Electronic Supplementary Information†

A NIR-Responsive Azobenzene-based Supramolecular Hydrogel Using Upconverting Nanoparticles

Gabrielle A. Mandl, Paola A. Rojas-Gutierrez, and John A. Capobianco*

Department of Chemistry and Biochemistry and Centre for NanoScience Research

Concordia University

Montreal, Quebec H4B 1R6, Canada

E-mail: John.Capobianco@concordia.ca

Contents

1. Materials and characterization information (general)
2. MALDI-TOF Mass Spectrometry information
3. TEM Analysis of oleate-capped LiYF₄:Tm³⁺/Yb³⁺ UCNPs
4. Cryo-ultramicrotomy and TEM analysis
5. Emission Spectroscopy
6. Powder X-Ray Diffraction studies
7. Rheological Studies
8. Sol-Gel Transition studies under direct UV excitation
9. Sol-Gel Transition studies under NIR excitation
10. Synthesis of 3-4(phenylazophenoxy)propanol
11. Synthesis of the PAA-Azopropanol copolymer
12. Synthesis of Oleate-Capped LiYF₄:Tm³⁺/Yb³⁺ UCNPs
13. Preparation of Oleate-free LiYF₄:Tm³⁺/Yb³⁺ UCNPs
14. Preparation of PAA-AzopropOH copolymer-coated LiYF₄:Tm³⁺/Yb³⁺ UCNPs
15. Energy transfer studies
16. Synthesis of mono-(6-O-(p-tolylsulfonyl))-β-cyclodextrin (BCDTos)
17. Synthesis of mono(6-triethylenetetramino-6-deoxy)-β-cyclodextrin (BCDTrien)
18. Synthesis of deoxycholate-β-cyclodextrin (deoxyBCD)
19. Benesi-Hildebrand Plot
20. Gel-Sol transition under direct UV excitation
21. Rheometry studies of the hydrogel
Materials and Methods

All reagents were purchased from Sigma Aldrich and used without further purification. 1H-NMR, FT-IR, UV-Visible, Induced Circular Dichroism, and upconversion emission spectroscopies were performed at Concordia University. MALDI-TOF MS analysis was performed at the Drug Discovery Platform at the McGill University Health Centre. Cryo-ultramicrotoming and TEM analysis was performed at McGill University Facility for Electron Microscopy Research.

All 1H-NMR and 13C-NMR spectra were recorded on a 500 MHz Bruker Scientific NMR spectrometer at 25 °C. All FT-IR spectra were recorded on a Thermo Scientific Nicolet iD5 ATR spectrophotometer. UV-Visible spectroscopy was carried out using a Varian Cary 100 Bio UV-Vis spectrophotometer using a 1 cm path length quartz cuvette. Induced Circular Dichroism spectroscopy was carried out on a JASCO J-815 spectropolarimeter using a 0.2 cm path length quartz cuvette. Zeta Potential was measured on a Zetasizer Nano-S (Malvern Instruments Ltd, Worcestershire, UK). Measurements were performed using a disposable folded capillary cell (Malvern). For each experiment, 10 measurements of 20 runs each were recorded.

MALDI-TOF-MS analysis:

The α-Cyano-4-hydroxycinnamic acid (CHCA) matrix solution, used in all experiments, was prepared at saturation in a solvent mixture (water with 0.1% TFA: acetonitrile (ACN), 1:1 v/v). For the sample-matrix crystallization procedure, the aliquot of sample was then mixed with the saturated matrix in a 1:1 ratio (v/v) and 1 μL of this mixture was directly spotted onto the MALDI target plate. MALDI spectra were acquired on an UltraflExtreme time-of-flight spectrometer operated in the positive ion, reflectron mode equipped with a 2 KHz repetition rate Smartbeam II laser from Bruker Daltonics. For each spectrum, 1000 shots were accumulated under optimized delayed extraction conditions with a source accelerating voltage of +20kV. A peptide solution standard was used to calibrate the instrument.
TEM Analysis of oleate-capped LiYF₄:Tm³⁺/Yb³⁺ UCNPs:

TEM analysis of the oleate-capped LiYF₄:Tm³⁺/Yb³⁺ nanoparticles was performed using a Jeol-JEM-2100F microscope operating at 200 kV equipped with a charge coupled device (CCD) camera (Gatan). Prior to analysis, a 1 wt% sample was dispersed in toluene. A drop of the resulting solution was evaporated on a formvar/carbon film supported on a 3-mm 300-mesh copper grid.

Cryo-ultramicrotomy and TEM analysis:

The sample was mounted on an aluminum stub with 2.3 M sucrose in 0.1 M phosphate buffer at 4 °C and frozen in liquid nitrogen. Sectioning was performed with the Leica Microsystems UC7/FC7 cryo-ultramicrotome at -90°C, and the 100-nm ultrathin sections were transferred onto formvar coated 200-mesh Cu TEM grids. Imaging was carried out with a FEI Tecnai G² Spirit BioTwin TEM equipped with a Gatan Ultrascan 4000 CCD camera Model 895 at an accelerating voltage of 120 kV.

