Supporting Information

2-(1-Methylhydrazinyl)pyridine-Directed С–Н Functionalization/Spirocyclization Cascade: Facile Access to Spirosuccinimide Derivatives

Hua Zhao,[†] Xiaoru Shao,[†] Taimin Wang,[†] Shengxian Zhai,[‡] Shuxian Qiu,[†] Cheng Tao,[‡] Huifei Wang,[†] Hongbin Zhai^{*,†,‡,⊥}

[†]Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China

[‡]The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.

[⊥]Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China

Email: zhaihb@pkusz.edu.cn

Table of Contents

 Materials and methods						
Functionaliz	zation/Spirocyc	lization	Cascade:		•••••	13
4. Preliminary Mechanistic Experiments						42
5. Reductive removal of the directing group						46
6. X-ray Crystallographic Data of Compound 3ua						47
7. References						48
8. ¹ H, ¹³ C and ¹⁹ F NMR Spectra						49

1. Materials and methods

All reactions were carried out under Argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. All the chemicals were purchased commercially, and used without further purification. Anhydrous THF was distilled from sodium-benzophenone. Dichloromethane and was distilled from calcium hydride. Thin-layer chromatography (TLC) was conducted with 0.25 mm Tsingdao silica gel plates (60F-254) and visualized by exposure to UV light (254 nm) or stained with potassium permanganate. Flash column chromatography was performed on Tsingdao silica gel (200-300 mesh) and neutral/basic aluminum oxide (200-300 mesh). ¹H NMR spectra were recorded on Bruker spectrometers (at 300, 400 or 500 MHz) and reported relative to deuterated solvent signals or tetramethylsilane internal standard signals. Data for ¹H NMR spectra were reported as follows: chemical shift (δ /ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad.), coupling constant (J/Hz) and integration. ¹³C NMR spectra were recorded on Bruker Spectrometers (100 or 125 MHz). Data for ¹³C NMR spectra were reported in terms of chemical shift. ¹⁹F NMR spectra were recorded on Bruker Spectrometers (376 MHz). High-resolution mass spectrometry (HRMS) was conducted on Bruker Apex IV RTMS. X-ray diffraction was performed on Rigaku Saturn 70 CCD diffractometer using graphite monochromated Cu-K α radiation at a temperature of 100 ±1 K. Crystallographic data were obtained from Oxford diffraction single crystal X-ray diffractometer (Gemini S Ultra).

2. General procedure for the synthesis of starting materials

Representative Method : (1c, 1d, 1f, 1g, 1h, 1j, 1l, 1m, 1n, 1s, 1t, 1u, 1v, 1w)¹

To a stirred mixture of 2-(1-methylhydrazinyl)pyridine¹ (1.0 equiv, 5 mmol) and Et₃N (5.0 equiv) in dry CH_2Cl_2 (0.2 to 0.5 M) was added benzoyl chloride (1.05 equiv) dropwise under Ar atmosphere at 0 °C. Kept the reaction mixture stirred at 0 °C for about 0.5 h, then the resulting mixture was warmed to room temperature and stirred overnight at this temperature. Upon completion of the reaction indicated by TLC, The

reaction mixture was washed with H_2O and extracted with CH_2Cl_2 (20 mL) for three times. The combined organic phases were washed with brine, dried over with anhydrous Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by column chromatography (*n*-hexanes/EtOAc = 3:1 to 1:1) to afford the corresponding product.

2-methoxy-N'-methyl-N'-(pyridin-2-yl)benzohydrazide: ¹ Prepared according to the general method , purified by column chromatography (*n*-hexanes/EtOAc = 3:1 to 1:1) to afford the corresponding product **1c** (80% yield) as a white solid. ¹H **NMR (400 MHz, CDCl₃)** δ 9.98 (s, 1H), 8.55-8.53 (m, 1H), 8.52 (d, *J* = 1.6, 1H), 7.83 (ddd, *J* = 8.4, 7.2, 1.6 Hz, 1H), 7.80 – 7.55 (m, 1H), 7.47 – 7.40 (m, 1H), 7.36 (d, *J* = 8.4 Hz, 1H), 7.11 (d, *J* = 8.4 Hz, 1H), 7.00 (ddd, *J* = 5.6, 4.8, 0.8 Hz, 1H), 4.34 (s, 3H), 3.79 (s, 3H). ¹³C **NMR (100 MHz, CDCl₃)** δ 165.0, 159.6, 157.5, 147.7, 137.5, 133.6, 132.6, 121.5, 120.0, 114.2, 111.4, 107.2, 56.1, 38.5. **HRMS** m/z ([M+H]⁺) called for C₁₄H₁₆N₃O₂: 258.1243, found: 258.1240.

1d

2-fluoro-N'-methyl-N'-(pyridin-2-yl)benzohydrazide:

Prepared according to the general method , purified by column chromatography (*n*-hexanes/EtOAc = 3:1 to 1:1) to afford the corresponding product **1d** (65% yield) as a white solid. ¹H **NMR (500 MHz, CDCl₃)** δ 8.72 (d, *J* = 11.5 Hz, 1H), 8.19 (dd, *J* = 5.0, 1.0 Hz, 1H), 8.05 (td, *J* = 8.0, 2.0 Hz, 1H), 7.54 – 7.49 (m, 1H), 7.49 – 7.45 (m, 1H), 7.29 – 7.22 (m, 1H), 7.18 – 7.13 (m, 1H), 6.76 (d, *J* = 8.5 Hz, 1H), 6.72 – 6.63 (m, 1H), 3.43 (s, 3H). ¹³C **NMR (125 MHz, CDCl₃)** δ 163.0 (d, *J*_{C-F} = 3.8 Hz), 161.6, 159.6, 159.2, 147.7, 137.6, 134.0 (d, *J*_{C-F} = 8.8 Hz), 132.2 (d, *J*_{C-F} = 2.5 Hz), 125.0 (d, *J*_{C-F} = 2.5 Hz), 119.7 (d, *J*_{C-F} = 12.5 Hz), 116.1 (d, *J*_{C-F} = 25.0 Hz), 114.7, 107.1, 38.6. ¹⁹F **NMR (376 MHz, CDCl₃):** δ -110.4. **HRMS** m/z ([M+Na]⁺) called for C₁₃H₁₂FN₃NaO: 268.0862, found: 268.0852.

1f

2-bromo-N'-methyl-N'-(pyridin-2-yl)benzohydrazide:

Prepared according to the general method , purified by column chromatography (*n*-hexanes/EtOAc = 3:1 to 1:1) to afford the corresponding product **1f** (80% yield) as a white solid. ¹H **NMR (500 MHz, CDCl₃)** δ 8.28 (s, 1H), 8.21 – 8.11 (m, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.54 (dd, *J* = 7.5, 2.0 Hz, 1H), 7.52 – 7.45 (m, 1H), 7.35 (dt, *J* = 7.5, 1.0 Hz, 1H), 7.29 (td, *J* = 7.5, 2.0 Hz, 1H), 6.85 (d, *J* = 8.5 Hz, 1H), 6.71

(dd, J = 6.5, 5.0 Hz, 1H), 3.42 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.7, 159.1, 147.6, 137.7, 135.8, 133.5, 131.8, 129.8, 127.6, 119.7, 114.9, 107.5, 38.5. HRMS m/z ([M+H]⁺) called for C₁₃H₁₃BrN₃O: 306.0242, found: 306.0240.

1g

3-(dimethylamino)-N'-methyl-N'-(pyridin-2-yl)benzohydrazide: Prepared according to the general method, purified by column chromatography (*n*-hexanes/EtOAc = 3:1 to 1:1) to afford the corresponding product **1g** (60% yield) as a white solid. **¹H NMR (500 MHz, CDCl₃)** δ 8.45 (s, 1H), 8.20 (dd, *J* = 5.0, 1.0 Hz, 1H), 7.51 – 7.41 (m, 1H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.24 (s, 1H), 7.09 (d, *J* = 7.5 Hz, 1H), 6.87 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.76 (d, *J* = 8.5 Hz, 1H), 6.69 (dd, *J* = 6.5, 5.0 Hz, 1H), 3.42 (s, 3H), 2.98 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 167.3, 159.5, 150.8, 147.7, 137.6, 133.4, 129.3, 115.9, 114.6, 114.1, 111.4, 107.2, 40.4, 38.7. HRMS m/z ([M+H]⁺) called for C₁₅H₁₉N₄O: 271.1559, found: 271.1553.

1h

7

3-chloro-N'-methyl-N'-(pyridin-2-yl)benzohydrazide: Prepared according to the general method , purified by column chromatography (*n*-hexanes/EtOAc = 3:1 to 1:1) to afford the corresponding product **1h** (85% yield) as a white solid. ¹**H NMR (500 MHz, CDCl₃)** δ 9.69 (brs, 1H), 8.14 (d, *J* = 4.0 Hz, 1H), 7.78 (s, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.46-7.41 (m, 2H), 7.23 (t, *J* = 8.0 Hz, 1H), 6.69 (dd, *J* = 6.5, 5.0 Hz, 1H), 6.64 (d, *J* = 8.5 Hz, 1H), 3.28 (s, 3H). ¹³**C NMR (125 MHz, CDCl₃)** δ 165.5, 159.1, 147.3, 137.8, 134.8, 134.2, 132.0, 129.9, 127.8, 125.3, 114.8, 107.2, 38.8. **HRMS** m/z ([M+H]⁺) called for C₁₃H₁₃ClN₃O: 262.0747, found: 262.0738.

