Electronic Supplementary Information

for

Low-overpotential CO₂ reduction by phosphine-substituted Ru(II) polypyridyl complex

Sze Koon Lee,¹,b Mio Kondo,¹,b,c Go Nakamura,¹,b Masaya Okamura,¹,d
Shigeyuki Masaoka*¹,b

¹Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
²Department of Structural Molecular Sciences, SOKENDAI (The Graduate University for Advanced Studies), Shonan village, Hayama, Kanagawa 240-0193, Japan.
³ACT-C, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
⁴Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
Table of Contents

Experimental details ... S3
Figure S1. .. S6
Table S1.. S7
Figure S2. .. S8
Figure S3. .. S9
Figure S4. .. S10
Table S2... S11
Figure S5. .. S12
Figure S6. .. S13
Figure S7. .. S14
Table S3... S14
Table S4... S15
Figure S8. .. S17
Figure S9. .. S18
Figure S10. .. S19
Figure S11. .. S20
Figure S12. .. S21
Figure S13. .. S22
Figure S14. .. S23
Figure S15. .. S24
References .. S25
Experimental details

General procedures

All the solvents were purchased from Wako Pure Chemical Industries, while the chemicals were purchased from Sigma-Aldrich Co. All the reagents were of highest quality available and were used as received. 1H-NMR, and 31P-NMR spectra were collected at room temperature on a JEOL JNM-ECS400 spectrometer. UV-vis absorption spectra were measured on a Shimadzu UV-2450SIM spectrophotometer at room temperature. Elemental analyses were performed on a J-Science Lab Micro Corder JM10 elemental analyzer. ESI-TOF MS spectra were collected on a JEOL JMS-T100LC mass spectrometer.

Syntheses

8-(diphenylphosphanyl)quinoline (pqn) was synthesized according to literature procedures.51

1H NMR (CDCl$_3$): δ 7.12 (m, 1 H), 7.30 (m, 10 H), 7.43 (m, 2 H), 7.81 (d, 1 H), 8.16 (d, 1 H), 8.87 (dd, 1 H). 31P{1H} NMR (CDCl$_3$): δ −14.32 (s). Anal. Found: C, 78.52; H, 5.36; N, 4.16. Calculated for C$_{21}$H$_{16}$NP∙0.5H$_2$O (pqn∙0.5 H$_2$O): C, 78.25; H, 5.32; N, 4.35.

trans(P,MeCN)‐[RuII(tpy)(pqn)(MeCN)](PF$_6$)$_2$ (RuP) was synthesized according to literature procedures.52 ESI-TOF MS (positive ion, acetonitrile): m/z 324.1 ([Ru(tpy)(pqn)]$^{2+}$), 344.6 ([Ru(tpy)(pqn)(MeCN)]$^{2+}$). 1H NMR (CD$_3$CN): δ 6.56 (t, 4 H), 6.96 (t, 4 H), 7.12 (d, 2 H), 7.21 (t, 2 H), 7.55 (t, 2 H), 7.81 (t, 2 H), 7.93 (m, 3 H), 8.04 (d, 2 H), 8.21 (t, 1 H), 8.29 (d, 2 H), 8.50 (d, 1 H), 8.81 (d, 1 H), 9.83 (d, 1 H). 31P{1H} NMR (CD$_3$CN): δ 58.74 (s). Anal. Found: C, 46.02; H, 3.35; N, 7.18. Calculated for C$_{38}$H$_{30}$N$_5$P$_3$F$_{12}$Ru∙0.5H$_2$O (RuP∙0.5 H$_2$O): C, 46.21; H, 3.16; N, 7.09.

