Electronic Supporting Information for:

Schiff-base coordination complexes with Pu(IV) and Ce(IV)

Bonnie E. Klamm, Cory J. Windorff, Matthew L. Marsh, David S. Meeker, and Thomas E. Albrecht-Schmitt^{*}

Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States.

*albrecht-schmitt@chem.fsu.edu

Table of Contents	Page
Experimental Section	S2–S4
NMR Spectra	S5–S6
Absorbance Spectra	S7
Cyclic Voltammetry	S8
Crystallographic Details	S10–S13
References	S13

Experimental

General Considerations

Caution! ²³⁹*Pu* [$t_{1/2} = 24,110(30)$ y] is a serious health threat, due to its radioactive decay, as well as that of its daughters. Hence, all studies with plutonium were conducted with appropriate controls for the safe handling and manipulation of radioactive materials, i.e. in a radiation laboratory equipped with a HEPA filtered hood. All free-flowing solids that contained plutonium were handled in negative-pressure gloveboxes or were covered in oil.

All operations were performed in an open atmosphere with no attempt to exclude air and moisture. ²³⁹Pu was MT-52 and obtained from Los Alamos National Laboratory as PuO₂ and converted to PuCl₃•xH₂O by repeated dissolution in concentrated HCl. CeCl₃•7H₂O (Sigma-Aldrich), 1,2-phenylenediammine (Sigma-Aldrich), 4-Diethylaminosalicylaldehyde (Sigma-Aldrich), NEt₃ (Sigma-Aldrich), and CDCl₃ (Sigma-Aldrich) were purchased from commercial sources and used as received.

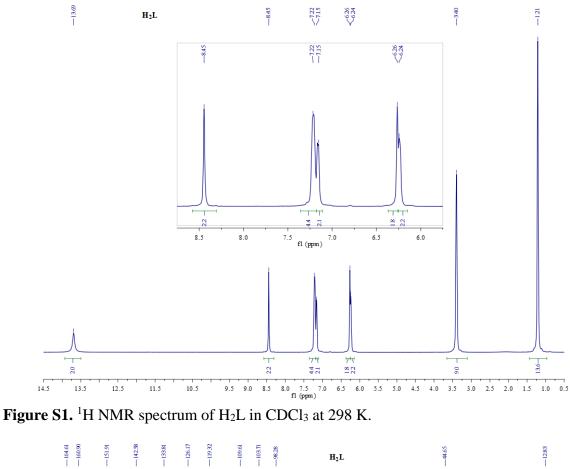
UV/vis/NIR spectroscopic data were obtained from single crystals using a CRAIC Technologies UV/vis/NIR microspectrophotometer. Crystals were placed on quartz slides under Krytox oil and data were collected from 200 nm to 1400 nm. ¹H and ¹³C{¹H} NMR spectra were recorded on a Bruker 600 MHz spectrometer operating at 600.1 and 150.9 MHz, respectively, at 298 K unless otherwise stated. ¹H and ¹³C{¹H} NMR spectra were referenced internally to solvent resonances. Electrochemical data was recorded on a CH Instruments Model 600E Series potentiostat. A three-electrode configuration comprising a platinum disk working electrode (2 mm diameter), a platinum wire counter electrode, and silver wire pseudoreference electrode were used in all experiments. Cyclic voltammetric scans were conducted in DCM with 0.1 M [NⁿBu₄][PF₆] electrolyte for characterization of the ligand species, cerium, and plutonium complexes. Melting point data was performed using open capillaries on a Mel-Temp using an uncalibrated mercury thermometer. Elemental analyses for C, H, and N were carried out by Midwest Microlab, Indianapolis, IN. Single crystals selected for data collection were mounted on and optically aligned on a Bruker D8 Discover X-ray diffractometer, using a digital camera. Crystallographic data were collected at room temperature using a Mo-K α (λ = 0.71069 Å) X-ray source and a graphite monochromator. The APEX III software¹ was used for the determination of the unit cells and data collection control. The raw data frames were

processed using SAINT² and SADABS.³ Subsequent calculations were carried out using the OLEX2 program.⁴ The structures were solved by olex2.solve and refined by full-matrix least-squares on F² techniques.