4-(tert-butyl)-N'-methyl-N'-(pyridin-2-yl)benzohydrazide:

Prepared according to the general method, purified by column chromatography (*n*-hexanes/EtOAc = 3:1 to 1:1) to afford the corresponding product **1j** (85% yield) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.91 (s, 1H), 8.26 – 8.13 (m, 1H), 7.79 (d, *J* = 8.5 Hz, 2H), 7.47-7.43 (m, 1H), 7.41 (d, *J* = 8.5 Hz, 2H), 6.72 (d, *J* = 8.5 Hz, 1H), 6.68 (dd, *J* = 7.0, 5.5 Hz, 1H), 3.38 (s, 3H), 1.33 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 166.5, 159.4, 155.7, 147.5, 137.6, 129.6, 127.2, 125.6, 114.6, 107.2, 38.8, 35.0, 31.1. HRMS m/z ([M+H]⁺) called for

C₁₇H₂₂N₃O: 284.1763, found: 284.1759.

N'-methyl-4-(methylthio)-N'-(pyridin-2-yl)benzohydrazide :

11

Prepared according to the general method , purified by column chromatography (*n*-hexanes/EtOAc = 3:1 to 1:1) to afford the corresponding product **11** (82% yield) as a white solid. **¹H NMR (400 MHz, CDCl₃)** δ 8.97 (s, 1H), 8.23 – 8.10 (m, 1H), 7.76 (d, *J* = 8.4 Hz, 2H), 7.51-7.47 (m, 1H), 7.20 (d, *J* = 8.4 Hz, 2H), 6.74 (d, *J* = 3.6 Hz, 1H), 6.71 (d, *J* = 6.8 Hz, 1H), 3.39 (s, 3H), 2.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 159.3, 147.5, 144.4, 137.8, 128.4, 127.6, 125.3, 114.7, 107.2, 39.0, 14.9. HRMS m/z ([M+H]⁺) called for C₁₄H₁₆N₃OS: 274.1014, found: 274.1008.

1m

N'-methyl-N'-(pyridin-2-yl)-[1,1'-biphenyl]-4-carbohydrazide : Prepared according to the general method , purified by column chromatography (*n*-hexanes/EtOAc = 3:1 to 1:1) to afford the corresponding product 1m (85% yield) as a white solid. ¹H NMR (500 **MHz, CDCl₃)** δ 9.03 (s, 1H), 8.20 (d, J = 4.5 Hz, 1H), 7.92 (d, J = 8.0 Hz, 2H), 7.62 – 7.58 (m, 4H), 7.52 – 7.43 (m, 3H), 7.40 (t, J = 7.5 Hz, 1H), 6.76 (d, J = 8.5 Hz, 1H), 6.74 – 6.66 (m, 1H), 3.42 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 166.4, 159.3, 147.6, 144.9, 139.9, 137.7, 131.2, 129.0, 128.1, 127.9, 127.3, 127.2, 114.7, 107.2, 38.9. **HRMS** m/z ([M+H]⁺) called for C₁₉H₁₈N₃O: 304.1450, found: 304.1446.

1n

N'-methyl-4-phenoxy-N'-(pyridin-2-yl)benzohydrazide :

Prepared according to the general method , purified by column chromatography (*n*-hexanes/EtOAc = 3:1 to 1:1) to afford the corresponding product **1n** (75% yield) as a white solid. **¹H NMR (500 MHz, CDCl₃)** δ 8.92 (s, 1H), 8.16 (d, *J* = 4.5 Hz, 1H), 7.83 (d, *J* = 7.5 Hz, 2H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.38 (t, *J* = 7.0 Hz, 2H), 7.19 (t, *J* = 7.5 Hz, 1H), 7.04 (d, *J* = 8.0 Hz, 2H), 6.96 (d, *J* = 8.0 Hz, 2H), 6.72 (d, *J* = 8.5 Hz, 1H), 6.70-6.67 (m, 1H), 3.38 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.0, 161.1, 159.4, 155.8, 147.6, 137.7, 130.0, 129.3, 126.8, 124.4, 119.9, 117.8, 114.7, 107.2, 38.9. HRMS m/z ([M+H]⁺) called for C₁₉H₁₈N₃O₂: 320.1399, found: 320.1394.

N'-methyl-N'-(pyridin-2-yl)-4-

(trifluoromethoxy)benzohydrazide : Prepared according to the general method , purified by column chromatography (*n*-hexanes/EtOAc = 3:1 to 1:1) to afford the corresponding product **1s** (80% yield) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 9.61 (s, 1H), 8.17 (d, *J* = 4.0 Hz, 1H), 7.88 (d, *J* = 9.0 Hz, 2H), 7.55 – 7.44 (m, 1H), 7.16 (d, *J* = 8.0 Hz, 2H), 6.73 (dd, *J* = 7.0, 5.5 Hz, 1H), 6.71 (d, *J* = 8.5 Hz, 1H), 3.36 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.4, 159.1, 151.8, 147.4, 137.9, 130.9, 129.3, 120.5, 120.3 (q, *J*_{C-F} = 256.3 Hz), 114.8, 107.2, 38.9. ¹⁹F NMR (376 MHz, CDCl₃): δ -57.7. HRMS m/z ([M+H]⁺) called for C₁₄H₁₃F₃N₃O₂: 312.0960, found: 312.0955.

1t

4-cyano-N'-methyl-N'-(pyridin-2-yl)benzohydrazide: Prepared according to the general method , purified by column chromatography (*n*-hexanes/EtOAc = 3:1 to 1:1) to afford the corresponding product **1t** (82% yield) as a white solid. ¹H NMR (500 MHz, DMSO) δ 11.02 (s, 1H), 8.14 (d, *J* = 4.0 Hz, 1H), 8.06 (d, *J* = 8.0 Hz, 2H), 8.01 (d, *J* = 8.0 Hz,

2H), 7.58 - 7.44 (m, 1H), 6.75 (d, J = 8.5 Hz, 1H), 6.71 (dd, J = 6.5, 5.5 Hz, 1H), 3.31 (s, 3H). ¹³C NMR (125 MHz, DMSO) δ 164.8, 159.8, 147.8, 138.0, 137.1, 133.1, 128.8, 118.7, 114.8, 114.4, 107.3, 38.1. HRMS m/z ([M+H]⁺) called for C₁₄H₁₃N₄O: 253.1089, found: 253.1084.

3-bromo-4-methoxy-N'-methyl-N'-(pyridin-2-

yl)benzohydrazide : Prepared according to the general method , purified by column chromatography (*n*-hexanes/EtOAc = 3:1 to 1:1) to afford the corresponding product **1u** (50% yield) as a white solid. ¹H NMR (500 MHz, DMSO) δ 11.03 (brs, 1H), 8.18 (d, *J* = 2.0 Hz, 1H), 8.12 (dd, *J* = 5.0, 1.0 Hz, 1H), 7.97 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.69 (brs, 1H), 7.24 (d, *J* = 9.0 Hz, 1H), 6.90 (brs, 1H), 6.81 (brs, 1H), 3.92 (s, 3H), 3.33 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 164.0, 158.3, 157.7, 144.5, 139.8, 132.3, 129.2, 125.6, 113.9, 112.3, 110.5, 108.1, 56.7, 38.3. HRMS m/z ([M+H]⁺) called for C₁₄H₁₅BrN₃O₂: 336.0348, found: 336.0343.

N',2,4-trimethyl-N'-(pyridin-2-yl)benzohydrazide : Prepared

according to the general method, purified by column chromatography (n-

hexanes/EtOAc = 3:1 to 1:1) to afford the corresponding product **1v** (80% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (ddd, J = 5.2, 2.0, 0.8 Hz, 1H), 7.98 (s, 1H), 7.50 (ddd, J = 8.8, 7.2, 2.0 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.06 (s, 1H), 7.03 (d, J = 8.0 Hz, 1H), 6.77 (d, J = 8.4 Hz, 1H), 6.71 (ddd, J = 7.2, 5.2, 0.8 Hz, 1H), 3.42 (s, 3H), 2.45 (s, 3H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 159.3, 147.7, 140.8, 137.6, 137.2, 132.1, 130.7, 127.1, 126.4, 114.7, 107.1, 38.8, 21.3, 19.8. HRMS m/z ([M+H]⁺) called for C₁₅H₁₈N₃O: 256.1450, found: 256.1447.

N'-methyl-N'-(pyridin-2-yl)-2-naphthohydrazide: Prepared according to the general method, purified by column chromatography (*n*-hexanes/EtOAc = 3:1 to 1:1) to afford the corresponding product **1w** (80% yield) as a white solid. **¹H NMR (400 MHz, CDCl₃)** δ 9.21 (s, 1H), 8.35 (s, 1H), 8.20 (dd, *J* = 5.2, 1.2 Hz, 1H), 7.87-7.77 (m, 4H), 7.58 – 7.45 (m, 3H), 6.76 (d, *J* = 8.4 Hz, 1H), 6.71 (dd, *J* = 6.8, 5.2 Hz, 1H), 3.42 (s, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ 166.7, 159.3, 147.5, 137.8, 134.9, 132.5, 129.6, 129.0, 128.5, 128.1, 127.9, 127.7, 126.8, 123.6, 114.7, 107.3, 38.9. **HRMS** m/z ([M+H]⁺) called for C₁₇H₁₆N₃O: 278.1293, found: 278.1292.

3. General procedure for cobalt-catalyzed C (*sp*²)-H C–H Functionalization/Spirocyclization Cascade:

Method A: A mixture of N'-methyl-N'-(pyridin-2-

yl)benzohydrazide (0.20 mmol), maleimide (0.6 mmol), $Co(OAc)_2 \cdot 4H_2O$ (4.98 mg, 0.02 mmol), Ag_3PO_4 (125.6 mg, 0.3 mmol), NaOPiv (37.2 mg, 0.3 mmol) and DCE (2.0 mL) was added to a 25 mL sealed tube. The tube was stirred at 110 °C for 12 h. After cooling to room temperature, the reaction mixture was diluted with 5.0 mL of ethyl acetate and filtered through a plug of Celite, followed by washing with 70 mL of ethyl acetate. The combined residue was concentrated under reduced pressure, and then the resulting crude product was purified by column chromatography on to provide the product. The product gives two sets of NMR signals, owing to the presence of rotamers around the amide.