[RuII(tpy)(bpy)(MeCN)](PF$_6$)$_2$ (RuN) was synthesized according to literature procedures.53 ESI-TOF MS (positive ion, acetonitrile): m/z 266.0 ([Ru(tpy)(bpy)(MeCN)]$^{2+}$), 676.9 ([Ru(tpy)(bpy)(MeCN)]$^{2+}$PF$_6$). 1H NMR (CD$_3$CN): δ 7.05 (m, 1 H), 7.26 (d, 1 H), 7.32 (m, 2 H), 7.66 (d, 2 H), 7.78 (t, 1 H), 7.98 (m, 3 H), 8.30 (m, 3 H), 8.40 (d, 2 H), 8.54 (d, 2 H), 8.60 (d, 1 H), 9.58 (d, 1 H). Anal. Found: C, 39.42; H, 2.75; N, 10.24. Calculated for C$_{37}$H$_{22}$N$_6$P$_2$F$_{12}$Ru (RuN): C, 39.48; H, 2.70; N, 10.23.
Electrochemistry

Electrochemical experiments were performed at room temperature on a BAS ALS Model 650DKMP electrochemical analyzer in acetonitrile or γ-butyrolactone ([cat.] = 0.5 mM; 0.1 M tetraethylammonium perchlorate (TEAP)). Cyclic voltammetry was performed by using a one-compartment cell with a three-electrode configuration, which consisted of a glassy carbon disk, platinum wire, and Ag/Ag⁺ electrode (Ag/0.01 M AgNO₃) as the working, auxiliary, and reference electrodes, respectively. The glassy carbon disc working electrode was polished using alumina prior to each measurement. The concentration of CO₂ during the measurements was controlled using KOFLOC RK1200M and 8500MC-0-1-1 flowmeters.

UV-vis spectro-electrochemistry

A thin-layer quartz glass cell (light path length 1 mm) was used. A piece of 80 mesh platinum gauze, a platinum wire, and a Ag/Ag⁺ electrode (Ag/0.01 M AgNO₃) were used as the working, auxiliary, and reference electrodes, respectively. All solutions were purged with Ar or saturated with CO₂ (0.28 M) before the measurements. Spectra were obtained after electrolysis at appropriate potentials for 8 mins. UV-vis spectra in the range from 250–800 nm were recorded. The temperature was controlled at 20 °C during the measurements, and a weak Ar/CO₂ flow was supplied throughout the experiments. The redox potentials of samples were calibrated against the redox signal for the ferrocene/ferrocnium (Fc/Fc⁺) couple.

Controlled-potential electrolysis

Controlled-potential electrolysis was performed in a gas-tight two-compartment electrochemical cell. In the first compartment, the carbon rod working electrode (1.2 cm² surface area) and a leakless Ag/AgCl reference electrode (Innovative Instruments, Inc.) were immersed in 0.1 M TEAP/MeCN (5 ml) containing the catalyst (0.5 mM) and H₂O (2.65 M). In the second compartment, the Pt auxiliary electrode was immersed in 0.1 M TEAP/MeCN (5 ml) containing ferrocene (40 mM) as a sacrificial reductant. The two compartments were separated by an anion exchange membrane (Selemion DSV). The solution was purged vigorously with CO₂ for 30 min prior to electrolysis. The electrolysis was performed for 1 h with constant stirring. The amount of CO and H₂ produced at the headspace of the cell was
quantified by a Shimadzu GC-8A with a TCD detector equipped with a packed column with Molecular Sieve 13X-S 60/80. Additionally, liquid product was quantified by using a Shimadzu LC-20AD with SPD-20A and RID-10A detectors equipped with a Shim-pack SCR102H column. Calibration curves were obtained by sampling known amounts of H₂, CO, and HCOOH.

