Supporting Information

A One-Pot Process for the Enantioselective Synthesis of Tetrahydroquinolines and Tetrahydroisoquinolines via Asymmetric Reductive Amination (ARA)

Tao Yang, Qin Yin, Guoxian Gu and Xumu Zhang*†

Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.

† Shenzhen Grubbs Institute, Shenzhen, 518055, P. R. China.

zhangxm@sustc.edu.cn

Contents

1. General information ...2
2. General procedure for the preparation of substrates ...2
3. General procedure for one-pot N-Boc deprotection and asymmetric reductive amination7
4. References ...16
5. NMR spectra ...17
6. HPLC spectra ..77
1. General information

Unless otherwise mentioned, all experiments were carried out under an atmosphere of argon in a glovebox or using standard Schlenk techniques. Solvents were dried with standard procedures and degassed with N\textsubscript{2}. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 300-400 mesh). NMR spectra were recorded on a Bruker DPX 400 spectrometer at 400 MHz for 1H NMR, 101 MHz for 13C NMR or a Bruker DPX 500 spectrometer at 500 MHz for 1H NMR, 126 MHz for 13C NMR. Chemical shifts (δ) are reported in ppm and respectively referenced to internal standard Me\textsubscript{4}Si and solvent signals (Me\textsubscript{4}Si, 0 ppm for 1H NMR in CDCl\textsubscript{3}; 77.0 ppm in CDCl\textsubscript{3} for 13C NMR). HPLC and UPLC analysis was carried out on Angilent 1200 Series instrument using chiral columns.

2. General procedure for the preparation of substrates

Step 1:
S\textsubscript{1} (10 mmol) and Et\textsubscript{3}N (11 mmol) were dissolved in dichloromethane (30 mL) at 0 °C, followed by addition of (Boc)$\textsubscript{2}$O (12 mmol) and DMAP (0.5 mmol). The resulting solution was warmed to rt and stirred for 6 h. The reaction was quenched with saturated NH\textsubscript{4}Cl aqueous solution (20 mL). The organic layer was extracted with dichloromethane (10 mL × 2), combined, dried over anhydrous Na\textsubscript{2}SO\textsubscript{4}, and then concentrate under reduced pressure. The crude product was further purified by column chromatography to quantitatively provide pure S\textsubscript{2}.

Step 2:
R3MgBr (1.3 equiv) was added dropwise to a solution of S\textsubscript{2} (3 mmol) in dried THF (10 mL) at -65 °C. The resulting mixture was then stirred overnight. After warming up to rt, the reaction was quenched with saturated NH\textsubscript{4}Cl aqueous solution (15 mL) and extracted with EtOAc (10 mL × 2). The combined organic layers were dried over anhydrous Na\textsubscript{2}SO\textsubscript{4} and then concentrated under reduced pressure. The crude product was further purified by column chromatography to give 1.

\textit{tert-butyl (2-(3-oxobutyl)phenyl)carbamate (1a)}: an oil, 500 mg, 63% yield
1H NMR (500 MHz, CDCl\textsubscript{3}) δ 7.72 (d, $J = 5.9$ Hz, 1H), 7.60 (s, 1H), 7.20 (m, 1H), 7.16-7.09 (m, 1H), 7.09-7.01 (m, 1H), 2.85 (m, 4H), 2.33-2.02 (m, 3H), 1.56 (s, 9H).

13C\textsubscript{1H} NMR (126 MHz, CDCl\textsubscript{3}) δ 209.2, 153.8, 136.0, 131.9, 129.4, 126.9, 124.2, 123.2, 80.0, 44.6, 29.9, 28.4, 24.0 ppm.

HRMS Calculated for C\textsubscript{16}H\textsubscript{24}NO\textsubscript{3} [M+H]+ 278.1751; found 278.1741.

\textit{tert-butyl (2-(3-oxopentyl)phenyl)carbamate (1b)}: an oil, 465 mg, 56% yield
1H NMR (500 MHz, CDCl\textsubscript{3}) δ 7.71 (d, $J = 7.7$ Hz, 1H), 7.50 (s, 1H), 7.12 (dd, $J = 7.6$, 1.5 Hz, 1H), 7.04 (td, $J = 7.5$, 1.2 Hz, 1H), 2.84 (m, 4H), 2.42 (q, $J = 7.3$ Hz, 2H), 1.56 (s, 9H), 1.05 (t, $J = 7.3$ Hz, 3H).

13C\textsubscript{1H} NMR (126 MHz, CDCl\textsubscript{3}) δ 211.8, 153.8, 136.0, 132.0, 129.3, 126.9, 124.2, 123.3, 80.0, 43.1, 36.0, 28.4, 27.9, 24.1 ppm. HRMS Calculated for C\textsubscript{16}H\textsubscript{24}NO\textsubscript{3} [M+H]+ 278.1751; found 278.1741.

\textit{tert-butyl (2-(3-oxohexyl)phenyl)carbamate (1c)}: an oil, 611 mg, 70% yield
1H NMR (500 MHz, CDCl\textsubscript{3}) δ 7.71 (d, $J = 7.7$ Hz, 1H), 7.49 (s, 1H), 7.12 (dd, $J = 7.6$, 1.5 Hz, 1H), 7.04 (td, $J = 7.5$, 1.2 Hz, 1H), 2.84 (m, 4H), 2.42 (q, $J = 7.3$ Hz, 2H), 1.56 (s, 9H), 1.05 (t, $J = 7.3$ Hz, 3H).
7.24-7.16 (m, 1H), 7.11 (dd, J = 7.6, 1.5 Hz, 1H), 7.04 (td, J = 7.5, 1.1 Hz, 1H), 2.91-2.72 (m, 4H), 2.37 (t, J = 7.4 Hz, 2H), 1.60 (dt, J = 7.4, 7.4 Hz, 2H). 1.56 (s, 9H), 0.88 (t, J = 7.4 Hz, 3H). 13C (1H) NMR (126 MHz, CDCl₃) δ 211.4, 153.8, 136.0, 131.9, 129.3, 126.9, 124.2, 123.7, 80.0, 44.8, 43.5, 28.4, 24.1, 17.3, 13.6 ppm. HRMS Calculated for C₁₉H₂₈NO₅ [M+H]$^+$ 292.1907; found 292.1896.

tert-butyl (2-(3-oxoheptyl)phenyl)carbamate (1d): an oil, 530 mg, 58% yield

1H NMR (500 MHz, CDCl₃) δ 7.71 (d, J = 7.6 Hz, 1H), 7.50 (s, 1H), 7.25-7.17 (m, 1H), 7.11 (dd, J = 7.6, 1.6 Hz, 1H), 7.04 (td, J = 7.5, 1.2 Hz, 1H), 2.83 (m, 4H), 2.38 (t, J = 7.6 Hz, 2H), 1.60-1.51 (m, 11H), 1.30 (m, 2H), 1.26-1.17 (m, 2H). 0.88 (t, J = 7.2 Hz, 3H). 13C (1H) NMR (126 MHz, CDCl₃) δ 211.6, 153.8, 136.0, 131.9, 129.3, 126.9, 124.2, 123.3, 80.0, 43.4, 42.7, 28.4, 25.9, 24.1, 22.2, 13.8 ppm. HRMS Calculated for C₁₉H₂₈NO₅ [M+H]$^+$ 306.2064; found 306.2053.

tert-butyl (2-(3-oxooctyl)phenyl)carbamate (1e): an oil, 440 mg, 46% yield

1H NMR (500 MHz, CDCl₃) δ 7.71 (d, J = 7.7 Hz, 1H), 7.50 (s, 1H), 7.25-7.17 (m, 1H), 7.11 (dd, J = 7.6, 1.6 Hz, 1H), 7.04 (td, J = 7.5, 1.2 Hz, 1H), 2.83 (m, 4H), 2.38 (t, J = 7.6 Hz, 2H), 1.60-1.51 (m, 11H), 1.30 (m, 2H), 1.26-1.17 (m, 2H), 0.88 (t, J = 7.2 Hz, 3H). 13C (1H) NMR (126 MHz, CDCl₃) δ 211.6, 153.8, 136.0, 131.9, 129.3, 126.9, 124.2, 123.3, 80.0, 43.4, 42.7, 28.4, 25.9, 24.1, 22.1, 13.8 ppm. HRMS Calculated for C₂₀H₂₉NO₅ [M+H]$^+$ 320.2220; found 320.2210.

tert-butyl (2-(3-oxononyl)phenyl)carbamate (1f): an oil, 660 mg, 66% yield

1H NMR (500 MHz, CDCl₃) δ 7.71 (d, J = 7.6 Hz, 1H), 7.51 (s, 1H), 7.23 - 7.15 (m, 1H), 7.11 (dd, J = 7.6, 1.5 Hz, 1H), 7.04 (td, J = 7.5, 1.2 Hz, 1H), 2.83 (t, J = 3.7 Hz, 4H), 2.38 (t, J = 7.5 Hz, 2H), 1.56 (m, 11H), 1.35 - 1.11 (m, 6H), 0.88 (t, J = 7.0 Hz, 3H). 13C (1H) NMR (126 MHz, CDCl₃) δ 211.6, 153.8, 136.0, 132.0, 129.3, 126.9, 124.2, 123.3, 80.0, 43.4, 43.0, 31.5, 28.8, 28.4, 23.8, 22.4, 14.0 ppm. HRMS Calculated for C₂₀H₂₉NO₅ [M+H]$^+$ 334.2377; found 334.2365.

tert-butyl (2-(3-oxodecyl)phenyl)carbamate (1g): an oil, 560 mg, 54% yield

1H NMR (500 MHz, CDCl₃) δ 7.71 (d, J = 7.8 Hz, 1H), 7.50 (s, 1H), 7.23-7.16 (m, 1H), 7.11 (dd, J = 7.7, 1.5 Hz, 1H), 7.04 (td, J = 7.5, 1.2 Hz, 1H), 2.83 (m, 4H), 2.38 (t, J = 7.5 Hz, 2H), 1.56 (m, 11H), 1.33 - 1.16 (m, 8H), 0.89 (t, J = 7.0 Hz, 3H). 13C (1H) NMR (126 MHz, CDCl₃) δ 211.6, 153.8, 136.0, 131.9, 129.3, 126.9, 124.2, 123.3, 80.0, 43.4, 43.0, 31.6, 29.0, 29.0, 28.4, 24.1, 23.9, 22.5, 14.0 ppm. HRMS Calculated for C₂₁H₃₀O₅N [M+H]$^+$ 348.2533; found 348.2522.

tert-butyl (2-(3-oxo-4-phenylbutyl)phenyl)carbamate (1h): a white solid, 750 mg, 74% yield

1H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 7.7 Hz, 1H), 7.38-7.22 (m, 4H), 7.22-7.15 (m, 1H), 7.15-7.10 (m, 2H), 7.06-6.96 (m, 2H), 3.65 (s, 2H), 2.83 (m, 2H), 2.79 (m, 2H), 1.52 (s, 9H). 13C (1H) NMR (126 MHz, CDCl₃) δ 208.7, 153.8, 135.9, 133.8, 131.7, 130.6, 129.3, 128.4, 127.1, 126.9, 124.2, 123.3, 80.1, 50.2, 42.7, 28.4, 24.2 ppm. HRMS Calculated for C₂₂H₃₂O₅N [M+H]$^+$ 340.1907; found 340.1896.

tert-butyl (5-methoxy-2-(3-oxobutyl)phenyl)carbamate (1i): an oil, 550 mg, 63% yield

1H NMR (500 MHz, CDCl₃) δ 7.64 (s, 1H), 7.42 (s, 1H), 6.99 (d, J = 8.5 Hz, 1H), 6.60 (dd, J = 8.5, 2.7 Hz, 1H), 3.80 (s, 3H), 2.83 (t, J = 6.4 Hz,
2H), 2.76 (t, J = 6.4 Hz, 2H), 2.15 (s, 3H), 1.56 (s, 9H). 13C{1H} NMR (126 MHz, CDCl3) δ 209.4, 158.5, 153.5, 137.0, 130.0, 123.1, 110.5, 107.2, 80.1, 55.3, 44.8, 30.0, 28.4, 23.3 ppm. HRMS Calculated for C16H20O2N [M+H]+ 294.1700; found 294.1692.

tert-butyl (2-methoxy-6-(3-oxobutyl)phenyl)carbamate (1j): an oil, 410 mg, 47% yield

1H NMR (500 MHz, CDCl3) δ 7.49 (s, 1H), 7.25 (s, 1H), 6.75 (dd, J = 8.8, 3.0 Hz, 1H), 6.67 (d, J = 2.9 Hz, 1H), 3.78 (s, 3H), 2.85 (m, 2H), 2.83-2.78 (m, 2H), 2.15 (s, 3H), 1.54 (s, 9H). 13C{1H} NMR (126 MHz, CDCl3) δ 208.9, 156.7, 154.4, 134.9, 128.9, 125.9, 114.8, 111.8, 79.8, 55.4, 44.5, 30.0, 28.4, 24.4 ppm. HRMS Calculated for C16H20O2N [M+H]+ 294.1700; found 294.1692.