Method **B**: Α mixture of N'-methyl-N'-(pyridin-2yl)benzohydrazide (0.80)mmol), bismaleimide (0.2)mmol), Co(OAc)₂·4H₂O (9.96 mg, 0.04 mmol), Ag₃PO₄ (251 mg, 0.6 mmol), NaOPiv (74.4 mg, 0.6 mmol) and DCE (2.0 mL) was added to a 25 mL sealed tube. The tube was stirred at 140 °C for 24 h. After cooling to room temperature, the reaction mixture was diluted with 5.0 mL of ethyl acetate and filtered through a plug of Celite, followed by washing with 70 mL of ethyl acetate. The combined residue was concentrated under reduced pressure, and then the resulting crude product was purified by column chromatography to provide the product. The product gives two sets of NMR signals, owing to the presence of rotamers around the amide.

1'-methyl-2-(methyl(pyridin-2-yl)amino)spiro[isoindoline-1,3'-

pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3aa** (64 mg, 95% yield) as a foam solid. ¹**H NMR (500 MHz, CDCl₃)** δ 8.16 (dd, J = 4.5, 1.0 Hz, 1H), 7.90 (d, J = 7.5 Hz, 1H), 7.63 (td, J = 7.5, 1.0 Hz, 1H), 7.58 – 7.52 (m, 2H), 7.28 (d, J = 8.0 Hz, 1H), 6.80 (dd, J = 7.0, 5.1 Hz, 1H), 6.65 (d, J = 8.5 Hz, 1H), 3.60 (d, J = 18.5 Hz, 1H), 3.49 (s, 3H), 3.15 (s, 3H), 3.10 (d, J = 19.0 Hz, 1H). ¹³**C NMR (125 MHz, CDCl₃**) δ 174.2, 173.7, 165.7, 159.5, 148.1, 142.5, 138.1, 133.3, 129.9, 129.8, 124.7, 120.4, 116.4, 107.1, 69.4, 39.1, 36.8, 25.7. **HRMS** m/z ([M+H]⁺) called for C₁₈H₁₇N₄O₃: 337.1301, found: 337.1293.

1',4-dimethyl-2-(methyl(pyridin-2-yl)amino)spiro[isoindoline-

1,3'-pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*-

hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3ba** (56 mg, 80% yield) as a foam solid. ¹H NMR (500 MHz, CDCl₃) δ 8.18 (dd, J = 5.0, 1.0 Hz, 1H), 7.56 – 7.52 (m, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.07 (d, J = 7.5 Hz, 1H), 6.80 (dd, J = 7.5, 5.0 Hz, 1H), 6.66 (d, J = 8.5 Hz, 1H), 3.60 (d, J = 18.5 Hz, 1H), 3.48 (s, 3H), 3.15 (s, 3H), 3.08 (d, J = 18.5 Hz, 1H), 2.70 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 174.5, 173.9, 166.5, 159.7, 148.1, 143.0, 139.2, 138.1, 132.8, 132.0, 126.8, 117.6, 116.3, 107.0, 68.8, 39.1, 37.1, 25.7, 17.1. HRMS m/z ([M+H]⁺) called for C₁₉H₁₉N₄O₃: 351.1457, found: 351.1453.

4-methoxy-1'-methyl-2-(methyl(pyridin-2-

yl)amino)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure, purified by silica gel column chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3ca** (37 mg, 950% yield) as a foam solid. ¹H NMR (500 MHz, CDCl₃) δ 8.16 (dd, *J* = 4.5, 1.0 Hz, 1H), 7.56 (t, *J* = 8.0 Hz, 1H), 7.52 – 7.49 (m, 1H), 6.99 (d, *J* = 8.5 Hz, 1H), 6.81 (d, *J* = 7.5 Hz, 1H), 6.77 (dd, *J* = 7.0, 5.0 Hz, 1H), 6.64 (d, *J* = 8.5 Hz, 1H), 3.95 (s, 3H), 3.56 (d, *J* = 18.5 Hz, 1H), 3.46 (s, 3H), 3.13 (s, 3H), 3.07 (d, *J* = 18.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 174.2, 173.8, 164.5, 159.8 157.8, 148.1, 144.8, 138.0, 135.1, 116.9, 116.2, 112.3, 112.1, 107.1, 68.8, 56.0, 39.0, 37.1, 25.7. HRMS m/z ([M+H]⁺) called for C₁₉H₁₉N₄O₄: 367.1406, found: 367.1405.

4-fluoro-1'-methyl-2-(methyl(pyridin-2-

yl)amino)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3da** (58 mg, 82% yield) as a foam solid. ¹H NMR (500 MHz, CDCl₃) δ 8.16 (d, *J* = 4.5 Hz, 1H), 7.61 (td, *J* = 8.0, 4.5 Hz, 1H), 7.58 – 7.52 (m, 1H), 7.20 (t, *J* = 8.6 Hz, 1H), 7.07 (d, *J* = 7.5 Hz, 1H), 6.82 (dd, *J* = 7.0, 5.0 Hz, 1H), 6.69 (d, *J* = 8.0 Hz, 1H), 3.67 (d, *J* = 18.5 Hz, 1H), 3.46 (s, 3H), 3.15 (s, 3H), 3.10 (d, *J* = 18.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 173.7, 162.7, 160.1, 159.3, 157.5, 148.1, 144.6 (d, *J*_{C-F} = 3.0 Hz), 138.2, 135.5 (d, *J*_{C-F} = 8.0 Hz), 117.5 (d, *J*_{C-F} = 19.0 Hz), 116.7, 116.6 (d, *J*_{C-F} = 4.0 Hz), 107.2, 69.1, 39.2, 36.9, 25.9. ¹⁹F NMR (376 MHz, CDCl₃): δ -114.7. HRMS m/z ([M+H]⁺) called for C₁₈H₁₆FN₄O₃: 355.1206, found: 355.1199.

4-chloro-1'-methyl-2-(methyl(pyridin-2-yl)amino)spiro[isoindoline-1,3'pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3ea** (68 mg, 91% yield) as a foam solid. ¹H NMR (500 MHz, CDCl₃) δ 8.15 (dd, J = 5.0, 1.0 Hz, 1H), 7.58 – 7.53 (m, 2H), 7.49 (dd, J = 8.0, 1.0 Hz, 1H), 7.18 (dd, J = 7.5, 1.0 Hz, 1H), 6.82 (dd, J = 7.0, 5.0 Hz, 1H), 6.69 (d, J =8.5 Hz, 1H), 3.71 (d, J = 18.5 Hz, 1H), 3.46 (s, 3H), 3.15 (s, 3H), 3.09 (d, J = 18.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 173.7, 163.5, 159.3, 148.1, 144.7, 138.2, 134.0, 132.5, 131.7, 126.1, 119.1, 116.7, 107.2, 68.5, 39.2, 36.9, 25.9. HRMS m/z ([M+H]⁺) called for C₁₈H₁₆ClN₄O₃: 371.0911, found: 371.0906.

4-bromo-1'-methyl-2-(methyl(pyridin-2-

yl)amino)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the

corresponding product **3fa** (50 mg, 60% yield) as a foam solid. ¹**H NMR** (**500 MHz, CDCl₃**) δ 8.15 (dd, J = 5.0, 1.0 Hz, 1H), 7.70 (dd, J = 8.0, 0.5Hz, 1H), 7.58-7.54 (m, 1H), 7.46 (t, J = 7.8 Hz, 1H), 7.22 (dd, J = 7.5, 0.5Hz, 1H), 6.83 – 6.81 (m, 1H), 6.69 (d, J = 8.5 Hz, 1H), 3.72 (d, J = 19.0Hz, 1H), 3.46 (s, 3H), 3.15 (s, 3H), 3.09 (d, J = 18.5 Hz, 1H). ¹³**C NMR** (**125 MHz, CDCl₃**) δ 173.8, 173.6, 163.8, 159.3, 148.1, 144.9, 138.2, 134.9, 134.0, 127.7, 120.1, 119.5, 116.7, 107.2, 68.3, 39.2, 36.9, 25.8. **HRMS** m/z ([M+H]⁺) called for C₁₈H₁₆BrN₄O₃: 415.0406, found: 415.0396.

5-(dimethylamino)-1'-methyl-2-(methyl(pyridin-2-

yl)amino)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3ga** (67 mg, 88% yield) as a foam solid. ¹H NMR (500 MHz, CDCl₃) δ 8.19 (dd, *J* = 5.0, 1.0 Hz, 1H), 7.53 – 7.50 (m, 1H), 7.16 (d, *J* = 2.5 Hz, 1H), 7.09 (d, *J* = 8.5 Hz, 1H), 6.91 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.79 (dd, *J* = 7.0, 5.0 Hz, 1H), 6.62 (d, *J* = 8.5 Hz, 1H), 3.51 (d, *J* = 17.0 Hz, 1H), 3.50 (s, 3H), 3.15 (s, 3H), 3.05 (d, *J* = 16.0 Hz, 1H), 3.02 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 175.0, 174.1, 166.7, 159.8, 151.8, 148.2, 138.0, 130.7, 129.4, 120.8, 117.0, 116.2, 107.1, 106.9, 69.0, 40.5, 38.9, 36.9, 25.6. **HRMS** m/z ($[M+H]^+$) called for C₂₀H₂₂N₅O₃: 380.1723, found: 380.1718.