DFT calculations

Geometric optimization and electronic structures were obtained at the B3LYP or UB3LYP functional and LanL2DZ basis set with the Gaussian 09 program package.
Figure S1. A CV of RuP in acetonitrile (black line, [complex] = 0.5 mM; 0.1 M TEAP; WE: GC, CE: Pt wire, RE: Ag/Ag+, scan rate, 0.10 V/s) under Ar, and the simulated CV (red circle). Elchsoft DigiElch 7.FD software was used for simulation of CV to obtain redox potentials of RuP as reported previously.52
Table S1. Simulation parameters for the CV. Elchsoft DigiElch 7.0. software was used for simulation.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RuP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweep rate ([v]) (V/s)</td>
<td>0.10</td>
</tr>
<tr>
<td>Resistance ([R]) (Ω)</td>
<td>200</td>
</tr>
<tr>
<td>Capacitance ([C_{dl}]) (F)</td>
<td>(7.0 \times 10^{-6})</td>
</tr>
<tr>
<td>Temperature ([T]) (K)</td>
<td>293</td>
</tr>
<tr>
<td>Surface area ([A]) (cm(^2))</td>
<td>0.07</td>
</tr>
<tr>
<td>Diffusion constant ([D]) (cm(^2)/s)</td>
<td>(1.0 \times 10^{-5})</td>
</tr>
<tr>
<td>Concentration ([c]) (mol/dm(^3))</td>
<td>(5.0 \times 10^{-4})</td>
</tr>
<tr>
<td>(E^{\circ'}_1) (V)</td>
<td>−1.69</td>
</tr>
<tr>
<td>(k_{s1}) (cm/s)</td>
<td>0.05</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>0.50</td>
</tr>
<tr>
<td>(E^{\circ'}_2) (V)</td>
<td>−1.78</td>
</tr>
<tr>
<td>(k_{s2}) (cm/s)</td>
<td>0.05</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>0.50</td>
</tr>
</tbody>
</table>

\(E^{\circ'}_1\) and \(E^{\circ'}_2\) are referred to Fc/Fc\(^+\).
Figure S2. Isodensity surface plots of selected frontier molecular orbitals of RuP and RuP$^-$ based on the optimized ground-state geometry. The geometric optimization and electronic structures for RuP and RuP$^-$ were calculated at the B3LYP/LanL2DZ level and UB3LYP/LanL2DZ level, respectively with the Gaussian 09 program package.
Figure S3. Experimental (black lines) and simulated CVs (red circles) of RuP (0.5 mM) in 0.1 M TEAP/MeCN under Ar at various scan rates, (a) = 0.25 V/s, (b) = 0.50 V/s, (c) = 0.75 V/s, (d) = 1.00 V/s. Working electrode, glassy carbon; counter electrode, Pt wire; reference electrode, Ag/Ag⁺.
Figure S4. Variation of peak current (i_p) of RuP (0.5mM) at the (a) first redox wave and (b) second redox wave versus square root of scan rate. The i_p values were obtained from simulated CVs.
Table S2. Summary of the data used for the i_p vs. $\nu^{1/2}$ plot.

<table>
<thead>
<tr>
<th>ν (V/s)</th>
<th>$\nu^{1/2}$</th>
<th>i_p (µA)</th>
<th>Second redox wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.316</td>
<td>7.00</td>
<td>7.41</td>
</tr>
<tr>
<td>0.25</td>
<td>0.500</td>
<td>11.13</td>
<td>10.95</td>
</tr>
<tr>
<td>0.50</td>
<td>0.707</td>
<td>15.06</td>
<td>14.60</td>
</tr>
<tr>
<td>0.75</td>
<td>0.866</td>
<td>17.89</td>
<td>18.05</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
<td>20.13</td>
<td>20.90</td>
</tr>
</tbody>
</table>
Figure S5. CVs of RuP (0.5 mM) in anhydrous 0.1 M TEAP/MeCN under various concentrations of CO₂ (CO₂/Ar, v/v%). Working electrode, glassy carbon; counter electrode, Pt wire; reference electrode, Ag/Ag⁺; scan rate, 0.1 V/s.
Figure S6. (a) CVs of RuP (0.5 mM) in 0.1 M TEAP/MeCN under various concentrations of CO₂ (CO₂/Ar, v/v%) in the presence of H₂O (2.65 M). (b) CVs of RuP (0.5 mM) in 0.1 M TEAP/MeCN at various concentrations of H₂O under CO₂ (0.28 M). Working electrode, glassy carbon; counter electrode, Pt wire; reference electrode, Ag/Ag⁺; scan rate, 0.1 V/s.
Figure S7. The result of controlled-potential electrolysis of RuP (0.5 mM) in 0.1 M TEAP/MeCN under CO$_2$ (0.28 M) at −1.7 V (vs. Fc/Fc$^+$) in the presence of H$_2$O (2.65 M) for 1 h. Working electrode, glassy carbon (1.2 cm2); counter electrode, Pt wire; reference electrode, Ag/AgCl. Approximately 1.75 C has been transferred during 1 h of electrolysis.