Synthesis of *N*,*N'* –bis[(4, 4' -diethylamino)salicylidene]-1, 2-phenylenediamine (H₂L)

H₂L was synthesized in a manner similar to procedures utilized with other Schiff-base salen ligands molecules previously reported.⁵⁻⁹ To a stirred solution of 1,2-phenylenediamine, o-C₆H₄(NH₂)₂ (0.500 g, 4.62 mmol) in methanol (10 mL), 4-diethylamino-salicylaldehyde HC(O)C₆H₃,2-OH,4-NEt₂ (1.79 g, 9.25 mmol) in methanol (15 mL), was added and refluxed for 8 h. The mixture was cooled to room temperature and concentrated under vacuum. The crude product was washed with methanol and dried under vacuum, giving H₂L as a fine yellow powder (1.17 g, 55%). ¹H NMR (CDCl₃): δ 13.69 (s, 2H, O-*H*), 8.45 (s, 2H, *H*-C(Ar)=N), 7.22 (s, 4H, Ar-*H*), 7.15 (s, 2H, Ar-*H*), 6.26 (s, 2H, Ar-*H*), 6.24 (s, 2H, Ar-*H*), 3.40 (s, 8H, NC*H*₂CH₃), 1.21 (s, 12H, CH₂CH₃); ¹³C{¹H} NMR (CDCl₃): δ 164.61 (Ar-*C*), 160.90 (Ar-*C*), 151.91 (Ar-*C*), 142.58 (Ar-*C*), 133.81 (Ar-*C*), 126.17 (Ar-*C*), 119.32 (Ar-*C*), 109.61 (Ar-*C*), 103. 71 (Ar-*C*), 98.23 (Ar-*C*), 44.65 (CH₂), 12.88 (CH₃).

Synthesis of PuL₂


 H_2L (25 mg, 0.050 mmol) and NEt₃ (200 µL, 1.43 mmol) in DCM (1 mL) were added to a solution of PuCl₃•xH₂O (10 mg, 0.029 mmol, based on elemental Pu content) in methanol (1 mL). The color of the solution immediately changed from light violet to black. Pentane (5 mL) was carefully layered on top of the solution and after 1 d at room temperature, X-ray quality crystals of PuL₂ were isolated as black block-like crystals, washed with pentane and dried in air. Due to radioactivity, elemental analysis was not obtained.

Synthesis of CeL₂

H₂L (25 mg, 0.050 mmol) and NEt₃ (200 μL, 1.43 mmol) in DCM (1 mL) were added to a solution of CeCl₃•7H₂O (10 mg, 0.025 mmol) in methanol (1 mL). The color of the solution immediately changed from orange to black. Pentane (5 mL) was carefully layered on top of the solution and after 1 d at room temperature, X-ray quality crystals of CeL₂ were isolated as black block-like crystals, washed with pentane and dried in air (14 mg, 60%). ¹H NMR (CDCl₃): δ 8.34 (s, 4H, *H*-C(Ar)=N), 7.04 (s, 12H, Ar-*H*), 5.99 (s, 4H, Ar-*H*), 5.40 (s, 4H, Ar-*H*), 3.26 (s, 16H, CH₂CH₃), 2.93 (s, 16H, CH₂CH₃), 1.24 (s, 24H, CH₂CH₃), 1.09 (s, 24H, CH₂), ; ¹³C{¹H} NMR (CDCl₃): δ 169.48 (Ar-*C*), 158.19 (Ar-*C*), 152.86 (Ar-*C*), 146.33 (Ar-*C*),

135.21 (Ar-*C*), 125.2 (Ar-*C*), 116.96 (Ar-*C*), 114.70 (Ar-*C*), 103.37 (Ar-*C*), 99.11 (Ar-*C*), 45.89 (*C*H₂), 44.21 (*C*H₂), 13.05 (*C*H₃), 8.65 (*C*H₃). Anal. Cal'd For C₅₆H₆₄CeN₈O₄·2CH₂Cl₂; C, 56.95; H, 5.60; N, 9.16. Found, C, 57.22; H, 5.78; N, 9.25. Melting point 250-255 °C.