5-chloro-1'-methyl-2-(methyl(pyridin-2-

yl)amino)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3ha** (59mg, 80% yield) as a foam solid. ¹H NMR (500 MHz, CDCl₃) δ 8.15 (ddd, *J* = 5.0, 1.8, 0.8 Hz, 1H), 7.87 (d, *J* = 1.5 Hz, 1H), 7.60 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.58-7.55 (m, 1H), 7.24 (d, *J* = 8.0 Hz 1H), 6.83 (ddd, *J* = 7.0, 5.0, 0.5 Hz, 1H), 6.68 (d, *J* = 8.5 Hz, 1H), 3.66 (d, *J* = 18.5 Hz, 1H), 3.46 (s, 3H), 3.16 (s, 3H), 3.08 (d, *J* = 18.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 173.9, 173.6, 164.5, 159.2, 148.2, 140.6, 138.2, 136.5, 133.4, 131.8, 124.9, 121.8, 116.7, 107.1, 69.3, 39.2, 36.7, 25.8. HRMS m/z ([M+H]⁺) called for C₁₈H₁₆ClN₄O₃: 371.0911, found: 371.0914.

1',6-dimethyl-2-(methyl(pyridin-2-yl)amino)spiro[isoindoline-

1,3'-pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3ia** (64 mg, 91% yield) as a foam solid. ¹H NMR (500 MHz, CDCl₃) δ 8.17 (dd, J = 5.0, 1.0 Hz, 1H), 7.78 (d, J = 7.5 Hz, 1H), 7.53 (ddd, J = 8.9, 7.3, 1.9 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.06 (s, 1H), 6.80 (dd, J = 6.7, 4.8 Hz, 1H), 6.64 (d, J = 8.5 Hz, 1H), 3.57 (d, J = 18.5 Hz, 1H), 3.49 (s, 3H), 3.17 (s, 3H), 3.08 (d, J = 18.5 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 174.4, 173.9, 165.9, 159.6, 148.1, 144.5, 142.0, 138.0, 130.9, 127.2, 124.6, 120.8, 116.3, 107.0, 69.3, 39.1, 36.9, 25.7, 22.0. HRMS m/z ([M+H]⁺) called for C₁₉H₁₉N₄O₃: 351.1457, found: 351.1451.

6-(tert-butyl)-1'-methyl-2-(methyl(pyridin-2-

yl)amino)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure, purified by silica gel column

chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3ja** (75 mg, 95% yield) as a foam solid. ¹H NMR (500 MHz, CDCl₃) δ 8.17 (dd, J = 5.0, 1.0 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.61 (dd, J = 8.0, 1.5 Hz, 1H), 7.52 (ddd, J = 8.0, 7.3, 1.5 Hz, 1H), 7.20 (d, J = 1.0 Hz, 1H), 6.79 (dd, J = 7.0, 5.0 Hz, 1H), 6.64 (d, J = 8.5 Hz, 1H), 3.59 (d, J = 18.5 Hz, 1H), 3.48 (s, 3H), 3.17 (s, 3H), 3.12 (d, J = 18.5 Hz, 1H), 1.34 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 174.5, 174.0, 165.8, 159.6, 157.8, 148.1, 142.6, 138.0, 127.5, 127.2, 124.3, 116.8, 116.3, 107.1, 69.4, 39.1, 36.8, 35.6, 31.3, 25.7. HRMS m/z ([M+H]⁺) called for C₂₂H₂₅N₄O₃: 393.1927, found: 393.1921.

6-methoxy-1'-methyl-2-(methyl(pyridin-2-

yl)amino)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3ka** (62 mg, 85% yield) as a foam solid. ¹H NMR (500 MHz, CDCl₃) δ 8.17 (ddd, *J* = 5.0, 2.0, 1.0 Hz, 1H), 7.81 (d, *J* = 8.5 Hz, 1H), 7.54-7.50 (m, 1H), 7.06 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.80 – 6.78 (m, 1H), 6.71 (d, *J* = 2.0 Hz, 1H), 6.63 (d, *J* = 8.5 Hz, 1H), 3.85 (s, 3H), 3.56 (d, *J* = 18.5 Hz, 1H), 3.47 (s, 3H), 3.15 (s, 3H), 3.08 (d, *J* = 18.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 174.3, 173.9, 165.6, 164.1, 159.7, 148.1, 144.6, 138.0, 126.3, 122.1, 116.30, 115.9, 107.0, 105.8, 69.1, 55.9, 39.1, 36.9, 25.7. HRMS m/z ([M+H]⁺) called for C₁₉H₁₉N₄O₄: 367.1406, found: 367.1402.

1'-methyl-2-(methyl(pyridin-2-yl)amino)-6-

(methylthio)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione:

Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3la** (64 mg, 84% yield) as a foam solid. ¹**H NMR (500 MHz, CDCl₃)** δ 8.14 (dd, *J* = 4.5, 1.0 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.53 – 7.49 (m, 1H), 7.35 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.05 (d, *J* = 1.0 Hz, 1H), 6.78 (dd, *J* = 7.0, 5.0 Hz, 1H), 6.63 (d, *J* = 8.0 Hz, 1H), 3.57 (d, *J* = 19.0 Hz, 1H), 3.44 (s, 3H), 3.12 (s, 3H), 3.08 (d, *J* = 19.0 Hz, 1H), 2.48 (s, 3H). ¹³**C NMR (125 MHz, CDCl₃)** δ 174.2, 173.8, 165.6, 159.5, 148.1, 146.7, 143.1, 138.2, 126.7, 126.1, 124.8, 117.2, 116.5, 107.1, 69.1, 39.2, 36.7, 25.9, 15.2. HRMS m/z ([M+H]⁺) called for C₁₉H₁₉N₄O₃S: 383.1178, found: 383.1157.

3ma

1'-methyl-2-(methyl(pyridin-2-yl)amino)-6-

phenylspiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3ma** (77 mg, 93% yield) as a foam solid. ¹H NMR (500 MHz, CDCl₃) δ 8.19 (dd, *J* = 5.0, 1.0 Hz, 1H), 7.97 (d, *J* = 8.0 Hz, 1H), 7.78 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.57-7.54 (m, 3H), 7.48 (t, *J* = 7.5 Hz, 2H), 7.44 – 7.42 (m, 2H), 6.82 (dd, *J* = 7.0, 5.0 Hz, 1H), 6.69 (d, *J* = 8.5 Hz, 1H), 3.66 (d, *J* = 18.5 Hz, 1H), 3.51 (s, 3H), 3.19 (d, *J* = 18.5 Hz, 1H), 3.18 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 174.3, 173.8, 165.7, 159.6, 148.2, 147.1, 143.3, 139.7, 138.1, 129.2, 129.1, 128.6, 128.5, 127.5, 125.1, 119.1, 116.5, 107.1, 69.5, 39.2, 36.9, 25.8. HRMS m/z ([M+H]⁺) called for C₂₄H₂₁N₄O₃: 413.1614, found: 413.1601.

1'-methyl-2-(methyl(pyridin-2-yl)amino)-6phenoxyspiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione: Prepared

according to the general procedure method A, purified by silica gel column chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3na** (80 mg, 93% yield) as a foam solid. ¹H NMR (**500 MHz, CDCl₃**) δ 8.16 (dd, *J* = 5.0, 1.0 Hz, 1H), 7.81 (d, *J* = 8.5 Hz, 1H), 7.55-7.51 (m, 1H), 7.39 (dd, *J* = 8.5, 7.5 Hz, 2H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.08 – 7.04 (m, 3H), 6.87 (d, *J* = 2.0 Hz, 1H), 6.81 – 6.79 (m, 1H), 6.66 (d, *J* = 8.5 Hz, 1H), 3.59 (d, *J* = 18.5 Hz, 1H), 3.46 (s, 3H), 3.12 (s, 3H), 3.07 (d, *J* = 19.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 174.1, 173.6, 165.3, 162.4, 159.5, 155.1, 148.1, 144.5, 138.1, 130.2, 126.4, 124.9, 123.9, 120.0, 119.0, 116.4, 109.7, 107.0, 69.0, 39.1, 36.7, 25.7. HRMS m/z ([M+H]⁺) called for C₂₄H₂₁N₄O₄: 429.1563, found: 429.1557.

6-fluoro-1'-methyl-2-(methyl(pyridin-2-

yl)amino)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3oa** (67 mg, 95% yield) as a foam solid. ¹H NMR (**500 MHz, CDCl**₃) δ 8.15 (ddd, *J* = 5.0, 1.5, 0.7 Hz, 1H), 7.89 (dd, *J* = 8.5, 5.0 Hz, 1H), 7.57-7.54 (m, 1H), 7.26 (td, *J* = 9.0, 2.0 Hz, 1H), 7.00 (dd, *J* = 7.5, 2.0 Hz, 1H), 6.83 – 6.80 (m, 1H), 6.67 (d, *J* = 8.5 Hz, 1H), 3.66 (d, J = 19.0 Hz, 1H), 3.46 (s, 3H), 3.16 (s, 3H), 3.10 (d, J = 18.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 173.8, 173.4, 166.9, 164.8 (d, $J_{C-F} =$ 15.0 Hz), 159.3, 148.1, 144.7 (d, $J_{C-F} = 8.8$ Hz), 138.1, 127.1 (d, $J_{C-F} =$ 8.8 Hz), 126.0, 117.7 (d, $J_{C-F} = 23.8$ Hz), 116.6, 108.3 (d, $J_{C-F} = 2.5$ Hz), 107.1, 69.2, 39.2, 36.7, 25.8. ¹⁹F NMR (376 MHz, CDCl₃): δ -57.6. HRMS m/z ([M+H]⁺) called for C₁₈H₁₆FN₄O₃: 355.1206, found: 355.1202.

6-chloro-1'-methyl-2-(methyl(pyridin-2-

yl)amino)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3pa** (69 mg, 93% yield) as a foam solid. ¹H NMR (**500 MHz, CDCl**₃) δ 8.14 (ddd, *J* = 5.0, 1.5, 1.0 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.57-7.53 (m, 2H), 7.28 (d, *J* = 1.5 Hz, 1H), 6.83 – 6.80 (m, 1H), 6.67 (d, *J* = 8.5 Hz, 1H), 3.64 (d, *J* = 18.5 Hz, 1H), 3.45 (s, 3H), 3.16 (s, 3H), 3.10 (d, *J* = 19.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 173.7, 173.5, 164.8, 159.2, 148.1, 143.9, 139.7, 138.2, 130.5, 128.4, 126.0, 121.1, 116.7, 107.1, 69.1, 39.2, 36.6, 25.8. **HRMS** m/z ([M+H]⁺) called for C₁₈H₁₆ClN₄O₃: 371.0911, found: 371.0909.