Emission Spectroscopy:

The upconversion emission spectra of all LiYF₄:Tm³⁺/Yb³⁺ UCNP solutions studied were obtained upon 980 nm excitation, using a Coherent 6-pin 15 fiber-coupled F6 series 980 nm laser diode with a power of 0.460 W, coupled to a 100 µm fiber (core diameter). All studies were carried out in 1 cm path length quartz cuvettes (Thorlabs). UV emission spectra were collected at a right angle with respect to the incident beam using a Spex Minimate 1/4 m monochromator and detected with an Oriel 70680 photomultiplier tube. The PMT signals were processed by a model SR440 Stanford Research Systems preamplifier, and a SR400 Stanford Research Systems gated photon counter was used as an interface between the computer and hardware. The signals were recorded using a Stanford Research Systems SR465 data acquisition/analysis system.
Powder X-Ray Diffraction Studies

PXRD was performed using a Bruker D2 Phaser benchtop powder X-ray diffractometer equipped with a LynxEye detector, a copper K-alpha source and a nickel filter.

Rheological Studies

Zero-shear viscosity measurements were performed using an Anton-Paar MCR500 rheometer equipped with cone-plate geometry (25 mm diameter) at a gap of 1 mm at 25 °C.

Sol-Gel Transition studies under UV Excitation

A UVP LLC. UVGL-58 handheld UV lamp at 365 nm (6W Hg lamp, power density 1.2 mW/cm²) placed approximately 5 cm away from the sample was used to conduct the UV-induced sol-gel transition studies.

Sol-Gel Transition studies under NIR Excitation

A 1.3 W 980 nm handheld laser was used with a focusing lens placed at 10 cm distance from the laser output and a chopping blade operated by a Stanford Research Systems Inc. Model SR540 Chopper Controller at a frequency of 4 kHz was placed between the focusing lens and the sample at a distance of 3 inches between each. The measured power of the laser while chopping at 4kHz was 0.7 W.
Synthesis and Characterization:

3-(4-phenylazophenoxy)propanol (AzopropOH) was synthesized according to a procedure described by Liu et al. In summary, 4-phenylazophenol (1.98 g, 10 mmol) was reacted with 3-bromopropanol (1.67 g, 12 mmol) in dry DMF at 75 °C for 6 hours. The crude product was extracted in cold water and chloroform followed by a wash with 1 M HCl and saturated NaCl. The crude product was purified by column chromatography using silica gel and 1:6 v/v EA:DCM mixture as eluent. The product was obtained in 90% yield and analyzed by 1H-NMR spectroscopy in CDCl$_3$. 1H-NMR: δ = 1.90 (q, 2H), 3.58 (t, 2H), 4.15 (m, 2H), 4.58 (m, 1H), 7.125 (m, 2H), 7.50-7.58 (m, 3H), 7.83-7.89 (m, 4H). Smaller peaks in the aliphatic region may be attributed to different chemical shifts of the propanol group in the cis-azopropOH isomer.

Figure S1. 1HNMR of AzopropOH in DMSO-d6.
Figure S2. UV-Visible absorption spectra of AzopropOH in 2:1 v/v H₂O:EtOH at 25 °C.

PAA-AzopropOH copolymer was synthesized via the Steglich Esterification technique in which Poly(acrylic acid) is reacted with 3-(4-phenylazophenoxy)propanol in the presence of DCC and DMAP to obtain the modified copolymer.² All reactions were performed on a 1 g scale of PAA and performed as follows: 1.00 g of PAA (130,000 Mₙ) was dissolved in 75 mL anhydrous NMP at 75 °C for 4 hours stirring at 300 rpm, until completely dissolved. The solution was brought to room temperature and 3-(4-phenylazophenoxy)propanol (0.55 g, 2.15 mmol) and DMAP (0.3 g, 2.45 mmol) were added and stirred together for 1 hour. The reaction was then placed on an ice bath and DCC (1.3 g, 6.3 mmol) was added. The reaction was then brought back to room temperature and left to stir for 3 days. Upon completion, the crude azobenzene-modified copolymer was isolated by precipitation in 50/50 v/v EtOAc/Acetone on ice. The precipitate was dried under vacuum for 12 hours and re-dissolved in a minimal quantity of distilled water. Following dissolution, 50 g of solid NaCl were added to the solution and the mixture was left to stir
overnight at 50 °C, after which the pure product precipitates. The precipitate was collected and washed 3x with cold water and then dried under vacuum to obtain the final product in 80% yield. Percentage modification was determined by 1H-NMR (integration of the methylene protons in the PAA backbone vs. the aromatic protons at 7.13 ppm) and UV-Visible absorption spectroscopy to be 23%, corresponding to an average of 414 out of 1800 repeat units modified with azobenzene. The molecular weight of the polymer was calculated to be 228,000 g/mol based on the 23% modification. 1H-NMR: $\delta= 1.33$-1.85 (m br), 2.06-2.09 (s br), 2.88-3.08(s br), 4.15(s br), 7.13 (m br), 7.50-7.55 (m br), 7.84 (m br). Peaks at 3.33 (s, H2O), 3.16 (s, MeOH), 2.50 (t, CH3SO), 2.09 (s, Acetone) are volatile solvent impurities.