Table S3. Summary of CPE experimentsa

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>[H$_2$O], M</th>
<th>Charge, C</th>
<th>Faradaic Efficiency, %b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO</td>
</tr>
<tr>
<td>1</td>
<td>RuP</td>
<td>2.65</td>
<td>1.75</td>
<td>55.8</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>2.65</td>
<td>0.15</td>
<td>-</td>
</tr>
</tbody>
</table>

a Conditions: 0.50 mM catalyst, applied voltage: −1.70 V (vs. Fc/Fc$^+$), duration: 1 h.
b Further reduced species of CO$_2$ such as formaldehyde and methanol have not been detected, and the fate of the rest of the charge is not clear at this stage.
Table S4. Overpotentials (η) and operating conditions of selected homogeneous CO$_2$ reduction electrocatalysts

<table>
<thead>
<tr>
<th>Entry</th>
<th>Molecule</th>
<th>Solvent</th>
<th>Overpotentials, η (V)</th>
<th>TOF (s$^{-1}$)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[Ru(tpy)(pqn)(MeCN)]$^{2+}$ (RuP)</td>
<td>MeCN + 2.65 M H$_2$O</td>
<td>0.40a,b</td>
<td>4.7f</td>
<td>This work</td>
</tr>
<tr>
<td>2</td>
<td>[Ru(tpy)(bpy)(MeCN)]$^{2+}$ (RuN)</td>
<td>MeCN + 2.65 M H$_2$O</td>
<td>0.60a,b</td>
<td>5.1e</td>
<td>S9</td>
</tr>
<tr>
<td></td>
<td>MeCN</td>
<td></td>
<td>0.87</td>
<td>5.5e, 38.4f</td>
<td>S10, S11</td>
</tr>
<tr>
<td>3</td>
<td>[Ru(tpy)(Mebim-py)(MeCN)]$^{2+}$</td>
<td>MeCN</td>
<td>0.81</td>
<td>19e, 31f</td>
<td>S10, S11</td>
</tr>
<tr>
<td>4</td>
<td>[Ru(tpy)(bpy)(CO)]$^{2+}$</td>
<td>MeCN</td>
<td>0.50a,c</td>
<td>-</td>
<td>S12</td>
</tr>
<tr>
<td>5</td>
<td>[Ru(tBu$_3$tpy)(6-mbpy)(MeCN)]$^{2+}$</td>
<td>MeCN</td>
<td>0.47</td>
<td>1.1e</td>
<td>S13</td>
</tr>
<tr>
<td>6</td>
<td>trans(Cl)‐Ru(mesbpy)(CO)$_2$Cl$_2$</td>
<td>MeCN + 0.5 M phenol</td>
<td>0.75a,c</td>
<td>1300g</td>
<td>S14</td>
</tr>
<tr>
<td>7</td>
<td>Mn(mesbpy)(CO)$_3$(MeCN)</td>
<td>MeCN + 3.2 M MeOH</td>
<td>0.70</td>
<td>2000g</td>
<td>S15</td>
</tr>
<tr>
<td></td>
<td>MeCN + 120 mM Mg$^{2+}$</td>
<td></td>
<td>0.30–0.45d</td>
<td>20g</td>
<td>S16</td>
</tr>
<tr>
<td>8</td>
<td>FeTDHPP</td>
<td>DMF + 2 M H$_2$O</td>
<td>0.41–0.56</td>
<td>3200f</td>
<td>S11</td>
</tr>
<tr>
<td>9</td>
<td>Fe-o-TMA</td>
<td>DMF + 3 M phenol</td>
<td>0.22</td>
<td>100000f</td>
<td>S17</td>
</tr>
</tbody>
</table>