tert-butyl (4-methyl-2-(3-oxobutyl)phenyl)carbamate (1k): an oil, 420 mg, 58% yield

1H NMR (500 MHz, CDCl3) δ 7.61-7.50 (m, 1H), 7.41 (s, 1H), 7.01 (dd, J = 8.2, 1.6 Hz, 1H), 6.92 (d, J = 1.5 Hz, 1H), 2.87-2.84 (m, 2H), 2.82-2.77 (m, 2H), 2.29 (s, 3H), 2.15 (s, 3H), 1.55 (s, 9H). 13C{1H} NMR (126 MHz, CDCl3) δ 209.1, 154.0, 133.8, 133.3, 132.1, 130.0, 127.6, 123.6, 79.9, 44.6, 30.0, 28.4, 24.1, 20.8 ppm. HRMS Calculated for C19H24O2NBr [M+H]+ 278.1751; found 278.1741.

tert-butyl (5-(4-bromobutoxy)-2-(3-oxobutyl)phenyl)carbamate (II): an oil, 530 mg, 63% yield

1H NMR (500 MHz, CDCl3) δ 7.63 (s, 1H), 7.40 (s, 1H), 6.96 (d, J = 8.5 Hz, 1H), 6.56 (dd, J = 8.4, 2.6 Hz, 1H), 3.97 (t, J = 6.0 Hz, 2H), 3.47 (t, J = 6.7 Hz, 2H), 2.81 (t, J = 6.4 Hz, 2H), 2.74 (t, J = 6.5 Hz, 2H), 2.13 (s, 3H), 2.05 (dt, J = 14.5, 6.7 Hz, 2H), 1.97-1.85 (m, 2H), 1.54 (s, 9H). 13C{1H} NMR (126 MHz, CDCl3) δ 209.4, 157.8, 153.5, 137.0, 130.1, 123.1, 110.6, 107.9, 80.1, 66.8, 44.8, 33.6, 30.0, 29.5, 28.4, 27.9, 23.3 ppm. HRMS Calculated for C19H29O2NBr [M+H]+ 414.1274; found 414.1260.

tert-butyl (2-fluoro-6-(3-oxobutyl)phenyl)carbamate (1m): an oil, 530 mg, 63% yield

1H NMR (500 MHz, CDCl3) δ 7.12 (m, 1H), 7.02-6.85 (m, 2H), 6.70 (s, 1H), 2.88 (dd, J = 10.5, 3.8 Hz, 2H), 2.81 (dd, J = 10.5, 3.8 Hz, 2H), 2.12 (s, 3H), 1.50 (s, 9H). 13C{1H} NMR (126 MHz, CDCl3) δ 208.5, 158.24 (d, J = 248.4 Hz), 154.0, 140.0, 127.79 (d, J = 22.7 Hz), 127.47 (d, J = 8.7 Hz), 124.60 (d, J = 3.3 Hz), 113.86 (d, J = 20.9 Hz), 80.4, 44.3, 29.9, 28.2, 24.68 (d, J = 2.5 Hz) ppm. HRMS Calculated for C15H12F2O2NF [M+H]+ 282.1500; found 282.1491.

tert-butyl (4-bromo-2-(3-oxobutyl)phenyl)carbamate (1n): a white solid, 798 mg, 78% yield

1H NMR (500 MHz, CDCl3) δ 7.74 (s, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.30 (dd, J = 8.7, 2.4 Hz, 1H), 7.23 (d, J = 2.3 Hz, 1H), 2.88 (t, J = 6.2 Hz, 2H), 2.79 (t, J = 6.2 Hz, 2H), 2.17 (s, 3H), 1.55 (s, 9H). 13C{1H} NMR (126 MHz, CDCl3) δ 209.0, 153.6, 153.3, 133.8, 132.1, 129.9, 124.7, 116.6, 80.3, 44.4, 29.9, 28.3, 23.7 ppm. HRMS Calculated for C19H25O2NB [M+H]+ 342.0699; found 342.0688.

tert-butyl (2-(3-oxo-3-phenylpropyl)phenyl)carbamate (1o): an oil, 690 mg, 71% yield

1H NMR (500 MHz, CDCl3) δ 7.99 (dd, J = 8.2, 1.1 Hz, 2H), 7.75 (d, J = 7.3 Hz, 1H), 7.65-7.56 (m, 2H), 7.47 (t, J = 7.7 Hz, 2H), 7.25-7.16 (m, 2H), 7.07 (m, 1H), 3.41 (t, J = 6.7 Hz, 2H), 3.04 (t, J = 6.7 Hz, 2H), 1.56 (s, 9H). 13C{1H} NMR (126 MHz, CDCl3) δ 199.9, 153.8, 136.5, 136.1, 133.4, 132.0, 129.5, 128.6, 128.1, 127.0, 124.2, 123.3, 80.1, 39.6, 28.4, 24.4 ppm.

tert-butyl (2-(3-(4-fluorophenyl)-3-oxopropyl)phenyl)carbamate (1p): a white solid, 500 mg, 49% yield
1H NMR (500 MHz, CDCl$_3$) δ 8.09-7.91 (m, 2H), 7.73 (d, J = 7.6 Hz, 1H), 7.57 (s, 1H), 7.21 (m, 2H), 7.14 (t, J = 8.6 Hz, 2H), 7.06 (td, J = 7.6, 1.2 Hz, 1H), 3.37 (t, J = 6.7 Hz, 2H), 3.03 (t, J = 6.7 Hz, 2H), 1.56 (s, 9H).

13C NMR (126 MHz, CDCl$_3$) δ 198.3, 165.9 (d, J = 255.3 Hz), 153.8, 136.0, 132.9 (d, J = 9.4 Hz), 129.5, 127.0, 124.3, 123.4, 115.7 (d, J = 21.9 Hz), 80.1, 39.5, 28.4, 24.9 ppm.

tert-butyl (2-(3-(4-fluorophenyl)-3-oxopropyl)-6-methoxyphenyl)carbamate (1q): a white solid, 650 mg, 58% yield

1H NMR (500 MHz, CDCl$_3$) δ 7.98 (dd, J = 8.8, 5.4 Hz, 2H), 7.47 (s, 1H), 7.18 (s, 1H), 7.11 (t, J = 8.6 Hz, 2H), 6.82 - 6.69 (m, 2H), 3.76 (s, 3H), 3.33 (t, J = 6.8 Hz, 2H), 2.98 (t, J = 6.8 Hz, 2H), 1.51 (s, 9H).

13C NMR (126 MHz, CDCl$_3$) δ 198.1, 165.8 (d, J = 255.2 Hz), 156.8, 154.4, 133.0 (d, J = 3.0 Hz), 130.7 (d, J = 9.3 Hz), 128.9, 127.7, 126.2, 115.7 (d, J = 21.9 Hz), 115.0, 111.8, 79.9, 55.4, 39.5, 28.4, 24.9 ppm. HRMS Calculated for C$_{21}$H$_{25}$O$_4$NF [M+H]$^+$ 374.1762; found 374.175.

tert-butyl (4-bromo-2-(3-(4-fluorophenyl)-3-oxopropyl)phenyl)carbamate (1r): a white solid, 860 mg, 68% yield

1H NMR (500 MHz, CDCl$_3$) δ 8.07 - 7.95 (m, 2H), 7.73 (s, 1H), 7.63 (d, J = 8.2 Hz, 1H), 7.30 - 7.28 (m, 2H), 7.13 (t, J = 8.6 Hz, 2H), 3.36 (t, J = 6.5 Hz, 2H), 2.98 (t, J = 6.5 Hz, 2H), 1.54 (s, 9H).

13C NMR (126 MHz, CDCl$_3$) δ 198.0, 166.0 (d, J = 255.8 Hz), 153.6, 135.4, 134.0, 132.7 (d, J = 3.0 Hz), 132.2, 130.8 (d, J = 9.4 Hz), 129.9, 124.8, 116.8, 115.8 (d, J = 21.9 Hz), 80.4, 39.4, 28.4, 24.0 ppm. HRMS Calculated for C$_{20}$H$_{22}$BrFNO$_3$ [M+H]$^+$ 422.0761; found 422.0746.

S3 were synthesized according to a known procedure.3

Step 1:

S3 (10 mmol) and Et$_3$N (11 mmol) were dissolved in dichloromethane (30 mL) at 0 °C, followed by addition of (Boc)$_2$O (12 mmol) and DMAP (0.5 mmol). The resulting solution was warmed to rt and stirred for 6 h. The reaction was quenched with saturated NH$_4$Cl aqueous solution (20 mL). The organic layer was extracted with dichloromethane (10 mL × 2), combined, dried over anhydrous Na$_2$SO$_4$, and then concentrated under reduced pressure. The crude product was further purified by column chromatography to quantitatively provide pure S4.

Step 2:

R$_2$MgBr (1.3 equiv) was added dropwise to a solution of S4 (3 mmol) in dried THF (10 mL) at 0 °C. The resulting mixture was then stirred overnight at rt. The reaction was quenched with saturated NH$_4$Cl aqueous solution (15 mL) and extracted with EtOAc (10 mL × 2). The combined organic layers were dried over Na$_2$SO$_4$ and concentrated under reduced pressure. The crude product was purified by column chromatography to give 3.

tert-butyl (2-benzoylphenethyl)carbamate (3a): a white solid, 575 mg, 59% yield

1H NMR (400 MHz, CDCl$_3$) δ 7.82 (d, J = 7.4 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.12 (t, J = 7.4 Hz, 2H), 7.00 (t, J = 7.4 Hz, 1H), 3.98 (s, 2H), 2.93 (t, J = 6.7 Hz, 2H), 1.52 (s, 9H).
7.48 (t, J = 7.5 Hz, 3H), 7.41 (d, J = 7.5 Hz, 1H), 7.32 (dd, J = 10.8, 6.9 Hz, 2H), 5.03 (s, 1H), 3.40 (m, 2H), 2.88 (t, J = 6.8 Hz, 2H), 1.42 (s, 9H). 13C 1H NMR (126 MHz, CDCl$_3$) δ 198.5, 155.9, 138.6, 138.5, 137.6, 133.3, 130.9, 130.6, 130.4, 129.0, 128.4, 125.7, 79.0, 42.1, 33.1, 28.4 ppm.

tert-butyl (2-(4-methylbenzoyl)phenethyl)carbamate (3b): an oil, 488 mg, 48% yield

1H NMR (500 MHz, CDCl$_3$) δ 7.72 (d, J = 8.2 Hz, 2H), 7.51-7.43 (m, 1H), 7.40 (d, J = 7.6 Hz, 1H), 7.34-7.24 (m, 4H), 5.06 (s, 1H), 3.39 (m, 2H), 2.85 (t, J = 6.8 Hz, 2H), 2.44 (s, 3H), 1.41 (s, 9H). 13C 1H NMR (126 MHz, CDCl$_3$) δ 198.2, 156.0, 144.3, 138.8, 138.3, 135.0, 130.8, 130.5, 129.2, 128.8, 125.6, 78.9, 42.1, 33.0, 28.4, 21.7 ppm.

tert-butyl (2-(3-methylbenzoyl)phenethyl)carbamate (3c): an oil, 478 mg, 47% yield

1H NMR (500 MHz, CDCl$_3$) δ 7.66 (s, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.47 (td, J = 7.6, 1.8 Hz, 1H), 7.42 (m, 2H), 7.36 (d, J = 7.6 Hz, 1H), 7.32 (m, 2H), 5.05 (s, 1H), 3.48-3.31 (m, 2H), 2.87 (t, J = 6.8 Hz, 2H), 2.42 (s, 3H), 1.42 (s, 9H). 13C 1H NMR (126 MHz, CDCl$_3$) δ 198.7, 156.0, 138.7, 138.5, 138.3, 137.6, 134.2, 130.8, 130.6, 130.5, 129.0, 128.3, 127.8, 125.6, 78.9, 42.1, 33.1, 28.4, 21.3 ppm.

tert-butyl (2-(4-fluorobenzoyl)phenethyl)carbamate (3d): an oil, 576 mg, 56% yield

1H NMR (400 MHz, CDCl$_3$) δ 7.90 - 7.81 (m, 2H), 7.53-7.45 (m, 1H), 7.41 (d, J = 7.7 Hz, 1H), 7.34-7.30 (m, 1H), 7.15 (t, J = 8.6 Hz, 2H), 5.00 (s, 1H), 3.40 (q, J = 6.6 Hz, 2H), 2.86 (t, J = 6.9 Hz, 2H), 1.42 (s, 9H). 13C 1H NMR (101 MHz, CDCl$_3$) δ 196.8, 165.9 (d, J = 255.8 Hz), 155.9, 138.5, 138.2, 134.0 (d, J = 2.9 Hz), 133.0 (d, J = 9.4 Hz), 130.9, 130.7, 128.8, 125.7, 115.6 (d, J = 22.0 Hz), 79.0, 42.1, 33.1, 28.4 ppm.