NMR Spectra

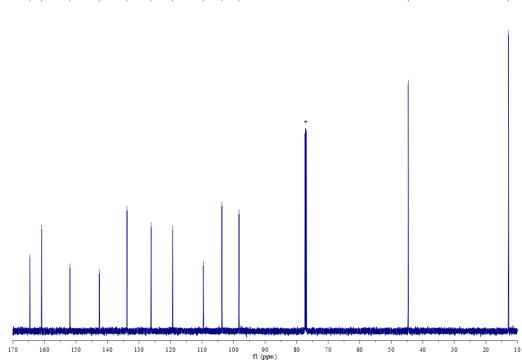
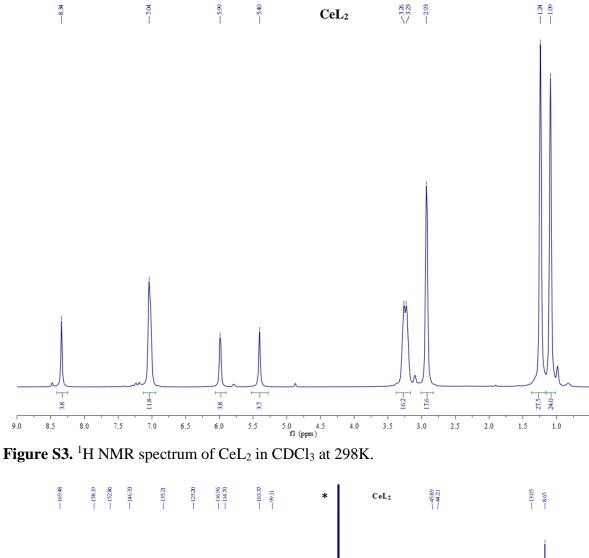
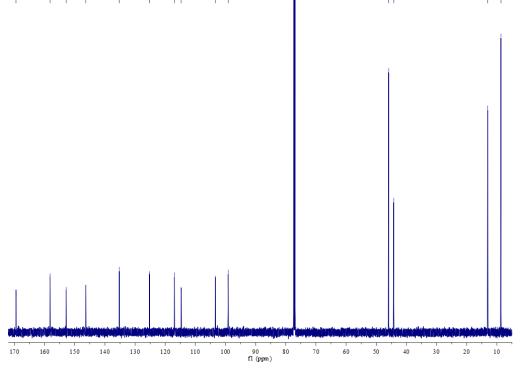
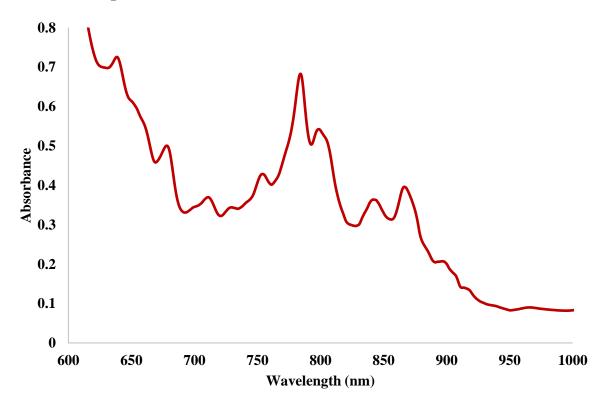
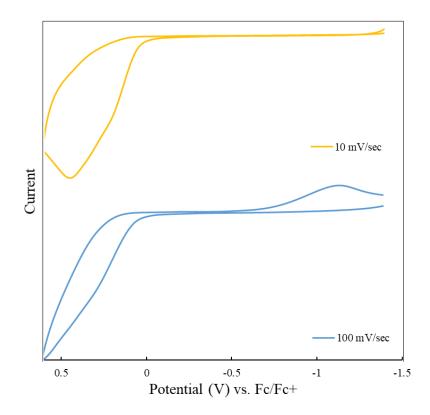



Figure S2. $^{13}C\{^1H\}$ NMR spectrum of H₂L in CDCl₃ at 298 K with * denoting solvent resonance.