6-bromo-1'-methyl-2-(methyl(pyridin-2-

yl)amino)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3qa** (75 mg, 90% yield) as a foam solid. ¹H NMR (500 MHz, CDCl₃) δ 8.14 (dd, *J* = 5.0, 1.0 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.71 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.57 – 7.54 (m, 1H), 7.44 (d, *J* = 1.5 Hz, 1H), 6.82 (dd, *J* = 7.5, 5.0 Hz, 1H), 6.67 (d, *J* = 8.5 Hz, 1H), 3.65 (d, *J* = 18.5 Hz, 1H), 3.45 (s, 3H), 3.17 (s, 3H), 3.10 (d, *J* = 18.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 173.7, 173.4, 164.9, 159.2, 148.2, 144.1, 138.2, 133.4, 128.9, 127.9, 126.1, 124.0, 116.7, 107.1, 69.0, 39.2, 36.6, 25.9. HRMS m/z ([M+H]⁺) called for C₁₈H₁₆BrN₄O₃: 415.0406, found: 415.0400.

1'-methyl-2-(methyl(pyridin-2-yl)amino)-6-(trifluoromethyl)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3ra** (78 mg, 96% yield) as a foam solid. ¹H NMR (500 MHz, CDCl₃) δ 8.14 (dd, *J* = 5.0, 1.0 Hz, 1H), 8.02 (d, *J* = 8.0 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.61 – 7.56 (m, 1H), 7.55 (s, 1H), 6.84 (dd, *J* = 7.0, 5.0 Hz, 1H), 6.71 (d, *J* = 8.5 Hz, 1H), 3.74 (d, *J* = 18.5 Hz, 1H), 3.46 (s, 3H), 3.19 (s, 3H), 3.15 (d, *J* = 19.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 173.6, 173.4, 164.4, 159.1, 148.2, 142.9, 138.2, 135.4, (q, *J*_{C-F} = 32.5 Hz), 133.4, 127.2 (q, *J*_{C-F} = 271.3 Hz), 125.4, 122.3 (q, *J*_{C-F} = 21.3 Hz), 118.0 (q, *J*_{C-F} = 3.8 Hz), 116.9, 107.2, 69.50, 39.2, 36.6, 25.9. ¹⁹F NMR (376 MHz, CDCl₃): δ -62.5. HRMS m/z ([M+H]⁺) called for C₁₉H₁₆F₃N₄O₃: 405.1175, found: 405.1168.

1'-methyl-2-(methyl(pyridin-2-yl)amino)-6-

(trifluoromethoxy)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione:

Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3sa** (80 mg, 95% yield) as a foam solid. ¹**H NMR (500 MHz, CDCl₃)** δ 8.15 (dd, *J* = 5.0, 1.0 Hz, 1H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.59 – 7.57 (m, 1H), 7.43 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.12 (s, 1H), 6.83 (dd, *J* = 7.0, 5.0 Hz, 1H), 6.69 (d, *J* = 8.5 Hz, 1H), 3.71 (d, *J* = 18.5 Hz, 1H), 3.46 (s, 3H), 3.18 (s, 3H), 3.12 (d, *J* = 19.0 Hz, 1H). ¹³**C NMR (100 MHz, CDCl₃)** δ 173.7, 173.5, 164.5, 159.2, 152.8 (q, *J*_{C-F} = 2.0 Hz), 148.2, 144.2, 138.2, 128.4, 126.6, 122.5, 120.2 (q, *J*_{C-F} = 258.0 Hz), 116.8, 113.41, 107.2, 69.2, 39.2, 36.6, 25.9. ¹⁹**F NMR (376 MHz, CDCl₃):** δ -103.1. **HRMS** m/z ([M+H]⁺) called for C₁₉H₁₆F₃N₄O₄: 421.1124, found: 421.1118.

1'-methyl-2-(methyl(pyridin-2-yl)amino)-2',3,5'-trioxospiro[isoindoline-1,3'pyrrolidine]-6-carbonitrile: Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3ta** (69 mg, 96% yield) as a foam solid. ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, J = 4.0 Hz, 1H), 7.99 (d, J = 7.5 Hz, 1H), 7.86 (dd, J = 7.8, 0.8 Hz, 1H), 7.64 (s, 1H), 7.60 – 7.57 (m, 1H), 6.84 (dd, J = 7.0, 5.0 Hz, 1H), 6.72 (d, J = 8.5 Hz, 1H), 3.74 (d, J = 19.0 Hz, 1H), 3.43 (s, 3H), 3.18 (s, 3H), 3.12 (d, J = 19.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 173.1, 163.9, 158.8, 148.1, 143.0, 138.3, 133.9, 133.8, 125.5, 124.7, 117.3, 117.0, 116.8, 107.2, 69.3, 39.2, 36.4, 25.9. HRMS m/z ([M+H]⁺) called for C₁₉H₁₆N₅O₃: 362.1253, found: 362.1246.

5-bromo-6-methoxy-1'-methyl-2-(methyl(pyridin-2-

yl)amino)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3ua** (74 mg, 83% yield) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.14 (dd, *J* = 5.0, 1.0 Hz, 1H), 8.05 (s, 1H), 7.56 – 7.52 (m, 1H), 6.81 (dd, *J* = 7.0, 5.0 Hz, 1H), 6.69 (s, 1H), 6.65 (d, *J* = 8.5 Hz, 1H), 3.93 (s, 3H), 3.65 (d, *J* = 19.0 Hz, 1H), 3.43 (s, 3H), 3.16 (s, 3H), 3.10 (d, *J* = 18.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 173.9, 173.8, 164.5, 160.1, 159.4, 148.1, 143.3, 138.1, 129.6, 123.3, 116.6, 114.5, 107.1, 103.3, 69.0, 56.9, 39.2, 36.7, 25.9. HRMS m/z ([M+H]⁺) called for C₁₉H₁₈BrN₄O₄: 445.0511, found: 445.0507.

1',4,6-trimethyl-2-(methyl(pyridin-2-yl)amino)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3va** (65 mg, 89% yield) as a foam solid. ¹**H NMR (500 MHz, CDCl₃)** δ 8.17 (dd, J = 5.0, 1.0 Hz, 1H), 7.54 – 7.51 (m, 1H), 7.11 (s, 1H), 6.86 (s, 1H), 6.79 (dd, J = 7.0, 5.0 Hz, 1H), 6.64 (d, J = 8.5 Hz, 1H), 3.55 (d, J = 18.5 Hz, 1H), 3.48 (s, 3H), 3.15 (s, 3H), 3.06 (d, J = 18.5 Hz, 1H), 2.65 (s, 3H), 2.39 (s, 3H). ¹³**C NMR (125 MHz, CDCl₃)** δ 174.7, 174.0, 166.6, 159.8, 148.1, 143.8, 143.3, 138.8, 138.0, 132.9, 124.1, 118.1, 116.2, 107.0, 68.6, 39.1, 37.1, 25.7, 21.8, 17.0. **HRMS** m/z ([M+H]⁺) called for C₂₀H₂₁N₄O₃: 365.1614, found: 365.1610.

1'-methyl-2-(methyl(pyridin-2-yl)amino)spiro[benzo[f]isoindole-1,3'-pyrrolidine]-2',3,5'(2H)-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*- hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3wa** (63 mg, 82% yield) as a foam solid.¹**H NMR (500 MHz, CDCl₃)** δ 8.44 (s, 1H), 8.21 – 8.16 (m, 1H), 8.03 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.73 (s, 1H), 7.65-7.58 (m, 2H), 7.57-7.53 (m, 1H), 6.83 – 6.79 (m, 1H), 6.69 (d, *J* = 8.5 Hz, 1H), 3.66 (d, *J* = 18.5 Hz, 1H), 3.55 (s, 3H), 3.21 (s, 3H), 3.20 (d, *J* = 18.5 Hz, 1H). ¹³**C NMR (125 MHz, CDCl₃)** δ 174.7, 174.1, 165.8, 159.5, 148.2, 138.2, 137.9, 135.6, 133.6, 129.8, 128.6, 128.3, 127.5, 126.8, 125.6, 119.9, 116.5, 107.2, 69.4, 39.3, 37.8, 25.8. **HRMS** m/z ([M+H]⁺) called for C₂₂H₁₉N₄O₃: 387.1457, found: 387.1451.

2-(methyl(pyridin-2-yl)amino)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3ab** (47 mg, 72% yield) as a foam solid. ¹H NMR (500 MHz, CDCl₃) δ 9.34 (brs, 1H), 8.17 – 8.16 (m, 1H), 7.91 (d, *J* = 7.5 Hz, 1H), 7.66 (td, *J* = 7.5, 1.0 Hz, 1H), 7.59 – 7.53 (m, 2H), 7.39 (d, *J* = 7.5 Hz, 1H), 6.82 – 6.80(m, 1H), 6.66 (d, *J* = 8.5 Hz, 1H), 3.63 (d, *J* = 18.5 Hz, 1H), 3.52 (s, 3H), 3.10 (d, *J* = 18.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 174.1, 173.5, 165.8, 159.4, 148.1, 142.2, 138.1, 133.4, 130.0 129.7, 124.8, 120.4, 116.5, 107.1, 70.6, 39.2, 37.7. **HRMS** m/z ([M+H]⁺) called for C₁₇H₁₅N₄O₃: 323.1144, found: 323.1138.