tert-butyl (2-(3-fluorobenzoyl)phenethyl)carbamate (3e): an oil, 545 mg, 53% yield

1H NMR (500 MHz, CDCl$_3$) δ 7.55 (m, 2H), 7.51-7.39 (m, 3H), 7.31 (m, 3H), 4.99 (s, 1H), 3.40 (m, 2H), 2.88 (t, J = 6.8 Hz, 2H), 1.41 (s, 9H). 13C 1H NMR (126 MHz, CDCl$_3$) δ 197.0, 162.6 (d, J = 248.4 Hz), 155.9, 139.8 (d, J = 6.2 Hz), 138.8, 137.8, 131.1, 131.0 (d, J = 11.5 Hz), 130.1 (d, J = 7.6 Hz), 129.1, 126.3 (d, J = 2.9 Hz), 125.8, 120.3 (d, J = 21.5 Hz), 116.8 (d, J = 22.3 Hz), 79.0, 42.1, 33.2, 28.3 ppm.

tert-butyl (2-(4-chlorobenzoyl)phenethyl)carbamate (3f): an oil, 594 mg, 55% yield

1H NMR (500 MHz, CDCl$_3$) δ 7.76 (d, J = 8.5 Hz, 2H), 7.52-7.43 (m, 3H), 7.41 (d, J = 7.4 Hz, 1H), 7.30 (d, J = 4.0 Hz, 2H), 5.00 (s, 1H), 3.39 (m, 2H), 2.86 (t, J = 6.8 Hz, 2H), 1.41 (s, 9H). 13C 1H NMR (126 MHz, CDCl$_3$) δ 197.1, 155.9, 139.9, 138.7, 138.0, 136.0, 131.7, 131.0, 130.9, 128.9, 128.8, 125.8, 79.0, 42.1, 33.2, 28.4 ppm.

tert-butyl (2-benzoyl-4-fluorophenethyl)carbamate (3g): an oil, 370 mg, 54% yield

1H NMR (500 MHz, CDCl$_3$) δ 7.80 (d, J = 7.3 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.8 Hz, 2H), 7.40-7.31 (m, 1H), 7.16 (td, J = 8.4, 2.7 Hz, 1H), 7.01 (dd, J = 8.7, 2.7 Hz, 1H), 4.93 (s, 1H), 3.35 (dd, J = 12.5, 6.3 Hz, 2H), 2.81 (t, J = 6.8 Hz, 2H), 1.40 (s, 9H). 13C 1H NMR (126 MHz, CDCl$_3$) δ 197.0, 160.4 (d, J = 247.4 Hz), 155.9, 140.0 (d, J = 5.9 Hz), 136.9, 134.1 (d, J = 2.6 Hz), 133.7, 132.6 (d, J = 7.6 Hz), 130.3, 128.6, 117.5 (d, J = 20.9 Hz), 115.6 (d, J = 22.6 Hz), 79.1, 42.0, 32.5, 28.3 ppm.

HRMS Calculated for C$_{20}$H$_{15}$O$_3$NF [M+H]$^+$ 344.1657; found 344.1646.

tert-butyl (2-benzoyl-6-chlorophenethyl)carbamate (3h): an oil, 396 mg, 55% yield

1H NMR (500 MHz, CDCl$_3$) δ 7.79 (d, J = 7.2 Hz, 2H), 7.65-7.56 (m, 1H), 7.53...
(dd, \(J = 7.8, 1.2 \) Hz, 1H), 7.47 (t, \(J = 7.8 \) Hz, 2H), 7.24 (t, \(J = 7.7 \) Hz, 1H), 7.19 (dd, \(J = 7.6, 1.3 \) Hz, 1H), 5.07 (s, 1H), 3.42 (d, \(J = 6.1 \) Hz, 2H), 2.98 (t, \(J = 6.7 \) Hz, 2H), 1.38 (s, 9H). \(^{13}\)C\(^{1}\)H NMR (126 MHz, CDCl\(_3\)) \(\delta \) 197.4, 155.9, 140.9, 137.1, 136.1, 135.8, 133.7, 131.6, 130.4, 128.6, 127.0, 126.9, 78.9, 40.0, 30.8, 28.3 ppm. HRMS Calculated for C\(_{20}\)H\(_{29}\)O\(_5\)NCl [M+H]\(^{+}\) 360.1361; found 360.1348.

tert-butyl (2-benzoyl-4-bromophenethyl)carbamate (3i): an oil, 363 mg, 45% yield

\(^{1}\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.82-7.77 (m, 2H), 7.66-7.61 (m, 1H), 7.58 (dd, \(J = 8.3, 2.1 \) Hz, 1H), 7.49 (t, \(J = 7.8 \) Hz, 2H), 7.43 (d, \(J = 2.1 \) Hz, 1H), 7.27 (d, \(J = 6.4 \) Hz, 1H), 4.90 (s, 1H), 3.35 (dd, \(J = 12.5, 6.2 \) Hz, 2H), 2.79 (t, \(J = 6.8 \) Hz, 2H), 1.40 (s, 9H). \(^{13}\)C\(^{1}\)H NMR (126 MHz, CDCl\(_3\)) \(\delta \) 196.7, 155.9, 140.4, 137.3, 136.8, 133.7, 132.5, 132.5, 131.3, 130.3, 128.6, 119.5, 79.1, 41.8, 32.7, 28.3 ppm. HRMS Calculated for C\(_{20}\)H\(_{28}\)O\(_5\)NBr [M+H]\(^{+}\) 404.0856; found 404.0842.

tert-butyl (2-(4-chlorobenzoyl)-4-fluorophenethyl)carbamate (3j): an oil, 430 mg, 47% yield

\(^{1}\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.77 (m, 2H), 7.58 (dd, \(J = 8.5 \) Hz, 2H), 7.48 (d, \(J = 8.5 \) Hz, 2H), 7.42-7.34 (m, 1H), 7.19 (td, \(J = 8.3, 2.7 \) Hz, 1H), 7.01 (dd, \(J = 8.6, 2.7 \) Hz, 1H), 4.89 (s, 1H), 3.35 (dd, \(J = 12.5, 6.3 \) Hz, 2H), 2.81 (t, \(J = 6.8 \) Hz, 2H), 1.41 (s, 9H). \(^{13}\)C\(^{1}\)H NMR (126 MHz, CDCl\(_3\)) \(\delta \) 195.7, 160.4 (d, \(J = 247.6 \) Hz), 155.9, 140.4, 139.5 (d, \(J = 6.3 \) Hz), 135.2, 134.2 (d, \(J = 3.8 \) Hz), 132.7 (d, \(J = 7.6 \) Hz), 131.6, 129.0, 117.8 (d, \(J = 20.9 \) Hz), 115.5 (d, \(J = 22.6 \) Hz), 79.1, 42.0, 32.5, 28.3 ppm. HRMS Calculated for C\(_{20}\)H\(_{28}\)O\(_5\)NCl [M+H]\(^{+}\) 378.1267; found 378.1253.

tert-butyl (2-chloro-6-(4-chlorobenzoyl)phenethyl)carbamate (3k): an oil, 413 mg, 53% yield

\(^{1}\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.76 (d, \(J = 8.5 \) Hz, 2H), 7.55 (dd, \(J = 8.0, 1.1 \) Hz, 1H), 7.46 (d, \(J = 8.6 \) Hz, 2H), 7.28 (d, \(J = 9.3 \) Hz, 1H), 7.19 (dd, \(J = 7.6, 1.2 \) Hz, 1H), 5.02 (s, 1H), 3.43 (dd, \(J = 12.1, 5.9 \) Hz, 2H), 2.99 (t, \(J = 6.7 \) Hz, 2H), 1.40 (s, 9H). \(^{13}\)C\(^{1}\)H NMR (126 MHz, CDCl\(_3\)) \(\delta \) 196.1, 155.8, 140.4, 140.4, 136.3, 135.9, 135.4, 131.8, 131.8, 128.9, 127.0, 126.9, 78.9, 40.0, 30.8, 28.3 ppm. HRMS Calculated for C\(_{20}\)H\(_{28}\)O\(_5\)NCl [M+H]\(^{+}\) 394.0971; found 394.0957.

tert-butyl (4-bromo-2-(4-chlorobenzoyl)phenethyl)carbamate (3l): an oil, 360 mg, 41% yield

\(^{1}\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.74 (d, \(J = 8.5 \) Hz, 2H), 7.58 (dd, \(J = 8.3, 2.1 \) Hz, 1H), 7.46 (d, \(J = 8.5 \) Hz, 2H), 7.41 (d, \(J = 2.0 \) Hz, 1H), 7.27 (d, \(J = 8.0 \) Hz, 1H), 4.87 (s, 1H), 3.34 (dd, \(J = 12.4, 6.2 \) Hz, 2H), 2.78 (t, \(J = 6.8 \) Hz, 2H), 1.40 (s, 9H). \(^{13}\)C\(^{1}\)H NMR (126 MHz, CDCl\(_3\)) \(\delta \) 195.5, 155.9, 140.4, 139.9, 137.5, 135.2, 133.7, 132.7, 131.7, 131.2, 129.0, 119.6, 79.2, 41.8, 32.8, 28.3 ppm. HRMS Calculated for C\(_{20}\)H\(_{28}\)O\(_5\)NBrCl [M+H]\(^{+}\) 438.0466; found 438.0453.

3. General procedure for one-pot N-Boc deprotection and asymmetric reductive amination

Part 1: Asymmetric reductive amination for synthesizing tetrahydroquinolines

\[
\text{R}^1\text{NHBOc} \xrightarrow{1} \text{HCl/\(\text{Et}_2\)O, DCM} \rightarrow \text{R}^1\text{NH} \xrightarrow{2}[\text{Ir(COD)Cl}_2/\text{ZhaoPhos (0.5 mol%)}, \text{DCM}, \text{H}_2 (30 \text{ atm}), 25 \text{ }^\circ\text{C}] \rightarrow \text{R}^1\text{NHR}^2
\]

To a 2.5 mL vial was added the catalyst precursor [Ir(COD)Cl]\(_2\) (3.4 mg, 0.005 mmol), ZhaoPhos (9.5 mg, 0.011 mmol) and anhydrous CH\(_2\)Cl\(_2\) (0.3 mL) under argon atmosphere. The
mixture was stirred for 0.5 h at room temperature to give a clear solution.

A mixture of substrate I (0.2 mmol) and HCl (2 M in Et2O) (4 equiv.) was dissolved in CH2Cl2 (1 mL) and then stirred at rt for 6 h. All volatiles were removed, and the crude intermediate was transferred to a nitrogen-filled glovebox. An aliquot of the above in situ prepared catalyst solution (60 μL, 0.001 mmol) was transferred to a vial containing crude intermediate via a syringe, followed by addition of 0.8 mL more DCM. The vial was placed in an autoclave which was then charged with 30 atm of H2. The reaction was stirred at 25 °C for 24 h. After carefully releasing the hydrogen, the solution was neutralized with aqueous sodium bicarbonate solution (5 mL), and then extracted with DCM (5 mL×2). The combined organic phases were concentrated and passed through a short column of silica gel with EtOAc/Petroleum ether (1/20) as eluents to give the chiral tetrahydroquinoline products. The obtained products were pure enough for NMR analysis and determination of the enantiomeric excess.

(S)-2-methyl-1,2,3,4-tetrahydroquinoline (2a)^2:

![Structure of 2a]

an oil, 28.5 mg, 97% yield, 97% ee; [α]20D = -76.5 (c 0.15, CHCl3); 1H NMR (500 MHz, CDCl3) δ 6.95 (t, J = 6.7 Hz, 2H), 6.60 (t, J = 7.3 Hz, 1H), 6.46 (d, J = 8.2 Hz, 1H), 3.58-3.24 (m, 2H), 2.86-2.80 (m, 1H), 2.75-2.61 (m, 1H), 1.94-1.89 (m, 1H), 1.65-1.47 (m, 1H), 1.20 (d, J = 6.3 Hz, 3H). 13C[1H] NMR (126 MHz, CDCl3) δ 144.8, 129.3, 126.7, 121.1, 117.0, 114.0, 47.2, 30.1, 26.6, 22.6 ppm. Enantiomeric excess was determined by HPLC (OJ-H column, hexane/iPrOH 95/5, 0.80 mL/min, 254 nm): t1 = 14.1 min (major), t2 = 15.6 min (minor).