Figure S3. 1H-NMR of PAA-AzopropOH in DMSO-d6.
Synthesis of Oleate-Capped LiYF₄:Tm³⁺(0.5 mol %)/Yb³⁺(25 mol %) Upconverting Nanoparticles

The UCNPs are prepared by a two-step thermal decomposition method. First, lanthanide trifluoroacetate precursors are prepared by dissolving Tm₂O₃ (0.0024 g, 6.25x10⁻⁴ mmol), Yb₂O₃ (0.1232 g, 0.313 mmol), and Y₂O₃ (0.2103 g, 0.931 mmol) in a mixture of 1:1 H₂O/trifluoroacetic acid (10 mL) in a 3-neck round bottom flask. The solution is heated at 80 °C under reflux until it becomes clear (approximately 12 hours). The solution is then dried at 60 °C to obtain the final precursor product. Then, in the second step, CF₃COOLi (0.2999 g, 2.5 mmol) is added to the dried lanthanide trifluoroacetate precursors and the mixture was dissolved in a mixture of oleic acid (10 mL, technical grade, 90%) and 1-octadecene (20 mL, technical grade, 90%). The mixture was degassed at 120 °C for 30 minutes and then brought to 315 °C at a rate of 10 °C/min under an argon atmosphere. The reaction was stirred at 315 °C under argon for 1 hour and then cooled to room temperature. To obtain the particles, 99% ethanol was added to the reaction solution to precipitate the nanoparticles, which were then isolated by centrifugation at 3700 rpm for 15 minutes. The

Figure S4. A) Calibration curve of AzopropOH used to determine the % modification of PAA-AzopropOH. B) UV-Vis Absorption spectrum of PAA-AzopropOH used to determine the percent modification (3.8 x 10⁻⁵ M by azobenzene units). Calibration curve and PAA-AzopropOH spectra obtained in 2:1 v/v H₂O:EtOH solvent.
particles were redispersed in hexanes and precipitated in ethanol and centrifuged twice more to remove any impurities.

Figure S5. A) TEM image of LiYF₄:Tm³⁺/Yb³⁺ UCNPs. B) Size distribution of UCNPs based on the measurement of 500 particles. C) XRD of UCNPs
Preparation of Oleate-Free LiYF₄:Tm³⁺/Yb³⁺ UCNPs

Oleate removal was performed by an acid-base reaction.⁴ Briefly, 50 mg of UCNPs were dispersed in 5 mL of toluene and added to a 10 mL 0.1 M HCl aqueous solution. This mixture was allowed to stir at room temperature for 4 hours, or until all nanoparticles migrated to the aqueous layer, as viewed under 980 nm excitation. The aqueous layer was isolated and centrifuged at 14500 rpm for 30 minutes to collect the oleate-free nanoparticles. To confirm the removal of the oleate capping ligand from the nanoparticle surface, FT-IR was used. As shown in the FT-IR spectra, some oleate remains on the surface of the nanoparticles, but the majority was successfully removed, in agreement with the literature.⁴

![FT-IR spectra of various samples](image)

Figure S6. Infrared spectra of (red) oleic acid, (blue) oleate-capped LiYF₄:Tm³⁺/Yb³⁺ UCNPs, (green) oleate-free UCNPs, (purple) PAA-AzopropOH coated UCNPs
Preparation of PAA-Azopropanol copolymer-coated LiYF₄:Tm³⁺/Yb³⁺ UCNPs

20 mg LiYF₄:Tm³⁺/Yb³⁺ oleate-coated UCNPs are dispersed in 10 mL toluene, and an equal volume of pH 3 H₂O (adjusted with HCl) is added to the solution of nanoparticles. The mixture is left to stir for 4 hours, upon which the oleate-free particles are dispersed in the aqueous layer. The particles are collected by centrifugation and then dispersed in a 10 mg/mL solution of PAA-azopropanol copolymer and stirred at RT overnight. The polymer-coated particles are then collected by centrifugation.