Figure S4. $^{13}C\{^1H\}$ NMR spectrum of CeL $_2$ in CDCl $_3$ at 298K with * denoting solvent resonance.

Absorbance Spectra

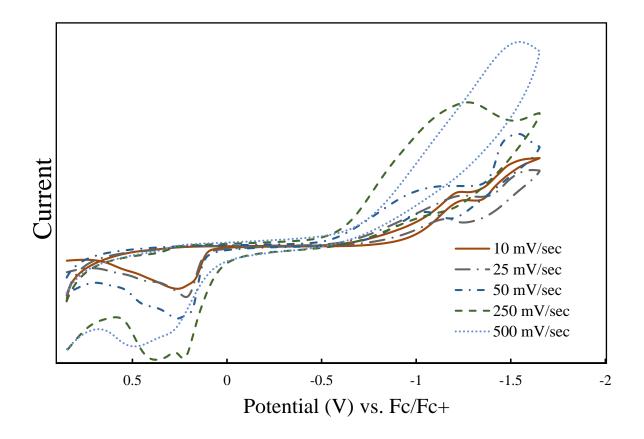


Figure S5. Absorption spectra of PuL_2 (L = N,N'-bis[(4,4'-diethylamino)salicylidene]-1,2-phenylenediamine).

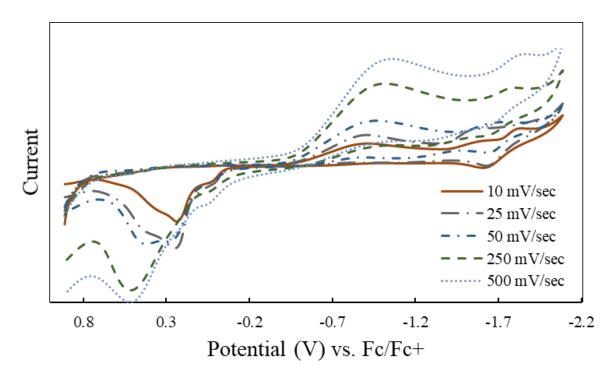

Cyclic Voltammetry

Figure S6. Cyclic voltammograms showing H₂L at a concentration of 5×10^{-3} M and v = 10 mV/sec and v = 100 mV/sec. Both scans are taken at 298 K with 0.1 M [NⁿBu₄][PF₆] in DCM.

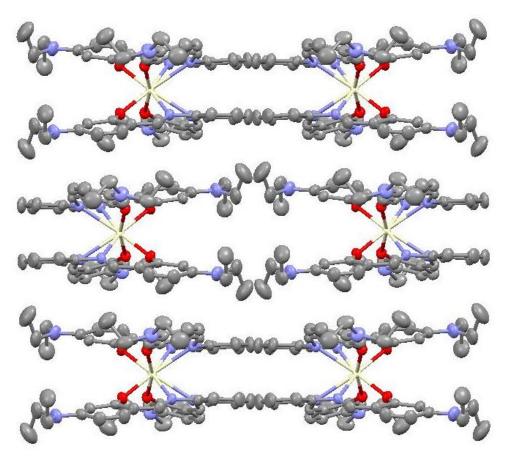


Figure S7. Cyclic voltammograms showing CeL_2 at a concentration of $5x10^{-3}$ M at various scan rates at 298 K with 0.1 M [N^{*n*}Bu₄][PF₆] in DCM.