(S)-2-ethyl-1,2,3,4-tetrahydroquinoline (2b)^2:

![Structure of 2b]

an oil, 30.6 mg, 95% yield; 97% ee; [α]20D = -68.9 (c 0.21, CHCl3); 1H NMR (500 MHz, CDCl3) δ 6.95 (t, J = 7.5 Hz, 2H), 6.59 (t, J = 7.6Hz, 1H), 6.47 (d, J = 7.7 Hz, 1H), 3.71 (brs, 1H), 3.23-3.11 (m, 1H), 2.84-2.77 (m, 1H), 2.72 (m, 1H), 2.01-1.92 (m, 1H), 1.64-1.55 (m, 1H), 1.55-1.48 (m, 2H), 0.98 (t, J = 7.5 Hz, 3H). 13C[1H] NMR (126 MHz, CDCl3) δ 144.7, 129.2, 126.7, 121.4, 116.9, 114.0, 53.0, 29.4, 27.6, 26.4, 10.1 ppm. Enantiomeric excess was determined by HPLC (OJ-H column, hexane/iPrOH 95/5, 0.80 mL/min, 254 nm): t1 = 12.0 min (major), t2 = 13.1 min (minor).

(S)-2-propyl-1,2,3,4-tetrahydroquinoline (2c)^2:

![Structure of 2c]

an oil, 33.2 mg, 95% yield; 96% ee; [α]20D = -77.5 (c 0.18, CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.01 (t, J = 7.4 Hz, 2H), 6.76-6.60 (m, 1H), 6.52 (d, J = 7.7 Hz, 1H), 3.78 (s, 1H), 3.30 (m, 1H), 2.86 (m 1H), 2.78 (dt, J = 16.3, 4.7 Hz, 1H), 2.11-1.92 (m, 1H), 1.65 (m 1H), 1.59-1.42 (m, 4H), 1.02 (t, J = 7.0 Hz, 3H). 13C[1H] NMR (126 MHz, CDCl3) δ 144.7, 129.3, 126.7, 121.4, 116.9, 114.0, 51.3, 38.9, 28.1, 26.4, 18.9, 14.2 ppm. Enantiomeric excess was determined by HPLC (OJ-H column, hexane/iPrOH 95/5, 0.80 mL/min, 254 nm): t1 = 10.8 min (major), t2 = 13.3 min (minor).

(S)-2-butyl-1,2,3,4-tetrahydroquinoline (2d)^2:

![Structure of 2d]

an oil, 36.6 mg, 97% yield; 97% ee; [α]20D = -70.4 (c 0.15, CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.01 (t, J = 7.5 Hz, 2H), 6.65 (t, J = 7.4, 1H), 6.53 (d, J = 7.8 Hz, 1H), 3.81 (s, 1H), 3.37-3.23 (m, 1H), 2.87 (m 1H), 2.78 (m 1H), 2.11-1.95 (m, 1H), 1.65 (m 1H), 1.55 (m 2H), 1.50-1.35 (m, 4H), 1.00 (t, J = 7.6, 3H). 13C[1H] NMR (126 MHz, CDCl3) δ 144.7, 129.3, 126.7, 121.4, 116.9, 114.0, 51.6, 36.4, 28.1, 27.9, 26.4, 22.9, 14.1 ppm. Enantiomeric excess was determined by HPLC (OJ-H column, hexane/iPrOH 95/5, 0.80 mL/min, 254 nm): t1 = 9.3 min (major), t2 = 10.8 min (minor).
(S)-2-penty1-1,2,3,4-tetrahydroquinoline (2e):

\[
\begin{align*}
\text{an oil, 38.6 mg, 95% yield; [\alpha]_{D}^{20} & = -67.9 (c 0.12, \text{CHCl}_3); \ 1^H \text{NMR (500 MHz, CDCl}_3) \delta 7.01 (t, J = 7.5 Hz, 2H), 6.65 (td, J = 7.4, 0.9 Hz, 1H), 6.52 (d, J = 7.8 Hz, 1H), 3.80 (s, 1H), 3.36-3.23 (m, 1H), 2.86 (m, 1H), 2.78 (dt, J = 16.3, 4.7 Hz, 1H), 2.15-1.91 (m, 1H), 1.65 (m, 1H), 1.59-1.49 (m, 2H), 1.49-1.31 (m, 6H), 0.96 (t, J = 6.9 Hz, 3H).} \\
1^3C\{1^H\} \text{NMR (126 MHz, CDCl}_3) \delta 144.6, 129.2, 126.6, 121.3, 116.8, 113.9, 51.5, 36.6, 31.9, 28.0, 26.4, 25.3, 22.6, 14.0 ppm. \text{Enantiomeric excess was determined by HPLC (OJ-H column, hexane/iPrOH 95/5, 0.80 mL/min, 254 nm): } t_1 = 8.5 \text{ min (major), } t_2 = 9.2 \text{ min (minor).}
\end{align*}
\]

(S)-2-hexyl-1,2,3,4-tetrahydroquinoline (2f):

\[
\begin{align*}
\text{an oil, 41.6 mg, 96% yield; 94% ee; [\alpha]_{D}^{20} & = -78.3 (c 0.14, \text{CHCl}_3); \ 1^H \text{NMR (500 MHz, CDCl}_3) \delta 7.02 (t, J = 7.5 Hz, 2H), 6.66 (td, J = 7.4, 0.9 Hz, 1H), 6.53 (d, J = 7.8 Hz, 1H), 3.82 (s, 1H), 3.38-3.22 (m, 1H), 2.87 (m, 1H), 2.79 (dt, J = 16.3, 4.7 Hz, 1H), 2.12-1.95 (m, 1H), 1.66 (m, 1H), 1.60-1.49 (m, 2H), 1.49-1.27 (m, 8H), 0.97 (t, J = 6.8 Hz, 3H).} \\
1^3C\{1^H\} \text{NMR (126 MHz, CDCl}_3) \delta 144.7, 129.3, 126.7, 121.4, 116.9, 114.0, 51.6, 36.7, 31.9, 29.5, 28.1, 26.5, 25.7, 22.7, 14.1 ppm. \text{Enantiomeric excess was determined by HPLC (OJ-H column, hexane/iPrOH 95/5, 0.80 mL/min, 254 nm): } t_1 = 8.8 \text{ min (major), } t_2 = 9.5 \text{ min (minor).}
\end{align*}
\]

(S)-2-heptyl-1,2,3,4-tetrahydroquinoline (2g):

\[
\begin{align*}
\text{an oil, 43.9 mg, 95% yield; 92% ee; [\alpha]_{D}^{20} & = -68.2 (c 0.21, \text{CHCl}_3); \ 1^H \text{NMR (500 MHz, CDCl}_3) \delta 7.00 (t, J = 7.5 Hz, 2H), 6.64 (t, J = 7.1 Hz, 1H), 6.51 (d, J = 7.8 Hz, 1H), 3.80 (s, 1H), 3.37-3.20 (m, 1H), 2.85 (m, 1H), 2.77 (dt, J = 16.3, 4.7 Hz, 1H), 2.12-1.82 (m, 1H), 1.76-1.58 (m, 1H), 1.58-1.49 (m, 2H), 1.49-1.27 (m, 10H), 0.94 (t, J = 6.9 Hz, 3H).} \\
1^3C\{1^H\} \text{NMR (126 MHz, CDCl}_3) \delta 144.7, 129.2, 126.7, 121.4, 116.9, 114.0, 51.6, 36.7, 31.8, 29.7, 29.3, 28.1, 26.4, 25.7, 22.7, 14.1 ppm. \text{Enantiomeric excess was determined by HPLC (OJ-H column, hexane/iPrOH 95/5, 0.80 mL/min, 254 nm): } t_1 = 9.3 \text{ min (major), } t_2 = 9.9 \text{ min (minor).} \text{HRMS Calculated for C}_{18}H_{23}N \text{[M+H]}^+ \text{ 232.2060; found 232.0522.}
\end{align*}
\]

(R)-2-benzyl-1,2,3,4-tetrahydroquinoline (2h):

\[
\begin{align*}
\text{an oil, 43.8 mg, 94% yield; [\alpha]_{D}^{20} & = -79.9 (c 0.21, \text{CHCl}_3); \ 1^H \text{NMR (500 MHz, CDCl}_3) \delta 7.33 (dd, J = 10.2, 4.5 Hz, 2H), 7.29-7.20 (m, 3H), 6.93 (dd, J = 13.3, 7.0 Hz, 2H), 6.59 (td, J = 7.4, 1.0 Hz, 1H), 6.38 (d, J = 4.5Hz, 1H), 3.73 (s, 1H), 3.67-3.42 (m, 1H), 2.89-2.72 (m, 2H), 2.69 (dd, J = 13.3, 8.7 Hz, 1H), 2.03-1.98 (m, 1H), 1.75-1.68 (m, 1H).} \\
1^3C\{1^H\} \text{NMR (126 MHz, CDCl}_3) \delta 144.4, 138.5, 129.3, 129.2 128.6, 126.7, 126.5, 121.3, 117.2, 114.2, 52.7, 43.0, 28.3, 26.2 ppm. \text{Enantiomeric excess was determined by HPLC (OD-H column, hexane/iPrOH 85/15, 0.80 mL/min, 254 nm): } t_1 = 6.4 \text{ min (minor), } t_2 = 7.1 \text{ min (major).}
\end{align*}
\]

(S)-7-methoxy-2-methyl-1,2,3,4-tetrahydroquinoline (2i):

\[
\begin{align*}
\text{an oil, 33.2 mg, 94% yield; 96% ee; [\alpha]_{D}^{20} & = -69.6 (c 0.17, \text{CHCl}_3); \ 1^H \text{NMR (500 MHz, CDCl}_3) \delta 6.89 (d, J = 8.2 Hz, 1H), 6.24 (dd, J = 8.2, 2.5 Hz, 1H), 6.08 (d, J = 2.5 Hz, 1H), 3.76 (s, 4 H), 3.41 (m, 1H), 2.92-2.76 (m, 1H), 2.76-2.67 (m, 1H), 1.95 (m, 1H), 1.60 (m, 1H), 1.24 (d, J = 6.3 Hz, 3H).} \\
1^3C\{1^H\} \text{NMR (126 MHz, CDCl}_3) \delta 158.8, 145.6, 129.9, 113.7, 102.9, 99.2, 55.1, 47.1, 30.4, 25.9, 22.6 ppm. \text{Enantiomeric excess was determined by HPLC (AD-3 column, hexane/iPrOH 95/5, 0.50 mL/min, 254 nm): } t_1 =
\end{align*}
\]
12.2 min (minor), \(t_2 = 13.5 \) min (major). HRMS Calculated for \(\text{C}_{11}\text{H}_{16}\text{O} \) [M+H]\(^+\) 178.1226; found 178.1221.

(S)-8-methoxy-2-methyl-1,2,3,4-tetrahydroquinoline (2j):

\[
\text{an oil, 33.9 mg, 96\% yield; 95\% ee; } [\alpha]^{20}_D = -63.5 \ (c \ 0.16, \text{CHCl}_3); \ \text{^1H NMR (500 MHz, CDCl}_3) \ \delta 6.62 \ (m, 2H), 6.48 \ (d, J = 8.4 \text{ Hz, 1H}), 3.75 \ (s, 3H), 3.43-3.30 \ (m, 1H), 2.91-2.84 \ (m, 1H), 2.76-2.71 \ (m, 1H), 1.97-1.91 \ (m, 1H), 1.73-1.53 \ (m, 1H), 1.23 \ (d, J = 6.3 \text{ Hz, 3H}). \ \text{^13C} \{^1H \} \ \text{NMR (126 MHz, CDCl}_3) \ \delta 151.8, 138.9, 122.5, 115.3, 114.6, 112.8, 55.8, 47.5, 30.3, 26.9, 22.5 \text{ ppm}. \]

Enantiomeric excess was determined by HPLC (OJ-H column, hexane/iPrOH 95/5, 0.80 mL/min, 254 nm): \(t_1 = 25.4 \) min (major), \(t_2 = 30.1 \) min (minor).

(S)-2,6-dimethyl-1,2,3,4-tetrahydroquinoline (2k):

\[
\text{an oil, 31.2 mg, 97\% yield; 95\% ee; } [\alpha]^{20}_D = -68.4 \ (c \ 0.15, \text{CHCl}_3); \ \text{^1H NMR (500 MHz, CDCl}_3) \ \delta 6.81 \ (m, 2H), 6.44 \ (d, J = 7.7 \text{ Hz, 1H}), 3.42-3.36 \ (m, 1H), 2.88-2.79 \ (m, 1H), 2.75-2.70 \ (m, 1H), 2.23 \ (s, 3H), 1.97-1.92 \ (m, 1H), 1.65-1.60 \ (m, 1H), 1.23 \ (d, J = 6.3 \text{ Hz, 3H}). \ \text{^13C} \{^1H \} \ \text{NMR (126 MHz, CDCl}_3) \ \delta 142.4, 129.8, 127.2, 126.3, 121.2, 114.3, 47.3, 30.3, 26.6, 22.4, 20.4 \text{ ppm}. \]

Enantiomeric excess was determined by HPLC (OJ-H column, hexane/iPrOH 95/5, 0.80 mL/min, 254 nm): \(t_1 = 19.8 \) min (major), \(t_2 = 24.4 \) min (minor).

