 7.40 – 7.34 (m, 2H), 7.30 – 7.24 (m, 2H), 6.97 ($J_1 = 8.0$ Hz, $J_2 = 2.4$ Hz, 1H), 3.86 (s, 3H), 3.80 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 165.2, 159.7, 157.2, 155.4, 147.1, 137.4, 134.7, 133.6, 132.4, 132.1, 130.9, 129.7, 128.9, 127.9, 127.2, 123.6, 123.1, 120.7, 119.4, 114.8, 114.0, 64.6, 55.4. HRMS (ESI) Calcd for $[C_{25}H_{21}N_3O_4+H]^+$ 428.1603, Found 428.1603.

III. Derivatization of amidated products
4aa (27.8 mg, 0.1 mmol), 3-phenyl-1,4,2-dioxazol-5-one (24.5 mg, 0.15 mmol), [Cp*Co(CO)]₂ (2.4 mg, 0.005 mmol), AgN Tf₂ (7.8 mg, 0.02 mmol) and Zn(OAc)₂ (18.3 mg, 0.1 mmol) were dissolved in DCE (1 mL) under N₂ atmosphere. The mixture was stirred at 110°C overnight. After that the solvent was removed under reduced pressure. The residue was purified by silica gel chromatography using PE/EA to afford compound 5aa as a yellow solid (32.2 mg, 81%).

4aa (27.8 mg, 0.1 mmol), diazo compound (27.9 mg, 0.15 mmol), [Cp*RhCl]₂ (2.5 mg, 0.004 mmol), AgSbF₆ (6.9 mg, 0.02 mmol) and Cu(OAc)₂ (18.2 mg, 0.1 mmol) were dissolved in DCE (1 mL) under N₂ atmosphere. The mixture was stirred at 80°C overnight. After that the solvent was removed under reduced pressure. The residue was purified by silica gel chromatography using PE/EA to afford compound 6 as a yellow solid (38.0 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.79 – 7.74 (m, 2H), 7.73 – 7.68 (m, 1H), 7.63 – 7.56 (m, 2H), 7.51 – 7.44 (m, 3H), 7.41 (m, 1H), 4.85 (s, 1H), 4.22 (q, J = 7.2 Hz, 4H), 3.74 (s, 3H), 1.25 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 157.1, 156.2, 148.5, 132.5, 132.2, 131.4, 130.8, 130.1, 129.6, 128.8, 128.6, 128.5, 128.3, 127.9, 64.1, 62.0, 54.9, 14.0.
In a Schlenk tube, 2,5-Bis(4-(tert-butyl)phenyl)-3-methoxypyrimidin-4(3H)-one (78.0 mg, 0.2 mmol) was dissolved in dry THF (4 mL). SmI$_2$ solution (0.1 M in THF, 4.0 mL, 0.4 mmol) was added slowly via a syringe. The reaction mixture was stirred at RT about 2 h (The process of the reaction could be monitored by TLC analysis). The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (DCM/MeOH = 95:5) to afford 7 as a white solid (47.1 mg, 65% yield). 1H NMR (400 MHz, CD$_2$Cl$_2$) δ 13.05 (s, 1H), 8.28 (s, 1H), 8.20 (d, $J = 8.2$ Hz, 2H), 7.74 (d, $J = 8.4$ Hz, 2H), 7.49 (d, $J = 8.4$ Hz, 2H), 7.45 (d, $J = 8.0$ Hz, 2H), 1.31 (s, 9H), 1.30 (s, 9H). 13C NMR (100 MHz, CD$_2$Cl$_2$) δ 174.3, 155.71, 155.68, 152.8, 151.5, 130.4, 129.0, 128.0, 127.4, 125.9, 125.2, 124.4, 34.9, 34.6, 31.1, 30.9. HRMS (ESI) Calcd for [C$_{24}$H$_{28}$N$_2$O+H]$^+$ 361.2274, Found 361.2279.

![Chemical structure of 3ca and 8](image)

Compound 8 was prepared according to the above procedure of preparing 7. White solid, 61% yield 1H NMR (400 MHz, CDCl$_3$) δ 12.44 (d, $J = 10.0$ Hz, 1H), 7.97 (d, $J = 7.6$ Hz, 2H), 7.66 (d, $J = 10.0$ Hz, 1H), 7.60 – 7.56 (m, 1H), 7.52 – 7.48 (m, 2H), 7.40 – 7.38 (m, 2H), 7.33 – 7.31 (m, 2H), 5.84 (s, 1H), 5.58 (s, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 164.8, 136.8, 135.1, 134.3, 132.8, 132.5, 131.2, 129.3, 128.9, 127.8. HRMS (ESI) Calcd for [C$_{16}$H$_{13}$N$_2$O$_2$Cl+H]$^+$ 301.0738, Found 301.0734.

![Chemical structures of 3aa, 4aa, and 4aa](image)

3aa (29.6 mg, 0.10 mmol), Zn(OAc)$_2$ (18.3 mg, 0.1 mmol) were dissolved in DCE (1 mL) under
N₂ atmosphere. The mixture was stirred at 110°C overnight. After that the solvent was removed under reduced pressure. The residue was purified by silica gel chromatography using PE/EA to afford compound 4aa (15.3 mg, 55%).

3aa (29.6 mg, 0.1 mmol), [Cp*Co(CO)]₂ (1.2 mg, 0.0025 mmol), AgNTf₂ (1.9 mg, 0.005 mmol) and Zn(OAc)₂ (18.3 mg, 0.1 mmol) were dissolved in DCE (1 mL) under N₂ atmosphere. The mixture was stirred at 110°C overnight. After that the solvent was removed under reduced pressure. The residue was purified by silica gel chromatography using PE/EA to afford compound 4aa (23.1 mg, 83%).

IV. Mechanistic Studies

(a) **H/D Exchange Experiments**

![Chemical Reaction Diagram](image)

I (17.7 mg, 0.1 mmol), Cp*Co(CO)]₂ (2.4 mg, 0.005 mmol), AgNTf₂ (3.9 mg, 0.01 mmol), Zn(OAc)₂ (18.3 mg, 0.1 mmol), and D₂O (20 mg, 1 mmol) were dissolved in DCE (1 mL) under N₂ atmosphere. The reaction mixture was stirred at 40°C for 12 h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA to afford an oil, which was characterized by ¹H NMR spectroscopy.
A mixture of 1 (35.44 mg, 0.2 mmol), 2m (46.2 mg, 0.2 mmol), 2l (35.4 mg, 0.2 mmol), Cp*Co(CO)I₂ (2.1 mg, 0.005 mmol), AgNTf₂ (3.9 mg, 0.01 mmol), and Zn(OAc)₂ (36.7 mg, 0.2 mmol) were dissolved in DCE (2 mL) under N₂ atmosphere. The reaction mixture was stirred at 110°C for 12 h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA to afford 4am and 4al, which were characterized by ¹H NMR spectroscopy.
V. References

VI. NMR Spectra of Products

3aa
3ad
3al
4ad
4am
4ca
4ha

![Chemical Structure of 4ha](image)
4ia
4pa
5ac