Electronic Supplementary Information (ESI) for Chem. Comm.

PVP-assisted Transformation of Metal–Organic Framework into Co-Embedded N-Enriched Meso/Microporous Carbon Materials as Bifunctional Electrocatalysts

Zuozhong Liang,^a Chaochao Zhang,^a Haitao Yuan,^a Wei Zhang,^a Haoquan Zheng,^{*a} and Rui Cao^{*ab}

^aSchool of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.

^bDepartment of Chemistry, Renmin University of China, Beijing, 100872, China.

Correspondence Email: <u>zhenghaoquan@snnu.edu.cn; ruicao@ruc.edu.cn</u>

1. Experimental section

1.1 Materials

All chemicals were used as received without any further purification. $Co(NO_3)_2 \cdot 6H_2O$ (99.99%) and 2-methylimidazole (%) were purchased from the Energy Chemical. Methanol (AR, 99.5%) was purchased from the Tianjin Fuyu Fine Chemical Co., Ltd. KOH (98%) was purchased from Sinopharm Group Chemical Reagent Co., Ltd.

1.2 Preparation of porous Co-NC Materials

First, 1 mmol Co(NO₃)₂·6H₂O (0.291 g) and 4 mmol 2-methylimidazole (0.238 g) was separately dissolved in 25 mL methanol and sonicated for 5 mins. Then, 2 mmol PVP k30 (160 mg) were added into the prepared Co solution and stirring for 5 mins. The asprepared 2-methylimidazole solution was slowly dropped into the above solution under the stirring. The resulting slurry was aging for 24 h. The obtained product was denoted as P-ZIF-67-2. In contrast, the product without adding the PVP, namely ZIF-67, and with adding 4, 6, 8 mmol PVP, namely P-ZIF-67-4, P-ZIF-67-6, and P-ZIF-67-8, were synthesized and calcinated with the same method. Then the as-prepared particles were heated to 800 °C at a rate of 5 °C min⁻¹ in a tube furnace under N₂ atmosphere for 2 h. The final products were defined as Co-NC, P-Co-NC-2, P-Co-NC-4, P-Co-NC-6, and P-Co-NC-8, respectively.

1.3 Characterization

Powder X-ray diffraction (PXRD) patterns of as-prepared materials were measured with a X-ray diffractometer (Bruker, D8 Advance, Cu K α , λ = 1.5406 Å, 40 kV/40mA). The morphology of the as-prepared material was observed with scanning electron microscopy (SEM, Hitachi, SU8020) and transmission electron microscopy (TEM, JEOL, JEM-2100). The Brunauer-Emmett-Teller (BET) specific surface area was measured in Micromeritics ASAP 2020. The X-ray photoelectron spectroscopy (XPS) analysis of the prepared materials was performed with a Kratos AXIS ULTRA XPS. Thermogravimetric analysis (TGA) was applied by heating the as-prepared sample at a rate of 10 °C min⁻¹ with N₂ and air from 20 °C to 1000 °C in a TA Instruments SDT Q600. Elemental analyzer (Vario EL III, Elementar Analysensysteme GmbH) was applied to measure the content of C, H, and N. The Raman spectra were measured with a Raman Spectrometer (inVia Reflex, Renishaw).

1.4 Electrochemical measurement

All the electrochemical measurements of ORR performance were performed at ~ 25 °C with a CHI 760E Electrochemical Analyzer (CH Instruments) and a Pine Modulated

Speed Rotator (Pine Research Instrumentation, Inc.). In particular, we selected the rotating ring-disk electrode (RRDE) as the working electrode, Pt wire as the auxiliary electrode, and saturated Ag/AgCl as the reference electrode. In a typical procedure, 5 mg of catalysts and 10 μ L of Nafion solution (5 wt%, DuPont) were added into 1 mL of isopropanol/deionized water (DIW) solution (V_{isopropanol} : V_{DIW} = 450 : 40) and then ultrasonicated for ~ 1 h to prepare a homogeneous slurry. Finally, 20 μ L of the catalysts was coated onto the RDE electrode using pipette (catalyst loading: ~ 0.4 mg cm⁻²) and dried naturally to form a homogeneous membrane. For the ORR, the cyclic voltammetry (CV) measurements were carried out in O₂/N₂-saturated 0.1 M KOH solution at ~ 25 °C with a scan rate of 5 mV s⁻¹. The linear sweep voltammetry (LSV) measurements were performed in O₂-saturated 0.1 M KOH solution at different rotating rate from 400 to 1600 rpm.