(S)-7-(4-bromobutoxy)-2-methyl-1,2,3,4-tetrahydroquinoline (2l):

\[
\text{an oil, 51.2 mg, 86\% yield; 97\% ee; } [\alpha]^{20}_D = -79.3 \ (c \ 0.16, \text{CHCl}_3); \ \text{^1H NMR (400 MHz, CDCl}_3) \ \delta 6.87 \ (dd, J = 8.2, 0.9 \text{ Hz, 1H}), 6.21 \ (dd, J = 8.2, 2.5 \text{ Hz, 1H}), 6.05 \ (d, J = 2.5 \text{ Hz, 1H}), 3.94 \ (t, J = 6.1 \text{ Hz, 2H}), 3.50 \ (t, J = 6.7 \text{ Hz, 2H}), 3.45 - 3.32 \ (m, 1H), 2.78 \ (m, 1H), 2.69 \ (m, 1H), 2.07 \ (m, 2H), 1.98 - 1.84 \ (2m, 2H), 1.58 \ (m, 1H), 1.22 \ (d, J = 6.3 \text{ Hz, 3H}). \ \text{^13C} \{^1H \} \ \text{NMR (101 MHz, CDCl}_3) \ \delta 158.0, 145.5, 129.8, 113.8, 103.4, 99.8, 66.6, 47.1, 33.6, 30.3, 29.5, 27.9, 25.8, 22.5 \text{ ppm}. \]

Enantiomeric excess was determined by UPLC (OJ-3 column, hexane/iPrOH 65/35, 0.50 mL/min, 254 nm): \(t_1 = 7.1 \) min (major), \(t_2 = 8.8 \) min (minor). HRMS Calculated for \(\text{C}_{19}\text{H}_{23}\text{ONBr} \) [M+H]\(^+\) 298.0801; found 298.0793.

(S)-8-fluoro-2-methyl-1,2,3,4-tetrahydroquinoline (2m):

\[
\text{an oil, 31.0 mg, 94\% yield; 98\% ee; } [\alpha]^{20}_D = -67.9 \ (c \ 0.14, \text{CHCl}_3); \ \text{^1H NMR (500 MHz, CDCl}_3) \ \delta 6.87 - 6.70 \ (m, 2H), 6.53 \ (td, J = 7.8, 5.4 \text{ Hz, 1H}), 3.91 \ (s, 1H), 3.47-3.41 \ (m, 1H), 2.90-2.84 \ (m, 1H), 2.81-2.76 \ (m, 1H), 2.06 - 1.94 \ (m, 1H), 1.74-1.60 \ (m, 1H), 1.29 \ (dd, J = 10.9, 6.3 \text{ Hz, 3H}). \ \text{^13C} \{^1H \} \ \text{NMR (126 MHz, CDCl}_3) \ \delta 150.7 \ (d, J = 237.3 \text{ Hz), 133.2 (d, J = 12.2 Hz), 124.2 (d, J = 2.8 Hz), 123.3 (d, J = 3.8 Hz), 115.6 (d, J = 7.4 \text{ Hz, 1H}), 112.1 (d, J = 18.3 \text{ Hz), 46.6, 29.7, 26.2 (d, J = 2.9 \text{ Hz), 22.4 \text{ ppm. Enantiomeric excess was determined by HPLC (OJ-H column, hexane/iPrOH 95/5, 0.80 mL/min, 254 nm): } t_1 = 6.2 \text{ min (major), } t_2 = 6.6 \text{ min (minor). HRMS Calculated for } \text{C}_{10}\text{H}_{13} \text{NF} \ [M+H]\(^+\) 166.1027; found 166.1021.}

(S)-6-bromo-2-methyl-1,2,3,4-tetrahydroquinoline (2n):

\[
\text{an oil, 43.3 mg, 96\% yield; 95\% ee; } [\alpha]^{20}_D = -78.1 \ (c \ 0.18, \text{CHCl}_3); \ \text{^1H NMR (500 MHz, CDCl}_3) \ \delta 7.07-7.04 \ (m, 1H), 7.01 \ (dd, J = 8.4, 2.3 \text{ Hz, 1H}), 6.32 \ (d, J = 8.4 \text{ Hz, 1H}), 3.67 \ (s, 1H), 3.42-3.29 \ (m, 1H), 2.81-2.75 \ (m, 1H), 2.71-2.61 \ (m, 1H), 1.92-1.87 \ (m, 1H), 1.59-1.46 \ (m, 1H), 1.19 \ (d, J = 6.3 \text{ Hz, 3H}). \ \text{^13C} \{^1H \} \ \text{NMR (126 MHz, CDCl}_3) \ \delta 143.8, 131.6, 129.3, 123.1, 115.4, 108.2, 47.1, 29.6, 26.4, 22.5 \text{ ppm. Enantiomeric excess}
\]
was determined by HPLC (OJ-H column, hexane/iPrOH 95/5, 0.80 mL/min, 254 nm): \(t_1 = 14.9 \) min (major), \(t_2 = 17.7 \) min (minor).

(R)-2-phenyl-1,2,3,4-tetrahydroquinoline (2a):

![Structure](image)

an oil, 35.5 mg, 85% yield; 80% ee; [%alpha]_D^20 = +23.8 (c 0.25, CHCl₃); ^1^H NMR (500 MHz, CDCl₃) \(\delta 7.44 \) (d, \(J = 7.2 \) Hz, 2H), 7.40 (t, \(J = 7.5 \) Hz, 2H), 7.34 (t, \(J = 7.1 \) Hz, 1H), 7.06 (t, \(J = 7.7 \) Hz, 2H), 6.71 (t, \(J = 7.3 \) Hz, 1H), 6.59 (d, \(J = 7.8 \) Hz, 1H), 4.49 (dd, \(J = 9.4, 3.2 \) Hz, 1H), 4.10 (s, 1H), 3.01-2.94 (m, 1H), 2.81-2.76 (m, 1H), 2.20-2.15 (m, 1H), 2.12-1.94 (m, 1H). ^1^C[^1^H] NMR (126 MHz, CDCl₃) \(\delta 144.8, 144.7, 129.3, 128.6, 127.4, 126.9, 126.5, 120.9, 117.2, 114.0, 56.2, 31.0, 26.4 \) ppm. Enantiomeric excess was determined by HPLC (OD-H column, hexane/iPrOH 85/15, 0.80 mL/min, 250 nm): \(t_1 = 8.9 \) min (minor), \(t_2 = 10.8 \) min (major).

(R)-2-(4-fluorophenyl)-1,2,3,4-tetrahydroquinoline (2p):

![Structure](image)

an oil, 39.0 mg, 86% yield; 84% ee; [%alpha]_D^20 = +25.2 (c 0.16, CHCl₃); ^1^H NMR (500 MHz, CDCl₃) \(\delta 7.34 \) (dd, \(J = 8.4, 5.6 \) Hz, 2H), 7.01 (dd, \(J = 16.9, 8.3 \) Hz, 4H), 6.65 (t, \(J = 7.4 \) Hz, 1H), 6.53 (d, \(J = 7.8 \) Hz, 1H), 4.41 (dd, \(J = 9.4, 3.1 \) Hz, 1H), 3.99 (s, 1H), 2.94-2.88 (m, 1H), 2.74-2.69 (m, 1H), 2.11-2.05 (m, 1H), 2.02 -1.77 (m, 1H). ^1^C[^1^H] NMR (126 MHz, CDCl₃) \(\delta 162.1 \) (d, \(J = 245.2 \) Hz), 144.5, 140.5 (d, \(J = 3.0 \) Hz), 129.3, 128.1 (d, \(J = 7.9 \) Hz), 126.9, 120.8, 117.3, 115.3 (d, \(J = 21.2 \) Hz), 114.0, 55.6, 31.1, 26.3 ppm. Enantiomeric excess was determined by HPLC (OD-H column, hexane/iPrOH 85/15, 0.80 mL/min, 250 nm): \(t_1 = 8.4 \) min (minor), \(t_2 = 12.2 \) min (major).

(R)-2-(4-fluorophenyl)-8-methoxy-1,2,3,4-tetrahydroquinoline (2q):

![Structure](image)

an oil, 45.2 mg, 88% yield; 85% ee; [%alpha]_D^20 = +21.6 (c 0.18, CHCl₃); ^1^H NMR (500 MHz, CDCl₃) \(\delta 7.41-7.30 \) (m, 2H), 7.02 (t, \(J =8.6 \) Hz, 2H), 6.68 - 6.55 (m, 1H), 6.50 (d, \(J = 8.5 \) Hz, 2H), 4.34 (dd, \(J = 9.7, 2.9 \) Hz, 1H), 3.74 (s, 4H), 2.96-2.89 (m, 1H), 2.71 (dt, \(J = 16.6, 4.6 \) Hz, 1H), 2.26-2.02 (m, 1H), 1.98-1.90 (m, 1H). ^1^C[^1^H] NMR (126 MHz, CDCl₃) \(\delta 162.1 \) (d, \(J = 245.0 \) Hz), 152.0, 140.6 (d, \(J = 3.0 \) Hz), 138.7, 128.1 (d, \(J = 7.9 \) Hz), 122.1, 115.4, 115.2, 114.6, 113.1, 55.9, 55.8, 31.3, 26.8 ppm. Enantiomeric excess was determined by HPLC (OD-H column, hexane/iPrOH 85/15, 0.80 mL/min, 250 nm): \(t_1 = 6.3 \) min (minor), \(t_2 = 8.5 \) min (major). HRMS Calculated for C_{18}H_{19}ONF\[M+H]^+ 258.1289; found 258.1280.

(R)-6-bromo-2-(4-fluorophenyl)-1,2,3,4-tetrahydroquinoline (2r):

![Structure](image)

an oil, 55 mg, 90% yield; 90% ee; [%alpha]_D^20 = +25.6 (c 0.24, CHCl₃); ^1^H NMR (500 MHz, CDCl₃) \(\delta 7.38-7.34 \) (m, 2H), 7.16-7.09 (m, 2H), 7.09-7.03 (m, 1H), 6.44 (d, \(J = 8.4 \) Hz, 1H), 4.43 (dd, \(J = 9.2, 3.2 \) Hz, 1H), 4.07 (s, 1H), 2.93-2.86 (m, 1H), 2.74-2.68 (m, 1H), 2.13-2.08 (m, 1H), 2.00 -1.85 (m, 1H). ^1^C[^1^H] NMR (126 MHz, CDCl₃) \(\delta 162.1 \) (d, \(J = 245.5 \) Hz), 143.5, 140.0 (d, \(J = 3.1 \) Hz), 131.7, 129.6, 128.0 (d, \(J = 8.0 \) Hz), 122.8, 115.5 (d, \(J = 8.0 \) Hz), 115.3, 108.7, 55.4, 30.5, 26.0 ppm. Enantiomeric excess was determined by HPLC (OD-H column, hexane/iPrOH 85/15, 0.80 mL/min, 254 nm): \(t_1 = 7.2 \) min (minor), \(t_2 = 13.6 \) min (major). HRMS Calculated for C_{18}H_{19}ONBrF\[M+H]^+ 306.0288; found 306.0278.

Part 2: Asymmetric reductive amination for synthesizing tetrahydroisoquinolines

Table S1. Optimization of reaction conditions for the synthesis of THIQs.
Procedure for asymmetric reductive amination for the synthesis of tetrahydroisoquinolines

To a 2.5 mL vial was added the catalyst precursor [Ir(COD)Cl]₂ (3.4 mg, 0.005 mmol), ZhaoPhos (9.5 mg, 0.011 mmol) and anhydrous CH₂Cl₂ (0.3 mL) under argon atmosphere. The mixture was stirred for 0.5 h at room temperature to give a clear solution.