1'-ethyl-2-(methyl(pyridin-2-yl)amino)spiro[isoindoline-1,3'-pyrrolidine]-**2',3,5'-trione:** Prepared according to the general procedure method A, purified by silica gel column chromatography (*n*-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3ac** (65 mg, 93% yield) as a foam solid. ¹**H NMR (500 MHz, CDCl₃)** δ 8.17 (dd, J = 4.8, 1.0 Hz, 1H), 7.91 (d, J = 7.5 Hz, 1H), 7.67 – 7.62 (m, 1H), 7.58 (d, J = 7.5 Hz, 1H), 7.56 – 7.52 (m, 1H), 7.27 (d, J = 7.5 Hz, 1H), 6.80 (dd, J = 7.0, 5.0 Hz, 1H), 6.65 (d, J = 8.5 Hz, 1H), 3.71 (q, J = 7.0 Hz, 2H), 3.57 (d, J = 18.5 Hz, 1H), 3.49 (s, 3H), 3.08 (d, J = 18.5 Hz, 1H), 1.25 (t, J = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 174.0, 173.5, 165.8, 159.5, 148.1, 142.6, 138.1, 133.4, 129.9, 129.8, 124.7, 120.2, 116.4, 107.0, 69.2, 39.0, 36.7, 34.6, 13.0. HRMS m/z ([M+H]⁺) called for C₁₉H₁₉N₄O₃: 351.1457, found: 351.1450.

1'-(tert-butyl)-2-(methyl(pyridin-2-yl)amino)spiro[isoindoline-

1,3'-pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure, method A, purified by silica gel column chromatography (n-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3ad** (66 mg, 87% yield) as a foam solid. ¹H NMR (500 MHz, CDCl₃) δ 8.18 (dd, J = 5.0, 1.0 Hz, 1H), 7.90 (d, J = 7.5 Hz, 1H), 7.65 (td, J = 7.5, 1.0 Hz, 1H), 7.57 (td, J = 7.5, 1.0 Hz, 1H), 7.53 – 7.50 (m, 1H), 7.29 (d, J = 8.0 Hz, 1H), 6.81 – 6.78 (m, 1H), 6.60 (d, J = 8.5 Hz, 1H), 3.54 (s, 3H), 3.39 (d, J = 18.5 Hz, 1H), 2.97 (d, J = 18.0 Hz, 1H), 1.64 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 174.7, 174.5, 165.9, 159.6, 148.2, 143.0, 138.0, 133.3, 129.9, 129.8, 124.8, 119.9, 116.2, 107.0, 69.2, 59.8, 38.9, 37.0, 28.3. HRMS m/z ([M+H]⁺) called for C₂₁H₂₃N₄O₃: 379.1770, found: 379.1765

1'-cyclohexyl-2-(methyl(pyridin-2-yl)amino)spiro[isoindoline-

1,3'-pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (n-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3ae** (74 mg, 92% yield) as a foam solid.¹**H NMR (500 MHz, CDCl**₃) δ 8.18 (dd, J = 4.5, 1.0 Hz, 1H), 7.90 (d, J = 7.5 Hz, 1H), 7.63 (td, J = 7.5, 1.0 Hz, 1H), 7.59 – 7.55 (m, 1H), 7.55 – 7.49 (m, 1H), 7.26 (d, J = 7.5 Hz, 1H),

6.80 (dd, J = 6.8, 5.0 Hz, 1H), 6.62 (d, J = 8.5 Hz, 1H), 4.10 (tt, J = 12.3, 3.8 Hz, 1H), 3.50 (s, 3H), 3.49 (d, J = 18.5 Hz, 1H), 3.03 (d, J = 18.5 Hz, 1H), 2.22 (qd, J = 12.5, 3.7 Hz, 1H), 2.12 (qd, J = 12.5, 3.7 Hz, 1H), 1.85 (dd, J = 13.5, 2.8 Hz, 2H), 1.71-1.66 (m, 3H), 1.38 – 1.27 (m, 2H), 1.24-1.18 (m, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 174.1, 173.7, 165.8, 159.5, 148.2, 142.8, 138.0, 133.3, 129.9, 129.8, 124.7, 120.1, 116.3, 107.0, 68.9, 52.7, 38.9, 36.6, 29.0, 28.7, 25.6, 25.7, 24.9. **HRMS** m/z ([M+H]⁺) called for C₂₃H₂₄N₄O₃: 405.1927, found: 405.1920.

1'-benzyl-2-(methyl(pyridin-2-yl)amino)spiro[isoindoline-1,3'pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (nhexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3af** (77 mg, 93% yield) as a foam solid. ¹**H NMR (500 MHz, CDCl₃)** δ 8.16 (dd, J = 5.0, 1.0 Hz, 1H), 7.89 (dd, J = 5.5, 3.0 Hz, 1H), 7.56-7.54 (m, 3H), 7.39 (dd, J = 7.8, 1.7 Hz, 2H), 7.34-7.32 (m, 3H), 7.06 (dd, J = 5.7, 2.8Hz, 1H), 6.81 (dd, J = 7.5, 5.0 Hz, 1H), 6.62 (d, J = 8.5 Hz, 1H), 4.83 (d, J = 14.0 Hz, 1H), 4.78 (d, J = 14.0 Hz, 1H), 3.63 (d, J = 19.0 Hz, 1H), 3.37 (s, 3H), 3.09 (d, J = 18.5 Hz, 1H). ¹³C NMR (**125 MHz, CDCl₃**) δ 174.0, 173.3, 165.7, 159.4, 148.2, 142.5, 138.1, 135.2, 133.3, 129.9, ³⁵

128.8, 128.6, 128.3, 124.7, 120.3, 116.4, 107.0, 69.3, 43.3, 39.0, 36.8. **HRMS** m/z ([M+H]⁺) called for C₂₄H₂₁N₄O₃: 413.1614, found: 413.1605.

2-(methyl(pyridin-2-yl)amino)-1'-phenylspiro[isoindoline-1,3'-

pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (nhexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3ag** (76 mg, 95% yield) as a foam solid. ¹H NMR (500 MHz, CDCl₃) δ 8.20 (dd, J = 5.0, 1.0 Hz, 1H), 7.94 (d, J = 7.5 Hz, 1H), 7.69 (td, J = 7.5, 1.0 Hz), 7.63 – 7.55 (m, 2H), 7.51 (t, J = 7.5 Hz, 2H), 7.44 (dd, J = 7.5, 3.0 Hz, 2H), 7.37 – 7.35 (m, 2H), 6.84 (dd, J = 7.0, 5.0 Hz, 1H), 6.72 (d, J = 8.5Hz, 1H), 3.80 (d, J = 18.5 Hz, 1H), 3.56 (s, 3H), 3.27 (d, J = 18.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 172.6, 165.8, 159.5, 148.2, 142.5, 138.2, 133.5, 131.4, 130.1, 129.8, 129.3, 129.1, 126.1, 124.9, 120.2, 116.5, 107.1, 69.5, 39.2, 36.9. HRMS m/z ([M+H]⁺) called for C₂₃H₁₉N₄O₃: 399.1457, found: 399.1452.

1'-(4-acetylphenyl)-2-(methyl(pyridin-2-yl)amino)spiro[isoindoline-1,3'pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure method A, purified by silica gel column chromatography (nhexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **3ah** (81 mg, 92% yield) as a foam solid. ¹H NMR (**500 MHz, CDCl**₃) δ 8.18 (dd, J = 5.0, 1.0 Hz, 1H), 8.05 (d, J = 9.0 Hz, 2H), 7.92 (d, J = 7.5 Hz, 1H), 7.68 (td, J = 7.5, 1.0 Hz, 1H), 7.58 (m, 2H), 7.50 (d, J = 8.5 Hz, 2H), 7.44 (d, J = 7.5 Hz, 1H), 6.83 (dd, J = 7.0, 5.0 Hz, 1H), 6.71 (d, J = 8.5 Hz, 1H), 3.83 (d, J = 18.5 Hz, 1H), 3.53 (s, 3H), 3.28 (d, J = 18.5 Hz, 1H), 2.60 (s, 3H). ¹³C NMR (**125 MHz, CDCl**₃) δ 196.6, 173.0, 172.1, 165.7, 159.4, 148.1, 142.3, 138.1, 137.1, 135.3, 133.5, 130.2, 129.8, 129.2, 126.0, 124.9, 120.3, 116.6, 107.1, 69.5, 39.3, 36.9, 26.5. HRMS m/z ([M+H]⁺) called for C₂₅H₂₁N₄O₄: 441.1563, found: 441.1556.

1',1'''-(methylenebis(4,1-phenylene))bis(2-(methyl(pyridin-2-

yl)amino)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione): Prepared according to the general procedure method B, purified by silica gel column chromatography (n-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **4a** (148 mg, 92% yield) as a foam solid. ¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, *J* = 4.0 Hz, 2H), 7.92 (d, *J* = 7.5 Hz, 2H), 7.67 (t, *J* = 7.5 Hz, 2H), 7.60 – 7.54 (m, 4H), 7.43 (d, *J* = 7.5 Hz, 2H), 7.32 – 7.26 (m, 8H), 6.82 (dd, *J* = 6.8, 5.2 Hz, 2H), 6.70 (d, *J* = 8.5 Hz, 2H), 4.05 (s, 2H), 3.78 (d, *J* = 18.5 Hz, 2H), 3.54 (s, 6H), 3.25 (d, *J* = 18.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 172.6, 165.8, 159.5, 148.2, 142.5, 141.3, 138.1, 133.5, 130.1, 129.9, 129.8, 129.7, 126.2, 124.8, 120.3, 116.5, 107.1, 69.5, 41.1, 39.2, 36.9. HRMS m/z ([M+H]⁺) called for C₄₇H₃₇N₈O₆: 809.2836, found: 809.2835.