The kinetic properties of the ORR were carried out with the rotating ring-disk electrode (RRDE) in O₂-saturated 0.1 M KOH solution at ~ 25 °C with a scan rate of 5 mV s⁻¹ and the ring-electron potential was held at 1.5 V vs RHE. The diameter of the disk is 5.61 mm (0.247 cm²) and the area of the ring is 0.186 cm². The transfer electron number (*n*) was calculated with the following equation:

$$n = 4 \frac{i_d}{i_d + i_r/N}$$

where i_d is the disk current, i_r is the ring current, and N is the ring current collection efficiency, which was determined to be ~ 0.39 with the LSV measurement in K₃Fe[CN]₆ solution. The peroxide percentage (%H₂O₂) can be calculated with the following equation:

$$\%H_2O_2 = 200 \frac{i_r/N}{i_d + i_r/N}$$

For the OER testing, the activities of the as-prepared materials were evaluated with a CHI 660E Electrochemical Analyzer (CH Instruments). Cyclic voltammetry (CV) curves of the as-prepared catalysts were measured in 1.0 M KOH solution with a threeelectrode system. We selected the glassy carbon (GC) electrode with a diameter of 3 mm (0.07 cm²) as the working electrode, Pt wire as the auxiliary electrode, and saturated Ag/AgCl as the reference electrode. In a typical procedure, 4 mg of catalysts and ~ 30 μ L of Nafion solution (5 wt%, DuPont) were added into 1 mL of DIW/ethanol solution (V_{DIW} : V_{ethanol} = 2 : 1) and then ultrasonicated for ~ 1 h to prepare a homogeneous slurry. Finally, 5 μ L of the as-prepared catalysts was coated onto the GC electrode using pipette. The overpotential (η) was calculated based on the following equation:

$$\eta = E_{\text{Ag/AgCl}} + (0.197 + 0.059 \times \text{pH}) - 1.23.$$

Table S1. The electron transfer number (*n*) for the commercial Pt/C and as-prepared catalysts Co-NC, P-Co-NC-4, and P-Co-NC-8 measured in O_2 -saturated 0.1 M KOH solution at a rotation rate of 1600 rpm.

Catalysts	0.2 V	0.3 V	0.4 V	0.5 V	0.6 V	0.7 V	0.8 V
Pt/C	3.95	3.97	3.97	3.97	3.98	3.98	4.00
Co-NC	3.55	3.60	3.64	3.68	3.75	3.84	3.82
P-Co-NC-4	3.49	3.55	3.60	3.67	3.77	3.88	3.89
P-Co-NC-8	3.41	3.44	3.48	3.49	3.57	3.68	3.82

	E (OER) at	10 mA cm^{-2}	$E_{1/2}$ (ORR)		
Electrocatalysts	1.0 M KOH	0.1 M KOH	in 0.1 M KOH	Reference	
P-Co-NC-4	315 mV	360 mV	850 mV	This work	
Co ₃ O ₄ @C-MWCNTs	320 mV	_	810 mV	J. Mater. Chem. A, 2015, 3, 17392– 17402	
Fe ₃ C@NCNT/NPC	340 mV	_	900 mV	Catal. Sci. Technol., 2016, 6, 6365–6371	
Co-MOF@CNTs	340 mV	_	820 mV	J. Power Sources 326 (2016) 50-59	
ZnCoNC-0.1	_	520 mV	840 mV	Nano Res. 2018, 11(1): 163–173	
Co/NC	_	460 mV	830 mV	Angew. Chem. Int. Ed. 2016, 55, 4087–4091	
Co@Co ₃ O ₄ /NC-2	_	435 mV	810 mV	Appl. Surf. Sci. 427 (2018) 319–327	
Co@N-C	_	350 mV	817 mV	Adv. Mater. 2018, 1705431	
Co@Co ₃ O ₄ /NC	_	420 mV	800 mV	Angew. Chem. Int. Ed. 2016, 55, 4087–4091	
Co ₃ O ₄ @Co/NCNT	_	380 mV	860 mV	Chem. Eur. J. 2017, 23, 18049– 18056	
Ni _x Co _y O ₄ /Co–NG	_	399 mV	804 mV	J. Mater. Chem. A, 2017, 5, 5594– 5600	

Table S2. Electrochemical activities of bifunctional oxygen catalysts in this work and other reported works.