A mixture of substrate 3 (0.2 mmol) and HCl (2 M in Et₂O) (4 equiv.) was dissolved in CH₂Cl₂ (1 mL) and then stirred at rt for 6 h. All volatiles were removed, and the resulting crude intermediate was transferred to a nitrogen-filled glovebox. An aliquot of the above in situ prepared catalyst solution (60 μL, 0.001 mmol) was transferred to a vial containing crude intermediate via a syringe, followed by addition of EtOAc (0.8 mL) and Ti(O'Pr)₄ (1.0 equiv). The vial was placed in an autoclave which was then charged with 30 atm of H₂. The reaction was stirred at 25 °C for 24 h. After carefully releasing the hydrogen, the solution was neutralized with aqueous sodium bicarbonate solution (5 mL), extracted with DCM (5 mL × 2). The combined organic phases were dried over anhydrous Na₂SO₄, concentrated and passed through a short column of silica gel with

<table>
<thead>
<tr>
<th>entry^a</th>
<th>solvent</th>
<th>additive</th>
<th>conversion^b</th>
<th>ee^c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCM</td>
<td>Ti(O'Pr)₄</td>
<td>>95%</td>
<td>75%</td>
</tr>
<tr>
<td>2</td>
<td>toluene</td>
<td>Ti(O'Pr)₄</td>
<td>>95%</td>
<td>78%</td>
</tr>
<tr>
<td>3</td>
<td>THF</td>
<td>Ti(O'Pr)₄</td>
<td>>95%</td>
<td>90%</td>
</tr>
<tr>
<td>4</td>
<td>PhCF₃</td>
<td>Ti(O'Pr)₄</td>
<td>90%</td>
<td>85%</td>
</tr>
<tr>
<td>5</td>
<td>dioxane</td>
<td>Ti(O'Pr)₄</td>
<td>>95%</td>
<td>85%</td>
</tr>
<tr>
<td>6</td>
<td>EtOH</td>
<td>Ti(O'Pr)₄</td>
<td>90%</td>
<td>60%</td>
</tr>
<tr>
<td>7</td>
<td>'PrOH</td>
<td>Ti(O'Pr)₄</td>
<td>92%</td>
<td>55%</td>
</tr>
<tr>
<td>8</td>
<td>'BuOMe</td>
<td>Ti(O'Pr)₄</td>
<td>81%</td>
<td>81%</td>
</tr>
<tr>
<td>9</td>
<td>EtOAc</td>
<td>Ti(O'Pr)₄</td>
<td>>95%</td>
<td>93%</td>
</tr>
<tr>
<td>10^d</td>
<td>EtOAc</td>
<td>Ti(O'Pr)₄</td>
<td>95%</td>
<td>93%</td>
</tr>
<tr>
<td>11^e</td>
<td>EtOAc</td>
<td>Ti(O'Pr)₄</td>
<td>94%</td>
<td>93%</td>
</tr>
<tr>
<td>12</td>
<td>EtOAc</td>
<td>/</td>
<td>0%</td>
<td>/</td>
</tr>
<tr>
<td>13^f</td>
<td>EtOAc</td>
<td>Ti(O'Pr)₄</td>
<td>0%</td>
<td>/</td>
</tr>
<tr>
<td>14^g</td>
<td>EtOAc</td>
<td>Ti(O'Pr)₄</td>
<td>0%</td>
<td>/</td>
</tr>
</tbody>
</table>

^a Reaction conditions: 2a (0.1 mmol), [Ir(cod)Cl]₂ (0.5 mol%), ligand (1.1 mol%), additive (1.0 equiv.), solvent (0.6 mL); ^b Determined by 'H NMR analysis; ^c Determined by HPLC analysis of the corresponding benzamides. ^d 15 atm H₂; ^e 0.1 mol% [Ir(cod)Cl]₂ was used; ^f [Rh(cod)Cl]₂ was used; ^g [Rh(NBD)(Cl)₂] was used.
petroleum/EtOAc (3:1) as eluents to give the chiral tetrahydroisoquinoline products. The obtained products were pure enough for NMR analysis. The enantiomeric excesses were determined by HPLC analysis of the corresponding benzamides.

(S)-1-phenyl-1,2,3,4-tetrahydroisoquinoline (4a)^3:

A white solid, 39.2 mg, 94% yield; 93% ee; [α]^20_D = +11.2 (c 0.61, CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.35-7.30 (m, 2H), 7.29-7.23 (m, 3H), 7.14 (d, J = 4.2 Hz, 2H), 7.04 (dd, J = 8.1, 4.7 Hz, 1H), 6.75 (d, J = 7.7 Hz, 1H), 5.10 (s, 1H), 3.27 (dt, J = 8.7, 4.6 Hz, 1H), 3.20-2.97 (m, 1H), 2.83 (dt, J = 8.6, 3.8 Hz, 1H). 13C [1H] NMR (126 MHz, CDCl3) δ 144.8, 138.2, 135.4, 129.6, 129.0, 128.2, 128.2, 128.1, 126.2, 126.1, 125.6, 62.1, 42.2, 29.8 ppm. Enantiomeric excess was determined by HPLC for the corresponding benzamide (AD-3 column, hexane/iPrOH 70/30, 0.80 mL/min, 220 nm): t_1 = 11.2 min (major), t_2 = 13.6 min (minor).

(S)-1-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (4b)^4:

A white solid, 41.0 mg, 92% yield; 90% ee; [α]^20_D = +8.3 (c 0.41, CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.18-7.10 (m, 2H), 7.03 (dt, J = 8.3, 4.2 Hz, 1H), 6.76 (d, J = 7.7 Hz, 1H), 5.07 (s, 1H), 3.27 (dt, J = 8.8, 4.6 Hz, 1H), 3.17-2.96 (m, 2H), 2.83 (dt, J = 8.4, 3.7 Hz, 1H), 2.34 (s, 3H). 13C [1H] NMR (126 MHz, CDCl3) δ 141.9, 138.4, 137.0, 135.4, 129.1, 129.0, 128.8, 128.1, 126.2, 125.6, 61.7, 42.2, 29.8, 21.1 ppm. Enantiomeric excess was determined by HPLC for the corresponding benzamide (AD-3 column, hexane/iPrOH 70/30, 0.80 mL/min, 220 nm): t_1 = 9.1 min (major), t_2 = 13.3 min (minor).

(S)-1-(m-tolyl)-1,2,3,4-tetrahydroisoquinoline (4c)^5:

A white solid, 41.4 mg, 93% yield; 90% ee; [α]^20_D = +7.6 (c 0.22, CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.23 (t, J = 10.3 Hz, 1H), 7.17 (d, J = 4.2 Hz, 2H), 7.12 (d, J = 6.1 Hz, 2H), 7.09-7.04 (m, 2H), 6.79 (d, J = 7.7 Hz, 1H), 5.09 (s, 1H), 3.38-3.27 (m, 1H), 3.21-3.02 (m, 2H), 2.86 (dt, J = 8.1, 7.5 Hz, 1H), 2.35 (s, 3H). 13C [1H] NMR (126 MHz, CDCl3) δ 144.7, 138.3, 138.1, 135.4, 129.6, 129.0, 128.2, 128.1, 126.2, 126.1, 125.6, 62.1, 42.4, 29.8, 21.4 ppm. Enantiomeric excess was determined by HPLC for the corresponding benzamide (AD-3 column, hexane/iPrOH 70/30, 1.0 mL/min, 220 nm): t_1 = 8.1 min, t_2 = 8.6 min (major).

(S)-1-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinoline (4d)^5:

A white solid, 43.1 mg, 95% yield; 94% ee; [α]^20_D = +9.6 (c 0.26, CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.27-7.21 (m, 2H), 7.15 (d, J = 4.0 Hz, 2H), 7.08-6.97 (m, 3H), 6.72 (d, J = 7.7 Hz, 1H), 5.09 (s, 1H), 3.26 (dt, J = 8.8, 4.7 Hz, 1H), 3.07 (m, 2H), 2.82 (dt, J = 8.3, 3.9 Hz, 1H). 13C [1H] NMR (126 MHz, CDCl3) δ 162.1 (d, J = 245.5 Hz), 140.5, 138.0, 135.3, 130.5 (d, J = 8.0 Hz, 129.1, 128.0, 126.4, 125.7, 115.2 (d, J = 21.2 Hz), 61.3, 42.2, 29.6 ppm. Enantiomeric excess was determined by HPLC for the corresponding benzamide (AD-3 column, hexane/iPrOH 70/30, 0.80 mL/min, 220 nm): t_1 = 11.0 min (major), t_2 = 11.7 min (minor).

(S)-1-(3-fluorophenyl)-1,2,3,4-tetrahydroisoquinoline (4e)^5:

A white solid, 42.2 mg, 94% yield; 88% ee; [α]^20_D = +13.3 (c 0.22, CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.31 (m, 1H), 7.23-7.16 (m, 2H), 7.13-7.05 (m, 2H), 7.00 m, 2H), 6.78 (d, J = 7.7 Hz, 1H), 5.13 (s, 1H), 3.28 (dt, J = 11.3, 4.9 Hz, 1H), 3.16-2.98 (m,
2.86 (dt, J = 16.1, 4.3 Hz, 1H). 13C $^{[1]}$H NMR (126 MHz, CDCl$_3$) δ 162.9 (d, J = 245.9 Hz), 147.4 (d, J = 6.6 Hz), 137.5, 135.4, 129.8 (d, J = 8.1 Hz), 129.1, 128.0, 126.5, 125.7, 124.6 (d, J = 2.8 Hz), 115.8 (d, J = 21.4 Hz), 114.3 (d, J = 21.2 Hz), 61.5 (d, J = 1.6 Hz), 42.0, 29.6 ppm. Enantiomeric excess was determined by HPLC for the corresponding benzamide (AD-3 column, hexane/iPrOH 70/30, 1.0 mL/min, 220 nm): t$_1$ = 10.4 min (major), t$_2$ = 11.3 min (major).

(S)-1-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinoline (4f):

a white solid, 45.2 mg, 93% yield; 93% ee; [α]$^{[20]}$b = +17.8 (c 0.21, CHCl$_3$); 1H NMR (500 MHz, CDCl$_3$) δ 7.29 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 4.1 Hz, 2H), 7.04 (dt, J = 8.3, 4.2 Hz, 1H), 6.71 (d, J = 7.7 Hz, 1H), 5.08 (s, 1H), 3.25 (dt, J = 11.1, 4.8 Hz, 1H), 3.06 (m, 2H), 2.82 (dt, J = 8.5, 4.0 Hz, 1H). 13C NMR (126 MHz, CDCl$_3$) δ 143.3, 137.7, 135.4, 133.1, 130.3, 129.1, 128.5, 127.9, 126.4, 125.7, 121.4, 42.2, 29.6 ppm. Enantiomeric excess was determined by HPLC for the corresponding benzamide (AD-3 column, hexane/iPrOH 70/30, 0.80 mL/min, 210 nm): t$_1$ = 10.3 min (major), t$_2$ = 12.9 min (minor).

(S)-7-flouro-1-phenyl-1,2,3,4-tetrahydroisoquinoline (4g):

a white solid, 43.1 mg, 95% yield; 94% ee; [α]$^{[20]}$b = +23.4 (c 0.63, CHCl$_3$); 1H NMR (500 MHz, CDCl$_3$) δ 7.41-7.30 (m, 3H), 7.29 (dd, J = 5.9, 2.4 Hz, 2H), 7.12 (dd, J = 8.4, 5.8 Hz, 1H), 6.87 (td, J = 8.4, 2.6 Hz, 1H), 6.48 (dd, J = 9.9, 2.6 Hz, 1H), 5.08 (s, 1H), 3.37-3.19 (m, 1H), 3.10 (ddd, J = 11.8, 9.2, 4.3 Hz, 1H), 3.07-2.93 (m, 1H), 2.82 (dt, J = 16.0, 4.1 Hz, 1H). 13C $^{[1]}$H NMR (126 MHz, CDCl$_3$) δ 160.8 (d, J = 243.4 Hz), 144.0, 140.1 (d, J = 6.5 Hz), 130.9 (d, J = 3.0 Hz), 130.3 (d, J = 7.6 Hz), 128.9, 128.5, 127.6, 114.3 (d, J = 21.5 Hz), 113.5 (d, J = 21.4 Hz), 62.2 (d, J = 1.7 Hz), 42.3, 29.0 ppm. Enantiomeric excess was determined by HPLC for the corresponding benzamide (AD-3 column, hexane/iPrOH 80/20, 1.0 mL/min, 210 nm): t$_1$ = 15.1 min (major), t$_2$ = 15.7 min (minor). HRMS Calculated for C$_{15}$H$_{13}$NF [M+H]$^+$ 228.1183; found 228.1176.

(S)-5-chloro-1-phenyl-1,2,3,4-tetrahydroisoquinoline (4h):

a white solid, 44.7 mg, 92% yield; 86% ee; [α]$^{[20]}$b = +72.9 (c 0.96, CHCl$_3$); 1H NMR (500 MHz, CDCl$_3$) δ 7.40-7.30 (m, 3H), 7.28-7.20 (m, 2H), 7.01 (t, J = 7.8 Hz, 1H), 6.70 (d, J = 7.8 Hz, 1H), 5.11 (s, 1H), 3.33 (dt, J = 12.2, 5.3 Hz, 1H), 3.22-3.03 (m, 1H), 3.03-2.69 (m, 2H). 13C $^{[1]}$H NMR (126 MHz, CDCl$_3$) δ 144.2, 140.6, 134.4, 133.6, 128.9, 128.5, 127.6, 127.0, 126.6, 62.1, 41.7, 27.7 ppm. Enantiomeric excess was determined by HPLC for the corresponding benzamide (AD-3 column, hexane/iPrOH 80/20, 1.0 mL/min, 210 nm): t$_1$ = 13.3 min (major), t$_2$ = 20.6 min (minor). HRMS Calculated for C$_{15}$H$_{13}$NCI [M+H]$^+$ 244.0888; found 244.0881.