Figure S7. Overlap of absorption spectra of trans (orange) and cis (blue) PAA-azoproPOH (2.90x10⁻⁵ M by azobenzene units) with the normalized emission spectrum (black) of LiYF₄:Tm³⁺/Yb³⁺ Upconverting Nanoparticles (1 mg/mL).
Synthesis of Mono-(6-O-(p-tolylsulfonyl))-β-Cyclodextrin (BCDTos) was performed according to the procedure published by Yasen et al. with some modifications. β-Cyclodextrin (2 g, 1.76 mmol) was dissolved in 100 mL aqueous 0.4 M NaOH solution at 0 °C. p-toluenesulfonyl chloride (0.34 g, 1.76 mmol) is added slowly over the course of 1 hour keeping the solution temperature below 5 °C and stirring at 700 rpm. After the addition is completed, the reaction is left to stir on ice for 30 minutes and then vacuum filtered to remove unreacted TsCl. The filtrate is then brought to pH 8.5 with 1 M HCl solution and stirred at room temperature for another hour. The resulting precipitate is then vacuum filtered and washed 3x with cold distilled water and dried under vacuum for 12 hours. 0.39 g of product was obtained in a 17.5% yield. Mono-substitution of β-Cyclodextrin was confirmed by MALDI-MS, LC-MS analysis and 1H-NMR spectroscopy. 1H-NMR BCDTos: 2.42 (s, 3H), 3.15-3.73 (m, 46H), 4.14-3.33 (m, 8H), 4.75-4.83 (m, 7H), 5.70 (s, 13H), 7.43 (d, 2H), 7.75 (m, 2H) 13C-NMR: 21.65, 60.36, 70.16, 72.32, 73.51, 81.95, 102.38, 128.02,
130.33, 133.12, 145.25 **MALDI-MS (m/z):** 1165 (β-CD), 1311 (M+Na), 1327 (M+K), 1465 (ditosylated-β-CD)

Figure S9. 1H-NMR of BCDTos in DMSO-d6.

Mono(6-triethylenetetramino-6-deoxy)-β-Cyclodextrin (BCDTrien) was prepared according to the procedure outlined by Ren et al. with a 74 % yield of product. 61H-NMR: 1.02 (s, 1.22H), 2.36-2.76 (m, 12 H), 3.11-3.77 (m, 48H), 4.82 (m, 6H) **MALDI-MS (m/z):** 1263 (M+H), 1285 (M+Na), 1301 (M+K)
Deoxycholate- β-Cyclodextrin (deoxyBCD) was prepared via EDC/NHS coupling of mono(6-
triethylenetetramino-6-deoxy)-β-Cyclodextrin with deoxycholic acid. Deoxycholic acid (66 mg, 0.1675
mmol), EDC·HCl (96 mg, 0.51 mmol) and NHS (116 mg, 1.01 mmol) were dissolved in 5 mL anhydrous
DMF and left to stir at room temperature (700 rpm, 25 °C) for 4 hours. Separately, mono(6-
triethylenetetramino-6-deoxy)-β-Cyclodextrin (211 mg, 0.17 mmol) was dissolved in 2 mL anhydrous
DMF. The deoxycholic acid-containing mixture was placed on ice and once the solution reached a
temperature below 5 °C, the mono(6-triethylenetetramino-6-deoxy)-β-cyclodextrin solution was added
dropwise to the reaction mixture. The resulting solution was left to stir overnight at room temperature.
The product was crashed out in acetone (50 mL) and centrifuged (4000 rpm, 15 minutes) to obtain the
crude product. The product was isolated by washing 3x with acetone, vacuum drying between each
wash step. The final product was obtained in a 63.7% yield (175 mg).

Figure S10. 1H-NMR of BCDtrien in DMSO-d6.
3.54-2.89 (m, 12H), 3.24-3.75 (m, 44H) 4.83 (m, 7H), 5.57-5.84 (m, 12H) MALDI-MS (m/z): 1285 (β-CDtrien), 1638 (M+H), 1735 (impurity)

Figure S11. 1H-NMR of deoxyBCD in DMSO-d6.
Binding Constant Determination – Benesi Hildebrand Plot

![Benesi-Hildebrand Plot Image]

Figure S12. Benesi-Hildebrand plot of $1/[BCD]$ vs $1/\Delta A$.

Gel-Sol Transition Under Direct UV Excitation at 365 nm

![Gel-Sol Transition Images]

Figure S137. A) A sample of the PAA-azopropOH hydrogel in gel form. B) The hydrogel in sol form after 365 nm irradiation for 25 minutes.
Rheometry of PAA-AzopropOH-Deoxy-β-Cyclodextrin Hydrogel with UCNPs Embedded in Matrix

Figure S14. A) Viscosity vs. Strain % graph. B) Shear strain vs. Shear Stress graph.

References

S6. Y. Ren, B. Yang and X. Liao, RSC Advances, 2016, 6, 22034-22042.