1',1'''-(methylenebis(4,1-phenylene))bis(6-bromo-2-(methyl(pyridin-2yl)amino)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione): Prepared according to the general procedure method B, purified by silica gel column chromatography (n-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product **4b** (158 mg, 82% yield) as a foam solid. ¹H NMR (**400 MHz, CDCl₃**) δ 8.16 (d, *J* = 4.0 Hz, 2H), 7.74 (dd, *J* = 18.8, 8.0 Hz, 4H), 7.61 – 7.56 (m, 4H), 7.35 – 7.25 (m, 8H), 6.84 (dd, *J* = 6.4, 5.2 Hz, 2H), 6.72 (d, J = 8.4 Hz, 2H), 4.06 (s, 2H), 3.84 (d, J = 18.8 Hz, 2H), 3.50 (s, 6H), 3.21 (d, J = 18.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 172.5, 165.0, 159.2, 148.2, 144.0, 141.5, 138.3, 133.6, 129.9, 129.6, 128.9, 128.1, 126.3, 126.3, 124.1, 116.9, 107.2, 69.1, 41.1, 39.4, 36.7. HRMS m/z ([M+H]⁺) called for C₄₇H₃₅Br₂N₈O₆: 965.1046, found: 965.1039.

1',1'''-(1,4-phenylene)bis(2-(methyl(pyridin-2-

yl)amino)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione): Prepared according to the general procedure method B, purified by silica gel column chromatography (n-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product 4c (118 mg, 82% yield) as a foam solid. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (dd, *J* = 4.8, 1.2 Hz, 2H), 7.95 (d, *J* = 7.6 Hz, 2H), 7.72-7.68 (m, 2H), 7.65 – 7.58 (m, 4H), 7.57 (d, *J* = 2.8 Hz, 4H), 7.43 (d, *J* = 7.6 Hz, 2H), 6.85 (dd, *J* = 6.8, 4.8 Hz, 2H), 6.73 (d, *J* = 8.4 Hz, 2H), 3.85 (d, *J* = 18.4 Hz, 2H), 3.55 (s, 3H), 3.54 (s, 3H), 3.28 (d, *J* = 18.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 172.3, 165.8, 159.4, 148.2, 142.3, 138.2, 133.6, 131.7, 130.3, 129.9, 126.8, 126.8, 125.0, 120.2, 116.7, 107.2, 69.5, 39.4, 37.0. HRMS m/z ([M+H]⁺) called for C₄₀H₃₁N₈O₆: 719.2367, found: 719.2363.

1',1'''-(1,3-phenylene)bis(2-(methyl(pyridin-2-

yl)amino)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione). Prepared according to the general procedure method B, purified by silica gel column chromatography (n-hexanes/EtOAc = 5:1 to 1:1) to afford the corresponding product 4d (121 mg, 84% yield) as a foam solid. ¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.12 (m, 2H), 7.92 (d, *J* = 7.6 Hz, 2H), 7.67 (t, *J* = 6.4 Hz, 2H), 7.64-7.55 (m, 6H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 7.6 Hz, 2H), 6.84 (t, *J* = 5.6 Hz, 2H), 6.71 (d, *J* = 8.4 Hz, 2H), 3.84 (d, *J* = 4.8 Hz, 1H), 3.79 (d, *J* = 5.2 Hz, 1H), 3.53 (s, 3H), 3.52 (s, 3H), 3.26 (d, *J* = 18.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 173.0, 172.3, 165.8, 159.5, 159.4, 148.2, 142.2, 138.3, 133.6, 132.2, 130.2, 129.9, 129.8, 126.2, 124.9, 123.3, 120.5, 116.7, 107.2, 69.5, 39.4, 36.9. HRMS m/z ([M+H]⁺) called for C₄₀H₃₁N₈O₆: 719.2367, found: 719.2363.

1'-(4-(4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzyl)phenyl)-2-

(methyl(pyridin-2-yl)amino)spiro[isoindoline-1,3'-pyrrolidine]-

2',3,5'-trione: A mixture of N'-methyl-N'-(pyridin-2-yl)benzohydrazide (0.20 mmol), bismaleimide (0.4 mmol), Co(OAc)₂·4H₂O (4.98 mg, 0.02 mmol), Ag₃PO₄ (125.6 mg, 0.3 mmol), NaOPiv (37.2 mg, 0.3 mmol) and DCE (2.0 mL) was added to a 25 mL sealed tube. The tube was stirred at 110 °C for 12 h. After cooling to room temperature, the reaction mixture was diluted with 5.0 mL of ethyl acetate and filtered through a plug of celite, followed by washing with 70 mL of ethyl acetate. The combined residue was concentrated under reduced pressure, and then the resulting crude product was purified by column chromatography to provide the product 5 (79 mg, 68% yield) as a foam solid. ¹H NMR (400 MHz, **CDCl**₃) δ 8.53 (d, J = 4.0 Hz, 1H), 8.27 (d, J = 7.6 Hz, 1H), 8.02 (td, J =7.6, 0.8 Hz, 1H), 7.95-7.88 (m, 2H), 7.78 (d, J = 7.6 Hz, 1H), 7.67 – 7.58 (m, 8H), 7.18 - 7.13 (m, 3H), 7.05 (d, J = 8.4 Hz, 1H), 4.39 (s, 2H), 4.13(d, J = 18.8 Hz, 1H), 3.89 (s, 3H), 3.59 (d, J = 18.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 172.7, 169.5, 165.8, 159.4, 148.1, 142.4, 141.6, 140.0, 138.1, 134.1, 133.5, 130.1, 129.8, 129.8, 129.7, 129.6, 129.5, 129.4, 126.1, 124.8, 120.3, 116.5, 107.1, 69.4, 41.0, 39.2, 36.9. **HRMS** m/z ($[M+H]^+$) called for C₃₄H₂₆N₅O₅: 584.1934, found: 584.1927.

2-(methyl(pyridin-2-yl)amino)-1'-(4-(4-(6-methyl-2-(methyl(pyridin-2-yl)amino)-2',3,5'-trioxospiro[isoindoline-1,3'pyrrolidin]-1'-yl)benzyl)phenyl)spiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione: A mixture of 1i (0.60 mmol), 5 (0.2 mmol). Co(OAc)₂·4H₂O (4.98 mg, 0.02 mmol), Ag₃PO₄ (125 mg, 0.3 mmol), NaOPiv (37.2 mg, 0.3 mmol) and DCE (2.0 mL) was added to a 25 mL sealed tube. The tube was stirred at 140 °C for 12 h. After cooling to room temperature, the reaction mixture was diluted with 5.0 mL of ethyl acetate and filtered through a plug of celite, followed by washing with 70 mL of ethyl acetate. The combined residue was concentrated under reduced pressure, and then the resulting crude product was purified by column chromatography on to provide the product 6 (115 mg, 70% yield) as a foam solid. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (dd, J = 4.4, 0.8 Hz, 2H), 7.92 (d, J = 7.6 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.67 (t, J = 7.6 Hz, 1H), 7.60 - 7.53 (m, 3H), 7.44 (d, J = 7.6 Hz, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.31 - 7.26 (m, 8H), 7.22 (s, 1H), 6.84 - 6.79(m, 2H), 6.70 (t, J =8.54Hz, 2H), 4.05 (s, 2H), 3.79 (d, J = 14.4 Hz, 1H), 3.74 (d, J = 14.0 Hz, 1H), 3.54 (s, 3H), 3.53 (s, 3H), 3.26 (d, J = 8.8 Hz, 1H), 3.22 (d, J = 8.4

Hz, 1H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 173.4, 172.9, 172.8, 166.0, 165.9, 159.6, 159.5, 148.2, 144.7, 142.8, 142.5, 141.5, 141.4, 138.3, 138.2, 133.6, 131.1, 130.2, 129.9, 129.84, 129.80, 129.7, 129.6, 127.2, 126.3, 124.9, 124.7, 120.8, 120.4, 116.6, 116.5, 107.2, 107.1, 69.5, 69.3, 41.1, 39.3, 37.0, 36.9, 22.1. HRMS m/z ([M+H]⁺) called for C₄₈H₃₉N₈O₆: 823.2993, found: 823.2988.

4. Preliminary Mechanistic Experiments

Mé

1. competition experiment

5-fluoro-1'-methyl-2-(methyl(pyridin-2-yl)amino)spiro[isoindoline-

Mé

1,3'-pyrrolidine]-2',3,5'-trione: A mixture of two regioisomers inseparable by silica gel column chromatography was generated. ¹H **NMR (400 MHz, CDCl₃) (major)** δ 8.14 (d, J = 4.8 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.34 – 7.25 (m, 2H), 6.81 (dd, J = 6.8, 5.2 Hz, 1H), 6.69 – 6.65 (m, 1H), 3.63 (d, J = 18.8 Hz, 1H), 3.44 (s, 3H), 3.14 (s, 3H), 3.08 (d, J = 18.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) (major) δ 174.0, 173.7,

173.5, 159.2, 148.1, 138.2, 137.9 (d, $J_{C-F} = 3.0$ Hz), 132.2, 122.5 (d, d, $J_{C-F} = 9.0$ Hz), 120.8 (d, $J_{C-F} = 24.0$ Hz), 120.0 (d, $J_{C-F} = 19.0$ Hz), 116.7, 111.7(d, $J_{C-F} = 24.0$ Hz), 107.1, 69.2, 39.2, 36.6, 25.8. ¹⁹F NMR (376 MHz, CDCl₃): δ -109.1, -120.7. HRMS m/z ([M+H]⁺) called for C₁₈H₁₆FN₄O₃: 355.1206, found: 355.1200.