aThe overpotentials, η, were calculated using previously reported methods,518 which is the difference between the standard potential of CO$_2$/CO couple in a specific solvent system with potential at half the catalytic current ($E_{cat/2}$) of catalyst (Eq. S1).

$$\eta = |E_{CO_2/CO} - E_{cat/2}|$$ (Eq. S1)

bCalculated based on the data shown in Figure S11.

cThe values of $E_{cat/2}$ were estimated from the CVs reported in the references.

For the standard potential of CO$_2$/CO couple, $E^{\circ}_{CO_2/CO, MeCN} = -1.25$ V vs. Fc/Fc$^+$ or $E^{\circ}_{CO_2/CO, DMF} = -1.30$ V vs. Fc/Fc$^+$ was used.511

d$E^{\circ}_{CO_2}$ for 2CO$_2$ + Mg$^{2+}$ → CO + MgCO$_3$ was estimated between −1.15 V to −1.30 V vs. Fc/Fc$^+$. 516

eThe value is calculated based on results of CV as reported in S10.

fThe value is calculated based on results of controlled potential electrolysis as reported in S11.

gThe value is calculated based on results of CV as reported in S15.
Estimation of TOF and TON for RuP from controlled-potential electrolysis

\[
\frac{I}{FA} = \frac{\sqrt{k_{\text{cat}}D[\text{cat}]} }{1 + \exp\left(\frac{E_{\text{applied}} - E^*_\text{cat}}{RT}\right)} \tag{Eq. S2}
\]

\[
\text{TOF} = \frac{k_{\text{cat}}}{(1 + \exp\left(\frac{E_{\text{applied}} - E^*_\text{cat}}{RT}\right))} \tag{Eq. S3}
\]

\[
\text{TON} = \frac{k_{\text{cat}}t}{(1 + \exp\left(\frac{E_{\text{applied}} - E^*_\text{cat}}{RT}\right))} \tag{Eq. S4}
\]

The equations were previously adapted by Savéant et al. in electrocatalytic CO2 reduction reaction.S11 By using these formula, the amount of active catalyst is the number of moles contained within the thin reaction-diffusion layer that develops adjacent to the electrode surface.S11 In these equations, \(i\) represents stable current transferred during controlled-potential electrolysis, \(F\) is Faraday constant (96485 C/mol), \(A\) is the surface area of working electrode (1.2 cm\(^2\)), \(k_{\text{cat}}\) is the overall rate constant of the catalytic CO\(_2\) reduction reaction, \(D\) is the diffusion coefficient (~5 x 10\(^{-6}\) cm\(^2\)/s), [cat] is the concentration of catalyst used (5 x 10\(^{-7}\) mol/cm\(^3\)), \(R\) is the universal gas constant (8.31 J K\(^{-1}\) mol\(^{-1}\)), \(T\) is temperature (298 K), \(E_{\text{applied}}\) is the applied potential during electrolysis, \(E^*_\text{cat}\) is the standard potential of the catalyst, \(t\) is the electrolysis duration, TOF is the turnover frequency, and TON is the turnover number.