(S)-7-bromo-1-phenyl-1,2,3,4-tetrahydroisoquinoline (4i):

a white solid, 52.4 mg, 91% yield; 94% ee; [α]$^{[20]}$b = -75.8 (c 0.76, CHCl$_3$); 1H NMR (500 MHz, CDCl$_3$) δ 7.41-7.31 (m, 3H), 7.31 7.25 (m, 2H), 7.05 (d, J = 8.2 Hz, 1H), 6.92 (d, J = 1.7 Hz, 1H), 5.07 (s, 1H), 3.53-3.16 (m, 1H), 3.11-3.06 (m, 1H), 3.02-2.96 (m, 1H), 2.82-2.77 (m, 1H), 2.01-1.47 (m, 1H). 13C $^{[1]}$H NMR (126 MHz, CDCl$_3$) δ 143.9, 140.4, 134.4, 130.7, 130.7, 129.4, 128.9, 128.6, 127.7, 119.2, 61.8, 42.0, 29.3 ppm. Enantiomeric excess was determined by HPLC for the corresponding benzamide (AD-3 column, hexane/iPrOH 70/30, 1.0 mL/min, 210 nm): t$_1$ = 8.1 min (major), t$_2$ = 8.6 min (minor). HRMS Calculated for C$_{15}$H$_{13}$NBr [M+H]$^+$ 288.0382; found 288.0374.

(S)-1-(4-chlorophenyl)-7-flouro-1,2,3,4-tetrahydroisoquinoline (4j):
a white solid, 49.0 mg, 94% yield; 93% ee; $[\alpha]_{D}^{20} = +43.3$ (c 0.69, CHCl$_3$); 1H NMR (400 MHz, CDCl$_3$) δ 7.33 (d, $J = 8.5$ Hz, 2H), 7.23 (d, $J = 8.4$ Hz, 2H), 7.12 (dd, $J = 8.5$, 5.8 Hz, 1H), 6.91-6.85 (m, 1H), 6.45-6.42 (m, 1H), 5.05 (s, 1H), 3.35-3.21 (m, 1H), 3.12-3.06 (m, 1H), 3.05-2.97 (m, 1H), 2.83-2.77 (m, 1H). 13C (1H) NMR (101 MHz, CDCl$_3$) δ 160.8 (d, $J = 243.7$ Hz), 142.5, 139.6 (d, $J = 6.4$ Hz), 133.4, 130.9 (d, $J = 3.0$ Hz), 130.5 (d, $J = 7.7$ Hz), 130.2, 128.7, 114.2 (d, $J = 21.6$ Hz), 113.7 (d, $J = 21.3$ Hz), 61.5 (d, $J = 1.8$ Hz), 42.3, 28.9 ppm. Enantiomeric excess was determined by HPLC for the corresponding benzamide (AD-3 column, hexane/iPrOH 80/20, 0.5 mL/min, 210 nm): $t_1 = 24.8$ min (major), $t_2 = 28.8$ min (minor). HRMS Calculated for C$_{15}$H$_{12}$NCl [M+H]$^+$ 262.0793; found 262.0784.

(S)-5-chloro-1-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinoline (4k):

a white solid, 50.6 mg, 91% yield; 85% ee; $[\alpha]_{D}^{20} = +85.4$ (c 0.85, CHCl$_3$); 1H NMR (400 MHz, CDCl$_3$) δ 7.32 (d, $J = 8.5$ Hz, 2H), 7.27 (d, $J = 8.0$ Hz, 1H), 7.21 (d, $J = 8.5$ Hz, 2H), 7.02 (t, $J = 7.8$ Hz, 1H), 6.66 (d, $J = 7.7$ Hz, 1H), 5.08 (s, 1H), 3.33-3.27 (m, 1H), 3.15-3.08 (m, 1H), 2.94 (q, $J = 5.6$, 5.0 Hz, 2H). 13C (1H) NMR (101 MHz, CDCl$_3$) δ 142.71, 140.12, 134.56, 133.59, 133.38, 130.33, 128.65, 127.25, 126.45, 126.39, 61.42, 41.71, 27.67 ppm. Enantiomeric excess was determined by HPLC for the corresponding benzamide (AD-3 column, hexane/iPrOH 80/20, 1.0 mL/min, 220 nm): $t_1 = 17.0$ min (major), $t_2 = 24.1$ min (minor). HRMS Calculated for C$_{15}$H$_{14}$NCl$_2$ [M+H]$^+$ 278.0498; found 278.0489.

(S)-7-bromo-1-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinoline (4l):

a white solid, 57.3 mg, 89% yield; 98% ee; $[\alpha]_{D}^{20} = -10.1$ (c 0.96, CHCl$_3$); 1H NMR (400 MHz, CDCl$_3$) δ 7.31 (d, $J = 8.4$ Hz, 2H), 7.29-7.24 (m, 1H), 7.19 (d, $J = 8.4$ Hz, 2H), 7.02 (d, $J = 8.2$ Hz, 1H), 6.84 (d, $J = 2.1$ Hz, 1H), 5.02 (s, 1H), 3.43-3.16 (m, 1H), 3.09-3.02 (m, 1H), 3.01-2.89 (m, 1H), 2.76 (dt, $J = 16.2$, 4.4 Hz, 1H). 13C (1H) NMR (101 MHz, CDCl$_3$) δ 142.4, 139.9, 134.3, 133.5, 130.8, 130.6, 130.2, 129.6, 128.7, 119.3, 61.2, 42.0, 29.2 ppm. Enantiomeric excess was determined by HPLC for the corresponding benzamide (AD-3 column, hexane/iPrOH 80/20, 0.5 mL/min, 210 nm): $t_1 = 28.9$ min (major), $t_2 = 34.6$ min (minor). HRMS Calculated for C$_{15}$H$_{14}$NCIBr [M+H]$^+$ 321.9993; found 321.9966.
4. References:
5. NMR Spectra

1H NMR for 1a (500 MHz, CDCl$_3$)

13C NMR for 1a (126 MHz, CDCl$_3$)
1H NMR for 1b (500 MHz, CDCl$_3$)

13C NMR for 1b (126 MHz, CDCl$_3$)
1H NMR for 1c (500 MHz, CDCl$_3$)

13C NMR for 1c (126 MHz, CDCl$_3$)
1H NMR for 1d (500 MHz, CDCl$_3$)

13C NMR for 1d (126 MHz, CDCl$_3$)
\(^1\)H NMR for 1e (500 MHz, CDCl\(_3\))

\(^{13}\)C NMR for 1e (126 MHz, CDCl\(_3\))
1H NMR for 1f (500 MHz, CDCl$_3$)

13C NMR for 1f (126 MHz, CDCl$_3$)
1H NMR for 1g (500 MHz, CDCl$_3$)

13C NMR for 1g (126 MHz, CDCl$_3$)
1H NMR for 1h (500 MHz, CDCl$_3$)

13C NMR for 1h (126 MHz, CDCl$_3$)
1H NMR for 1i (500 MHz, CDCl$_3$)

13C NMR for 1i (126 MHz, CDCl$_3$)
1H NMR for $1j$ (500 MHz, CDCl$_3$)

13C NMR for $1j$ (126 MHz, CDCl$_3$)
1H NMR for 1k (500 MHz, CDCl$_3$)

13C NMR for 1k (126 MHz, CDCl$_3$)
$^1\text{H NMR for 11 (500 MHz, CDCl}_3\text{)}$

$^{13}\text{C NMR for 11 (126 MHz, CDCl}_3\text{)}$
1H NMR for 1m (500 MHz, CDCl$_3$)

13C NMR for 1m (126 MHz, CDCl$_3$)
1H NMR for 1n (500 MHz, CDCl$_3$)

13C NMR for 1n (126 MHz, CDCl$_3$)
1H NMR for $\mathbf{1o}$ (500 MHz, CDCl$_3$)

13C NMR for $\mathbf{1o}$ (126 MHz, CDCl$_3$)
1H NMR for 1p (500 MHz, CDCl$_3$)

13C NMR for 1p (126 MHz, CDCl$_3$)
1H NMR for 1q (500 MHz, CDCl$_3$)

13C NMR for 1q (126 MHz, CDCl$_3$)
1H NMR for 1r (500 MHz, CDCl$_3$)

13C NMR for 1r (126 MHz, CDCl$_3$)
1H NMR for 3a (400 MHz, CDCl$_3$)

13C NMR for 3a (126 MHz, CDCl$_3$)
1H NMR for 3b (500 MHz, CDCl$_3$)

13C NMR for 3b (126 MHz, CDCl$_3$)
1H NMR for 3c (500 MHz, CDCl$_3$)

13C NMR for 3c (126 MHz, CDCl$_3$)
1H NMR for 3d (500 MHz, CDCl₃)

![1H NMR spectrum for 3d](image)

13C NMR for 3d (126 MHz, CDCl₃)

![13C NMR spectrum for 3d](image)
1H NMR for 3e (500 MHz, CDCl$_3$)

13C NMR for 3e (126 MHz, CDCl$_3$)
1H NMR for 3f (500 MHz, CDCl$_3$)

13C NMR for 3f (126 MHz, CDCl$_3$)
1H NMR for 3g (500 MHz, CDCl$_3$)

13C NMR for 3g (126 MHz, CDCl$_3$)
1H NMR for 3h (500 MHz, CDCl$_3$) (A trace amount of EtOAc)

13C NMR for 3h (126 MHz, CDCl$_3$)
1H NMR for 3i (500 MHz, CDCl$_3$) (A trace amount of EtOAc)

13C NMR for 3i (126 MHz, CDCl$_3$)
1H NMR for 3j (500 MHz, CDCl$_3$) (A trace amount of EtOAc)

13C NMR for 3j (126 MHz, CDCl$_3$)
1H NMR for $3k$ (500 MHz, CDCl$_3$)

13C NMR for $3k$ (126 MHz, CDCl$_3$)
1H NMR for 3l (126 MHz, CDCl$_3$) (A trace amount of EtOAc)

13C NMR for 3l

46
1H NMR for 2a (500 MHz, CDCl$_3$)

13C NMR for 2a (126 MHz, CDCl$_3$)
1H NMR for 2b (500 MHz, CDCl$_3$)

13C NMR for 2b (126 MHz, CDCl$_3$)
1H NMR for 2c (500 MHz, CDCl$_3$)

13C NMR for 2c (126 MHz, CDCl$_3$)
1H NMR for 2d (500 MHz, CDCl$_3$)

13C NMR for 2d (126 MHz, CDCl$_3$)
1H NMR for 2e (500 MHz, CDCl$_3$)

13C NMR for 2e (126 MHz, CDCl$_3$)
1H NMR for 2f (500 MHz, CDCl$_3$)

13C NMR for 2f (126 MHz, CDCl$_3$)
1H NMR for 2g (500 MHz, CDCl$_3$)

13C NMR for 2g (126 MHz, CDCl$_3$)
1H NMR for 2h (500 MHz, CDCl$_3$)

13C NMR for 2h (126 MHz, CDCl$_3$)
1H NMR for 2i (500 MHz, CDCl$_3$)

13C NMR for 2i (126 MHz, CDCl$_3$)
1H NMR for $2j$ (500 MHz, CDCl$_3$)

13C NMR for $2j$ (126 MHz, CDCl$_3$)
1H NMR for 2k (500 MHz, CDCl$_3$)

13C NMR for 2k (126 MHz, CDCl$_3$)
1H NMR for 2l (400 MHz, CDCl$_3$)

13C NMR for 2l (101 MHz, CDCl$_3$)
1H NMR for 2m (500 MHz, CDCl$_3$)

13C NMR for 2m (126 MHz, CDCl$_3$)
1H NMR for 2n (500 MHz, CDCl$_3$)

13C NMR for 2n (126 MHz, CDCl$_3$)
1H NMR for 2o (500 MHz, CDCl$_3$)

13C NMR for 2o (126 MHz, CDCl$_3$)
1H NMR for 2p (500 MHz, CDCl$_3$)

13C NMR for 2p (126 MHz, CDCl$_3$)
1H NMR for 2q (500 MHz, CDCl$_3$)

13C NMR for 2q (126 MHz, CDCl$_3$)
1H NMR for 2r (500 MHz, CDCl$_3$)

13C NMR for 2r (126 MHz, CDCl$_3$)
1H NMR for 4a (500 MHz, CDCl$_3$)

13C NMR for 4a (126 MHz, CDCl$_3$)
1H NMR for $4b$ (500 MHz, CDCl$_3$)

13C NMR for $4b$ (126 MHz, CDCl$_3$)
1H NMR for 4c (500 MHz, CDCl$_3$)

13C NMR for 4c (126 MHz, CDCl$_3$)
1H NMR for 4d (500 MHz, CDCl$_3$)