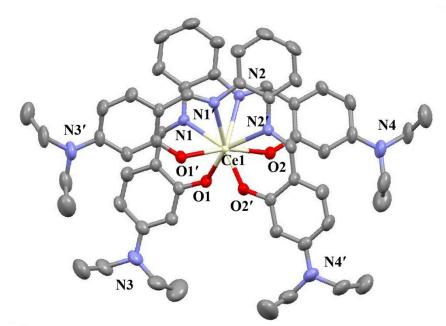


Figure S8. Cyclic voltammograms showing PuL_2 at a concentration of 5×10^{-3} M at various scan rates at 298 K with 0.1 M [N^{*n*}Bu₄][PF₆] in DCM.

Crystallographic Details

Figure S9. Packing diagram of CeL_2 shown down the c axis. Drawn at the 50% probability level with hydrogen atoms and lattice solvent omitted for clarity.

Figure S10. Molecular structure of CeL_2 drawn at the 50% probability level with hydrogen atoms and lattice solvent omitted for clarity.

Table S1. Crystallographic information for ML₂ (M = Ce, Pu)

Compound	CeL ₂	PuL ₂
Empirical Formula	C ₅₈ H ₆₈ Cl ₄ N ₈ O ₄ Ce	C58H68Cl4N8O4Pu
Color	Black	Red
Habit	Block	Irregular
Temperature (K)	299(2)	298(2)
Crystal System	Monoclinic	Monoclinic
Space Group	C2/c	C2/c
<i>a</i> (Å)	15.120(6)	15.0632(9)
<i>b</i> (Å)	25.007(9)	24.9196(15)
<i>c</i> (Å)	15.405(6)	15.3540(9)
α (deg)	90	90
β (deg)	95.137(9)	95.012(2)
γ(deg)	90	90
Volume (Å ³)	5801(4)	5741.4(6)
Z	4	4
$ ho_{ m calcd}$ (Mg/m ³)	1.400	1.533
μ (mm ⁻¹)	1.021	1.387
R1 ^a (I > 2.0 o(I))	0.0412	0.0491
wR2 (all data)	0.0868	0.0906

^aDefinitions: $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, $wR2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$.

Goof = S = $[\Sigma[w(F_o^2-F_c^2)^2] / (n-p)]^{1/2}$ where n is the number of reflections and p is the total number of parameters refined.

Pu(1)-O(2)#1	2.224(3)	O(2)#1-Pu(1)-N(2)	152.05(10)
Pu(1)-O(2)	2.224(3)	O(2)-Pu(1)-N(2)	71.76(10)
Pu(1)-O(1)#1	2.225(3)	O(1)#1-Pu(1)-N(2)	74.20(10)
Pu(1)-O(1)	2.225(3)	O(1)-Pu(1)-N(2)	112.80(11)
Pu(1)-N(2)#1	2.538(3)	N(2)#1-Pu(1)-N(2)	133.38(14)
Pu(1)-N(2)	2.538(3)	O(2)#1-Pu(1)-N(1)#1	110.89(10)
Pu(1)-N(1)#1	2.572(3)	O(2)-Pu(1)-N(1)#1	145.97(10)
Pu(1)-N(1)	2.572(3)	O(1)#1-Pu(1)-N(1)#1	71.11(10)
		O(1)-Pu(1)-N(1)#1	124.27(10)
O(2)#1-Pu(1)-O(2)	87.75(14)	N(2)#1-Pu(1)-N(1)#1	61.57(10)
O(2)#1-Pu(1)-O(1)#1	84.87(10)	N(2)-Pu(1)-N(1)#1	79.95(10)
O(2)-Pu(1)-O(1)#1	83.08(10)	O(2)#1-Pu(1)-N(1)	145.98(10)
O(2)#1-Pu(1)-O(1)	83.09(10)	O(2)-Pu(1)-N(1)	110.89(10)
O(2)-Pu(1)-O(1)	84.87(10)	O(1)#1-Pu(1)-N(1)	124.27(10)
O(1)#1-Pu(1)-O(1)	163.27(14)	O(1)-Pu(1)-N(1)	71.11(10)
O(2)#1-Pu(1)-N(2)#1	71.77(10)	N(2)#1-Pu(1)-N(1)	79.95(10)
O(2)-Pu(1)-N(2)#1	152.05(10)	N(2)-Pu(1)-N(1)	61.57(10)
O(1)#1-Pu(1)-N(2)#1	112.80(11)	N(1)#1-Pu(1)-N(1)	69.39(14)
O(1)-Pu(1)-N(2)#1	74.19(10)		

 Table S2. Bond lengths [Å] and angles [°] for PuL2.