The average current density of 0.42 mA/cm\(^2\) (the faradaic efficiency for CO formation is 56%), corresponds to \(i/A = 0.24\) mA/cm\(^2\) was obtained for 1 h electrolysis at \(-1.70\) V vs. Fc/Fc\(^+\). Since the electrolysis is performed on the plateau of the catalytic wave, \(i/FA = (k_{\text{cat}}D)^{1/2}[\text{cat}]\) (Eq. S2) leading to the TOF = 4.7 s\(^{-1}\) and TON = 1.7 \(\times\) 10\(^4\). We also calculated the TON value based on the total cell volume and the value was estimated to be 2 for 1h. The result indicate the CO\(_2\) reduction reaction mediated by RuP is catalytic.
Figure S8. CVs of RuN (0.5 mM, open circuit = −0.27 V) in 0.1 M TEAP/MeCN under various concentrations of CO₂ (CO₂/Ar, v/v%) in the absence of H₂O. Working electrode, glassy carbon; counter electrode, Pt wire; reference electrode, Ag/Ag⁺; scan rate, 0.1 V/s.
Figure S9. Experimental UV-Vis absorption spectra of RuP (0.5 mM) at various applied potentials in 0.1 M TEAP/MeCN under Ar using BASi Spectro-electrochemical Cell (open-circuit potential = −0.27 V). Working electrode, Pt mesh; counter electrode, Pt wire; reference electrode, Ag/Ag⁺. Solutions were purged with Ar for 10 mins prior to measurements. Weak Ar flow was maintained throughout the measurement. Spectra were acquired after electrolysis at respective potentials for 8 mins.
Figure S10. Experimental UV-Vis absorption spectra of RuP (0.5 mM) at various applied potentials in 0.1 M TEAP/MeCN under CO₂. (a) Resting potential to −1.60 V and (b) −1.60 V to −1.70 V. Working electrode, Pt mesh; counter electrode, Pt wire; reference electrode, Ag/Ag⁺. Spectra were acquired after electrolysis at respective potentials for 8 mins.
Figure S11. CVs of 0.5 mM of RuN (top) and RuP (bottom) in 0.1 M TEAP/MeCN under Ar (black line), CO₂ (0.28 M, red line), and CO₂ in the presence of 2.65 M H₂O (blue line). Working electrode, glassy carbon; counter electrode, Pt wire; reference electrode, Ag/Ag⁺; scan rate, 0.1 V/s. Potential sweeps were started from the open circuit potential (−0.26 V for RuN, −0.27 V for RuP). Arrows represent the direction of potential sweeping. In the presence of H₂O, the current enhancement was observed at $E_{pc} = −1.95$ V for RuN and $E_{pc} = −1.73$ V for RuP, which attributed to the electrocatalytic CO₂ reduction.
Figure S12. HOMO of the one-electron reduced species, \(\text{RuP}^- \) (left) and HOMO–LUMO of one-electron reduced \(\text{RuP}^- \) with a \(\text{CO}_2 \) molecule bound to the Ru center, \(\text{RuP}_{\text{CO}_2}^- \) (middle & right) based on the optimized ground-state geometry. DFT calculations were performed using the UB3LYP functional and LanL2DZ basis set.
Figure S13. (a) CV of RuP (0.5 mM) in 0.1 M TEAP/γ-butyrolactone under Ar at different potential scan range. (b) CV of RuP (0.5 mM) in 0.1 M TEAP/γ-butyrolactone under Ar added with various amount of MeCN. Working electrode, glassy carbon; counter electrode, Pt wire; reference electrode, Ag/Ag⁺; scan rate, 0.1 V/s.
Figure S14. (a) CV of RuN (0.5 mM) in 0.1 M TEAP/γ-butyrolactone under Ar at different potential scan range. (b) CV of RuN (0.5 mM) in 0.1 M TEAP/γ-butyrolactone under Ar added with various amount of MeCN. Working electrode, glassy carbon; counter electrode, Pt wire; reference electrode, Ag/Ag+; scan rate, 0.1 V/s.
Figure S15. (a) CVs of RuN (0.5 mM) in 0.1 M TEAP/γ-butyrolactone under CO₂. (b) CVs of RuP (0.5 mM) in 0.1 M TEAP/γ-butyrolactone under CO₂. Working electrode, glassy carbon; counter electrode, Pt wire; reference electrode, Ag/Ag⁺; scan rate, 0.1 V/s.
References