Fig. S1. XRD patterns of simulated ZIF-67, ZIF-67, P-ZIF-67-4, and P-ZIF-67-8.

Fig. S2. N_2 adsorption-desorption isotherms (a) and pore size distribution (b) for the as-prepared P-ZIF-67-8.

The BET surface area of the as-prepared P-ZIF-67-8 is $1351.49 \text{ m}^2/\text{g}$.

Fig. S3. Thermogravimetric analysis (TGA) curves of ZIF-67 (black) and P-ZIF-67-4 (red) measured in air.

The encapsulation of PVP in the P-ZIF-67-4 leads to the lower mass after pyrolysis in air. This is because PVP decomposes with a low carbonization yield of 4% during pyrolysis.

Fig. S4. TGA and the corresponding derivative TG curves of PVP (a), ZIF-67 (b), P-ZIF-67-4 (c), and P-ZIF-67-8 (d) measured in N_2 .

Fig. S5. High-resolution XPS spectrum of O 1s for the P-Co-NC-4.

The O1s XPS spectrum of the P-Co-NC-4 can be deconvoluted into the peaks for Co-O (529.6 eV), C=O bonds (532.1 eV) and C-O-H group (533.6 eV).

Fig. S6 XPS survey (a) and high-resolution spectra of N 1s (b), Co 2p (c), and C 1s (d) for the Co-NC.

The XPS spectra of Co-NC prepared without PVP were measured and the results are shown in Fig. S6. It is found that the graphitic N content of high resolution XPS spectrum of N 1s for P-Co-NC-4 (24%) is higher than that in Co-NC (14%), which is consistent with the increased N content of P-Co-NC-4 and the formation of interfacial structure induced by PVP.

Fig. S7 Raman spectra of as-prepared Co-NC, P-Co-NC-4, and P-Co-NC-8.

The I_D/I_G is 1.29, 1.08 and 1.04 for the Co-NC, P-Co-NC-4, and P-Co-NC-8, respectively. There are less C defects in materials with the increasing of PVP, which can be attributed to the formation of the defect-less stable PVP derived carbon//ZIF-67 interfacial structure in P-Co-NC-4 and P-Co-NC-8.

Fig. S8. Scheme illustration of the formation process of a PVP derived carbon//ZIF-67 derived carbon interfacial structure.

Fig. S9. HRTEM image of the as-prepared P-Co-NC-8.

Fig. S10. RRDE measurements of LSV curves for the Pt/C after pyrolysis with different rotation rates in O_2 -saturated 0.1 M KOH solution at a scan rate of 10 mV s⁻¹ (a: the current density for the disk; b: the current density for the ring).

Fig. S11. RRDE measurements of LSV curves for the Co-NC with different rotation rates in O₂-saturated 0.1 M KOH solution at a scan rate of 10 mV s⁻¹ (a: the current density for the disk; b: the current density for the ring).

Fig. S12. RRDE measurements of LSV curves for the P-Co-NC-4 with different rotation rates in O_2 -saturated 0.1 M KOH solution at a scan rate of 10 mV s⁻¹ (a: the current density for the disk; b: the current density for the ring).

Fig. S13. RRDE measurements of LSV curves for the P-Co-NC-8 with different rotation rates in O₂-saturated 0.1 M KOH solution at a scan rate of 10 mV s⁻¹ (a: the current density for the disk; b: the current density for the ring).

Fig. S14. H_2O_2 yield of Pt/C, Co-NC, P-Co-NC-4, and P-Co-NC-8 at various potentials based on RRDE data.

Fig. S15. CVs of Co-NC (a), P-Co-NC-4 (b) and P-Co-NC-8 (c) at scan rates of 20, 40, 60, 80, 100, and 120 mV s⁻¹.