 Table S2. Bond lengths [Å] and angles [°] for CeL₂.

Ce(1)-O(2)#1	2.2376(16)	O(2)#1-Ce(1)-O(1)#1	85.82(6)
Ce(1)-O(2)	2.2376(16)	O(2)-Ce(1)-O(1)#1	83.62(6)
Ce(1)-O(1)#1	2.2418(15)	O(2)#1-Ce(1)-O(1)	83.62(6)
Ce(1)-O(1)	2.2418(15)	O(2)-Ce(1)-O(1)	85.82(6)
Ce(1)-N(2)#1	2.6031(18)	O(1)#1-Ce (1)-O(1)	88.79(8)
Ce(1)-N(2)	2.6031(18)	O(2)#1-Ce(1)-N(2)#1	70.54(6)
Ce(1)-N(1)#1	2.5760(19)	O(2)-Ce(1)-N(2)#1	123.03(5)
Ce(1)-N(1)	2.5760(19)	O(1)#1-Ce(1)-N(2)#1	110.36(6)
		O(1)-Ce(1)-N(2)#1	145.93(6)
O(2)#1-Ce(1)-O(2)	165.21(7)	O(2)#1-Ce(1)-N(2)	123.03(5)

O(2)-Ce(1)-N(2)	70.54(5)	N(2)-Ce(1)-N(1)#1	80.38(6)
O(1)#1-Ce(1)-N(2)	145.93(6)	O(2)#1-Ce(1)-N(1)	73.88(6)
O(1)-Ce(1)-N(2)	110.36(6)	O(2)-Ce(1)-N(1)	112.29(6)
N(2)#1-Ce(1)-N(2)	69.22(8)	O(1)#1-Ce (1)-N(1)	152.61(6)
O(2)#1-Ce (1)-N(1)#1	112.29(6)	O(1)-Ce(1)-N(1)	71.14(6)
O(2)-Ce(1)-N(1)#1	73.88(6)	N(2)#1-Ce(1)-N(1)	80.38(6)
O(1)#1-Ce(1)-N(1)#1	71.14(6)	N(2)-Ce(1)-N(1)	61.09(6)
O(1)-Ce(1)-N(1)#1	152.62(6)	N(1)#1-Ce(1)-N(1)	133.45(8)
N(2)#1-Ce(1)-N(1)#1	61.09(6)		

References

- 1. APEX3 Version 2017.3-0, Bruker AXS, Inc.; Madison, WI 2017
- 2. Sheldrick, G. M. SADABS, Version 2012/1, Bruker AXS, Inc.; Madison, WI 2012
- 3. SAINT Version 8.30, Bruker AXS, Inc.; Madison, WI 2012
- 4. OLEX2 Version 1.2.10, OlexSys Ltd. 2004-2018
- 5. W. Wu, J. Sun, S. Ji, W. Wu, J. Zhao and H. Guo, *Dalton Trans.*, 2011, **40**, 11550-11561.
- 6. J. A. Castro-Osma, M. North and X. Wu, *Chem. Eur. J.*, 2016, **22**, 2100-2107.
- P. Wu, D. L. Ma, C. H. Leung, S. C. Yan, N. Zhu, R. Abagyan and C. M. Che, *Chem. Eur. J.*, 2009, 15, 13008-13021.
- 8. J. Cheng, K. Wei, X. Ma, X. Zhou and H. Xiang, J. Phys. Chem. C, 2013, **117**, 16552-16563.
- 9. T. Yu, K. Zhang, Y. Zhao, C. Yang, H. Zhang, L. Qian, D. Fan, W. Dong, L. Chen and Y. Qiu, *Inorg. Chim. Acta*, 2008, **361**, 233-240.