2. H/D scrambling

3. Competition reaction through two parallel reactions.

4. Proposed reaction mechanism

Based on our mechanistic studies and previous mechanistic insights², we propose the catalytic cycle. Co(II) is oxidized to Co(III) by Ag₃PO₄, then chelation of Co(III) to hydrazide **1** assisted by base and subsequent reversible C-H activation produces intermediate **A**. Subsequently, the migratory insertion into the maleimide to give intermediate **B**. β -Hydride elimination of intermediate **B** gives intermediate **C**. The intramolecular aza-Michael addition of alkenylated product **C** generates the spirocyclic compound **3** and cobalt species. Later, the active Co(III) species was regenerated through oxidation of Co(I) with Ag₃PO₄, and the regenerated Co(III) species enters the next catalytic cycle.

5. Reductive removal of the directing group

General experiment procedure: An oven-dried 25 mL two-neck round bottom flask was charged with **3** (0.1 mmol). After purging with Ar three times, 5 mL fresh distilled THF was added, followed by SmI_2 (0.1 M in THF, 20 equiv) was added dropwise at 0 °C. After 5 minutes, the mixture was warmed to 40 °C and stirred overnight. After that the mixture was quenched with 5 mL saturated aqueous $Na_2S_2O_3$ and extracted with DCM, dried over Na_2SO_4 , filtered, and concentrated under reduced pressure and the product was obtained via column chromatography.²

1'-methylspiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione: Prepared according to the general procedure, **7** was obtained in 80% yield. ¹H **NMR (400 MHz, DMSO)** δ 9.07 (s, 1H), 8.05 – 7.99 (m, 2H), 7.96 (td, *J* = 7.2, 1.2 Hz, 1H), 7.89 (td, *J* = 7.2, 1.2 Hz, 1H), 3.73 (s, 3H), 3.65 (d, *J* = 18.0 Hz, 1H), 3.44 (d, *J* = 18.0 Hz, 1H). ¹³C **NMR (100 MHz, DMSO)** δ 176.0, 174.6, 169.4, 145.8, 133.1, 132.1, 129.9, 123.5, 122.7, 64.4, 39.8, 25.8. **HRMS** m/z ([M+H]⁺) called for C₁₂H₁₁N₂O₃: 231.0770, found: 231.0760.

1'-benzylspiro[isoindoline-1,3'-pyrrolidine]-2',3,5'-trione:

Prepared according to the general procedure, **8** was obtained in 85% yield. **¹H NMR (300 MHz, DMSO)** δ 8.89 (s, 1H), 7.74 – 7.55 (m, 4H), 7.397.30 (m, 5H), 4.73 (d, J = 15.3 Hz, 1H), 4.67 (d, J = 15.3 Hz, 1H), 3.44 (d, J = 18.3 Hz, 1H), 3.22 (d, J = 18.6 Hz, 1H). ¹³C NMR (125 MHz, **DMSO**) δ 175.8, 174.2, 169.4, 145.8, 136.1, 133.2, 132.1, 130.0, 129.1, 128.1, 128.1, 123.7, 122.3, 64.4, 42.9, 39.6. HRMS m/z ([M+H]⁺) called for C₁₈H₁₅N₂O₃: 307.1083, found: 307.1072.

6. X-ray Crystallographic Data of Compound 3ua

X-ray of 3aa (CCDC: 1822031)

7. References

1. (a) Stadler, A.-M.; Lehn, J.-M. J. Am. Chem. Soc. 2014, 136, 3400. (b) Radunsky, C.; Kösters, J.; Letzel, M.; Yogendra, S.; Schwickert, C.; Manck, S.; Sarkar, B.; Pöttgen, R.; Weigand, J.; Neugebauer, J.; Müller, J. Eur. J. Inorg. Chem.
2015, 24, 4006. (c) Stadler, A.-M.; Karmazin, L.; Bailly, C. Angew. Chem. Int. Ed.
2015, 54, 14570.

(a) Lv, N.; Liu, Y.; Xiong, C.; Liu, Z.; Zhang, Y. Org. Lett. 2017, 19, 4640. (b)
 Manoharan, R.; Jeganmohan, M. Org. Lett. 2017, 19, 5884.

3. (a) Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc. 2010, 132,
6908. (b) Shiota, H.; Ano, Y.; Aihara, Y.; Fukumoto, Y.; Chatani, N. J. Am. Chem.
Soc. 2011, 133, 4952.

8. ¹H, ¹³C and ¹⁹F NMR Spectra

¹H, ¹³C NMR spectra of compound 1c

¹H, ¹³C, ¹⁹F NMR spectra of compound 1d

¹H, ¹³C NMR spectra of compound 1f

8.112 8.112 8.1164 8.1164 8.1164 8.1162 7.533 7.533 7.533 7.533 7.7393 7.7596 7.7593 7.7593 7.7596 7.75976 7.7596 7.7596 7.75977776 7.759777777777777777777777777777777777

¹H, ¹³C NMR spectra of compound 1g

¹H, ¹³C NMR spectra of compound 1h

¹H, ¹³C NMR spectra of compound 1j

¹H, ¹³C NMR spectra of compound 11

¹H, ¹³C NMR spectra of compound 1v

¹H, ¹³C NMR spectra of compound 1w

¹H, ¹³C NMR spectra of compound 3aa

¹H, ¹³C NMR spectra of compound 3ba

8.183 8.173 8.177 8.177 8.177 8.177 8.177 7.496 7.7.496 7.7.496 7.7.312 7.7.31

¹H, ¹³C NMR spectra of compound 3ca

¹H, ¹³C, ¹⁹F NMR spectra of compound 3da

81.18 1.18

¹H, ¹³C NMR spectra of compound 3ea

¹H, ¹³C NMR spectra of compound 3fa

¹H, ¹³C NMR spectra of compound 3ga

¹H, ¹³C NMR spectra of compound 3ha

¹H, ¹³C NMR spectra of compound 3ia

¹H, ¹³C NMR spectra of compound 3ja

¹H, ¹³C NMR spectra of compound 3ka

8.175 8.173 8.165 8.165 8.165 8.165 8.166 8.166 8.166 8.166 8.166 8.166 7.524 7.522 7.522 7.523 7.550 7.7.855 7.7.505 7.7.705 7.705 7.

¹H, ¹³C NMR spectra of compound 3la

¹H, ¹³C NMR spectra of compound 3ma

¹H, ¹³C NMR spectra of compound 3na

8.171 8.169 8.169 8.159 7.318 7.531 7.531 7.5324 7.5334 7.5334 7.237 7.221 7.237 7.221 7.221 7.205 7.705 7.205 7.705 7.705 7.705 7.705 7.705 7.705 7.705 7.705 7.205 7.705 7.205 7.705 7.205 7.705 7.205 7.705 7.205 7.705 7.205 7.705 7.205 7.705 7.205 7.705 7.205 7.705 7.205 7.705 7.205 7.705 7.205 7.205 7.705 7.205 7.705 7.205 7.705 7.205 7.7

¹H, ¹³C, ¹⁹FNMR spectra of compound 3oa

¹H, ¹³C NMR spectra of compound 3pa

 8.148

 8.147

 8.145

 8.145

 8.145

 8.145

 8.145

 8.145

 8.145

 8.145

 8.145

 8.145

 8.145

 8.145

 8.145

 8.135

 8.135

 8.135

 8.135

 8.135

 8.135

 8.135

 8.135

 8.135

 8.135

 8.135

 8.135

 8.135

 8.135

 8.135

 8.135

 7.553

 7.553

 7.553

 7.554

 7.553

 7.553

 7.553

 7.553

 7.553

 7.553

 7.553

 7.553

 7.553

 7.553

 7.553

 7.553

 8.146

 8.146</

¹H, ¹³C NMR spectra of compound 3ta

¹H, ¹³C NMR spectra of compound 3ua

¹H, ¹³C NMR spectra of compound 3va

¹H, ¹³C NMR spectra of compound 3wa

¹H, ¹³C NMR spectra of compound 3ab

¹H, ¹³C NMR spectra of compound 3ad

¹H, ¹³C NMR spectra of compound 3ae

8.181 8.1779 8.1779 8.1779 8.1770 7.6335 7.620 7.648 7.5581 7.5581 7.5567 7.5551 7.5556 7.75566 7.75556 7.75566 7.75556 7.755667 7.755666 7.75566 7.75566 7.7556667 7.755667 7.7556667777775

¹H, ¹³C NMR spectra of compound 3af

8.167 8.155 8.155 8.155 8.155 7.383 7.556 7.553 7.553 7.553 7.553 7.553 7.553 7.553 7.553 7.553 7.553 7.553 7.553 7.553 7.553 7.533 7.533 7.533 7.533 7.533 7.533 7.533 7.533 7.533 7.533 7.533 7.533 7.533 7.533 7.334 7.340 7.351 7.331 7.356 8.658 6.638 6.638 6.638 6.638 6.638 6.638 7.168 7.1705<

¹H, ¹³C NMR spectra of compound 3ag

¹H, ¹³C NMR spectra of compound 3ah

-8.182 -8.182 -8.172 -8.172 -8.170 -8.170 -8.170 -8.170 -8.170 -7.552 -7.565 -7.510 -7.510 -7.531 -7.532 -7.532 -7.532 -7.536 -7.536 -7.536 -7.536

¹H, ¹³C NMR spectra of compound 4a

¹H, ¹³C NMR spectra of compound 4b

¹H, ¹³C NMR spectra of compound 4c

3.874 3.828 3.551 3.551 3.545 3.307 3.307

¹H, ¹³C NMR spectra of compound 4d

¹H, ¹³C NMR spectra of compound 5

¹H, ¹³C NMR spectra of compound 6

*101 *1180 *1180 *1180 *1180 *1180 *1180 *17.180 *17.1562 *17.1562 *17.1562 *17.1569 *17.1569 *17.17.208 *17.17.208 *17.17.208 *17.17.208 *17.17.208 *17.17.208 *17.279 *17.277 *17.279

¹H, ¹³C NMR spectra of compound 7

¹H, ¹³C NMR spectra of compound 8

¹H, ¹³C, ¹⁹F NMR spectra of compound 3xa and 3xá'