13C NMR for 4d (126 MHz, CDCl$_3$)
1H NMR for 4e (500 MHz, CDCl$_3$)

13C NMR for 4e (126 MHz, CDCl$_3$)
1H NMR for 4f (500 MHz, CDCl$_3$)

13C NMR for 4f (126 MHz, CDCl$_3$)
1H NMR for 4g (500 MHz, CDCl$_3$)

13C NMR for 4g (126 MHz, CDCl$_3$)
1H NMR for 4h (500 MHz, CDCl$_3$)

13C NMR for 4h (126 MHz, CDCl$_3$)
1H NMR for 4i (500 MHz, CDCl$_3$)

13C NMR for 4i (126 MHz, CDCl$_3$)
1H NMR for $4j$ (400 MHz, CDCl$_3$)

13C NMR for $4j$ (101 MHz, CDCl$_3$)
1H NMR for 4k (400 MHz, CDCl$_3$)

13C NMR for 4k (101 MHz, CDCl$_3$)
1H NMR for 4l (400 MHz, CDCl$_3$)

13C NMR for 4l (101 MHz, CDCl$_3$)
6. HPLC spectra

Acq. Method: d:\Chem3\data\YAMATO\YT-95 2017-08-28 15-18-23\YT-02-0-H-95-5-0.8-2MIN.M
Last changed: 8/28/2017 7:39:16 PM by SYSTEM

Analysis Method: d:\Chem3\Creta\YAMATO\YT-95 2017-08-28 15-18-23\YT-02-0-H-95-5-0.8-2MIN.M
(Sequence Method)
Last changed: 8/28/2017 7:39:16 PM by SYSTEM

Additional Info: Peaks manually integrated

Signal 1: DADI A, Sig=254.4 Ref=360.100
Peak RetTime Type Width Area Height Area
[min] [min] [A.U.] [A.U] %
1 13.846 0.3893 3444.4016 142.8560 33.1550 2 15.462 0.2617 3291.3137 196.8097 68.8500

Totals: 8738.00313 3290.829

Signal: 1
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Area Percent Report

Signal 1: DADI A, Sig=254.4 Ref=360.100

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DADI A, Sig=254.4 Ref=360.100
Peak RetTime Type Width Area Height Area
[min] [min] [A.U.] [A.U] %
1 13.846 0.3893 3444.4016 142.8560 33.1550 2 15.462 0.2617 3291.3137 196.8097 68.8500

Totals: 8738.00313 3290.829

Acq. Method: d:\Chem3\data\YAMATO\YT-95 2017-08-28 19-18-23\YT-02-0-H-95-5-0.8-2MIN.M
Last changed: 8/28/2017 7:39:16 PM by SYSTEM

Analysis Method: d:\Chem3\Creta\YAMATO\YT-95 2017-08-28 19-18-23\YT-02-0-H-95-5-0.8-2MIN.M
(Sequence Method)
Last changed: 8/28/2017 7:39:16 PM by SYSTEM

Additional Info: Peaks manually integrated

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DADI A, Sig=254.4 Ref=360.100

Peak RetTime Type Width Area Height Area
[min] [min] [A.U.] [A.U] %
1 14.067 0.2366 3294.30479 217.60071 98.8978 2 15.600 0.2529 42.45958 2.5408 1.2722

Totals: 3337.36437 220.25550
Acq. Operator: SYSTEM
Acq. Instrument: 1260-GAD
Location: PI-8-03
Injection Date: 9/4/2017 4:56:32 PM
Inj: 1
Inj Volume: 1.000 µl
Method: d:\Chem32\Data\VANDERPOLE\VANDERPOLE-299 2017-09-04 15-57-17\VANDERPOLE-299-08-1602-HN (Sequence Method)
Last changed: 7/26/2017 8:15:36 PM by system
Additional Info: Peaks manually integrated.

Signal 1: DAD B, Sig=254.4 Ref=360.100
Peak RetTime Type Width Area Height Area
(min) (min) (mAU) (mAU)
1 0.577 F P 0.186 3252.3917 361.89379 48.5648
2 0.578 sum 0.1523 3464.4930 351.4585 51.4303
Totals: 6696.6131 718.3812

Signal 1: DAD B, Sig=254.4 Ref=360.100
Peak RetTime Type Width Area Height Area
(min) (min) (mAU*P) (mAU)
1 5.184 F 0.0503 7673.8325 797.75554 86.2778
2 9.874 M 0.1758 296.67639 28.1973 3.7212
Totals: 7970.50891 825.87407
Acq. Operator: SYSTEM | Seq. Line: 1
Acq. Instrument: 1290-MSD | Location: 0-4-01
Injection Date: 3/27/2018 8:43:17 PM | Inj. V: 0.500 µl
Acq. Method: d:\Chem32\Data\VANESTANT\VTR-08-08-MSD-1 2018-03-17 17-42-22/VM-00-03-03-03-15-0.3
Last Changed: 3/27/2018 8:43:22 PM by SYSTEM
Analysis Method: d:\Chem32\Data\VANESTANT\VTR-08-08-MSD-1 2018-03-17 17-42-22/VM-00-03-03-03-15-0.3
Additional Info: Peaks manually integrated

Area Percent Report

<table>
<thead>
<tr>
<th>Peak</th>
<th>Ret Time Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.112 s</td>
<td>0.109 s</td>
<td>574.8819</td>
<td>45.87555</td>
<td>85.1178</td>
</tr>
<tr>
<td>2</td>
<td>8.786 s</td>
<td>0.330 s</td>
<td>571.1781</td>
<td>30.61036</td>
<td>55.8622</td>
</tr>
</tbody>
</table>

Totals: 1141.0660 86.8989

Signal:

Signal 1: SIAD1 A, Signal=36.4 Ref=36.180

Multiplier: 1.0000

Dilution: 1.0000

Use Multiplier & Dilution Factor with ISTDs

Sorted By: Signal

Peak Area Type: Width | Area | Height

N102

<table>
<thead>
<tr>
<th>#</th>
<th>Value</th>
<th>[Area]</th>
<th>[STD]</th>
<th>[S/N]</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.112 s</td>
<td>0.109 s</td>
<td>574.8819</td>
<td>45.87555</td>
<td>85.1178</td>
</tr>
<tr>
<td>2</td>
<td>8.786 s</td>
<td>0.330 s</td>
<td>571.1781</td>
<td>30.61036</td>
<td>55.8622</td>
</tr>
</tbody>
</table>

Totals: 1141.0660 86.8989

Totals:

$\sum S_{peak} = 37.54789 \times 10^{-6}$
Acq. Operator: SYSTEM
Seq. Line: 1
Acq. Instrument: 1260-DAD
Location: PI-C-02
Injection Date: 9/13/2017 1:32:49 PM
Inj.: 1
Injection Volume: 1.000 µl
Acq. Method: d:\Chem32\Data\YANGDY\YT-2-119 2017-09-13 17:05-09YT-03-0-95-5-0-8-25mum.h
Last changed: 9/13/2017 1:32:49 PM by SYSTEM
Analysis Method: d:\Chem32\Data\YANGDY\YT-2-119 2017-09-13 17:05-09YT-03-0-95-5-0-8-25mum.h (Sequence Method)
Last changed: 9/13/2017 1:32:49 PM by SYSTEM
Additional Info: Peaks manually integrated

Area Percent Report

Signal 1: DADI A, Sig=254.4 Ref=360,100
Peak RetTime Type Width Area Height Area
[min] [min] [µA] [µA] [%]
1 6.164 [RF] 0.102 697.3400 36.6779 32.1090
2 4.541 [RF] 0.1000 518.9700 85.6053 47.8995
Totals: 1165.3103 184.3383

Signal 2: DADI A, Sig=254.4 Ref=360,100
Peak RetTime Type Width Area Height Area
[min] [min] [µA] [µA] [%]
1 6.160 RF 0.1054 1966.8439 321.2563 98.9761
2 6.856 RF 0.1006 20.3407 3.18360 1.0839
Totals: 1987.1906 324.44892

Seq. Line: 2
Acq. Instrument: 1260-DAD
Location: PI-C-02
Injection Data: 9/13/2017 5:32:41 PM
Inj.: 1
Injection Volume: 1.000 µl
Acq. Method: d:\Chem32\Data\YANGDY\YT-2-119 2017-09-13 17:05-10YT-03-0-95-5-0-8-25mum.h
Last changed: 9/13/2017 5:32:41 PM by SYSTEM
(modified after loading)
Analysis Method: d:\Chem32\Data\YANGDY\YT-2-119 2017-09-13 17:05-10YT-03-0-95-5-0-8-25mum.h (Sequence Method)
Last changed: 9/13/2017 5:32:41 PM by SYSTEM
Additional Info: Peaks manually integrated

Area Percent Report

Signal 1: DADI A, Sig=254.4 Ref=360,100
Peak RetTime Type Width Area Height Area
[min] [min] [µA] [µA] [%]
1 6.164 [RF] 0.102 697.3400 36.6779 32.1090
2 4.541 [RF] 0.1000 518.9700 85.6053 47.8995
Totals: 1165.3103 184.3383

Signal 2: DADI A, Sig=254.4 Ref=360,100
Peak RetTime Type Width Area Height Area
[min] [min] [µA] [µA] [%]
1 6.160 RF 0.1054 1966.8439 321.2563 98.9761
2 6.856 RF 0.1006 20.3407 3.18360 1.0839
Totals: 1987.1906 324.44892

89
Acq. Operator : SYSTEM
Acq. Instrument : 1260-DAD
Injection Date : 9/21/2017 7:08:09 PM
Injection Volume : 1.000 μl
Coil Volume : 1.000 ml

Acq. Method : d:\Chem32\data\VANOTAG\VANOTAG2-128-A 2017-09-21 18-25-43\VT-QD-H-85-15-0.8-15CH3.M
Last charged : 9/21/2017 7:19:50 PM by SYSTEM
Analysis Method : d:\Chem32\data\VANOTAG\VANOTAG2-128-A 2017-09-21 18-25-43\VT-QD-H-85-15-0.8-15CH3.M
Last charged : 9/21/2017 7:31:50 PM by SYSTEM

Acq. Line : 2
Seq. Line : 3
Location : P2-C-02
Inj : 1

Signal 1: DAD A, Sig=250,4 Ref=360,100

Signal 2: DAD A, Sig=250,4 Ref=360,100

Area Percent Report

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000

Use Multiplier & Dilution Factors with ISTDs

Signal 1: DAD A, Sig=250,4 Ref=360,100

Signal 2: DAD A, Sig=250,4 Ref=360,100

Peak Width Type Width Area Height Area
[min] [min] [AU%] [μl]

Totals : 2760.22632 215.67901
Area Percent Report

<table>
<thead>
<tr>
<th>Signal</th>
<th>Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>455.3939</td>
<td>68.9687</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signal 1: DMS A, Sig=960.6 Ref=560.100

Peak Set/Type Width Area Height Area %
1 6.760 s 0.3222 215.5284 27.2336 49.8492
2 3.470 s 0.1764 116.3357 16.0165 30.1958

Totals: 652.5295 88.86878

Injection Volume: 1.000 μl

Last changed: 9/3/2017 21:13:42 by SYSTEM
(modified after loading)

Last changed: 1/27/2018 12:18:05 by SYSTEM
(modified after loading)

Additional Info: Peaks manually integrated
Acq. Instrument: 1260-DAD Location: F1-C-04
Injection Date: 11/28/2017 09:50:49 Inj.: 1
Injection Volume: 1.000 µL
Acq. Method: d:\Chem32\Data\YAKUTO\VY-2-175-B 2017-11-28 09:09-04\YAKUTO-AD-3-B0-20-0.5-3MIN.R (sequenced method)
Last changed: 11/28/2017 09:10:06 by SYSTEM
Analysis Method: d:\Chem32\Data\YAKUTO\VY-2-175-B 2017-11-28 09:09-04\YAKUTO-AD-3-B0-20-0.5-3MIN.M (sequenced method)
Last changed: 12/29/2017 17:55:34 by SYSTEM
(modified after loading)

Additional Info: Peaks manually integrated

Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution factors with ISTDs

Signal 1: DADI C, Sig=210.4 Ref=360.100

<p>| Peak / RetTime / Type / Width / Area / Weight / Area |
|----------|---------|----------|---------|----------|---------|---------|</p>
<table>
<thead>
<tr>
<th></th>
<th>[min]</th>
<th>[min]</th>
<th>[µL²]</th>
<th>[µL²]</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.806</td>
<td>0.5096</td>
<td>24.9046</td>
<td>0.0049</td>
<td>86.397</td>
<td>86.397</td>
</tr>
<tr>
<td>2</td>
<td>34.167</td>
<td>0.0438</td>
<td>28.923</td>
<td>0.0217</td>
<td>4.5800</td>
<td>4.5800</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>4140.398</td>
<td>189.6448</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

106