Supporting Information

Silver-Copper Co-catalyzed Cascade Intramolecular Cyclization/Desulfinamide/Dehydrogenation: One-Pot Synthesis of Substituted Carbazoles

Yuanqiong Huang, † Zhonglin Guo, † Hongjian Song, * † Yuxiu Liu, † and Qingmin Wang *,‡

†State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
‡Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People’s Republic of China

1. General procedure for the synthesis of substrate (S2-S9)
2. General procedure for the synthesis of products (S9-S15)
3. Scale-up Synthesis and Further Transformations (S15)
4. NMR spectra (S16-S59)
5. X-ray single crystal data for product (S60)
1. General procedure for the synthesis of substrate

To a three-necked flask were added \((\text{PPh}_3)_2\text{PdCl}_2\) (5.0 mol%), CuI (5.0 mol%), DMF, \(\text{Et}_3\text{N}\) (4.0 equiv), and 2-iodoaniline (1.0 equiv). After degassing with argon and four evacuation/backfill-cycles with argon, 5-hexyn-1-ol was then added and the resulting mixture was stirring at room temperature. The reaction was complete as monitored by TLC. Then it was diluted with saturated aqueous \(\text{NH}_4\text{Cl}\) and EtOAc. The aqueous phase was extracted with an additional of EtOAc, and the combined
organic layers were washed with water. The organic phase was dried over MgSO$_4$ and filtered. The filtrate was concentrated in vacuo and purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to afford the product A.

To a flask were added A (1.0 equiv)/DCM, pyridine (2.0 equiv) and TsCl (1.2 equiv) sequentially at room temperature. The reaction was complete as monitored by TLC. H$_2$O were added to the resulting mixture. After separation of the organic layer, the water layer was extracted with DCM. The combined organic layer was dried over anhydrous Na$_2$SO$_4$, filtered, evaporated, and purified via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to afford the desired product B.

To a flask were added B (1.0 equiv)/DMSO and IBX (3.0 equiv) sequentially at room temperature. The reaction was complete as monitored by TLC. H$_2$O and EtOAc were added to the resulting mixture. The aqueous phase was extracted with an additional of EtOAc, and the combined organic layers were washed with water. The organic phase was dried over MgSO$_4$ and filtered. The filtrate was concentrated in vacuo yielding the crude extract C without further purification.

To a flask were added C (1.0 equiv), (R)-(+)2-Methyl-2-propanesulfinamide (1.2 equiv) and CuSO$_4$ (3.0 equiv). After degassing with argon and four evacuation/backfill-cycles with argon, dry DCM was then added, and the resulting mixture was stirring at room temperature. After 48 h, the reaction was stopped and filtrated through Celite, washing with DCM. The solution was evaporated with a rotary evaporator to remove the solvent, yielding the crude extract which was further purified by flash column (eluent: petroleum ether/ethyl acetate) to yield the desired product as a yellow oil.

Yellow Oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.13 (t, $J = 4.0$ Hz, 1H), 7.67 (d, $J = 8.0$ Hz, 2H), 7.55 (d, $J = 8.0$ Hz, 1H), 7.28 – 7.18 (m, 5H), 6.99 (t, $J = 7.2$ Hz, 1H), 2.71 – 2.63 (m, 2H), 2.53 (t, $J = 6.8$ Hz, 2H),
2.37 (s, 3H), 1.99 – 1.91 (m, 2H), 1.22 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 168.3, 144.0, 137.6, 136.2, 132.1, 129.6, 129.1, 127.2, 124.3, 119.5, 114.6, 96.2, 76.4, 56.7, 35.0, 24.3, 22.4, 21.6, 19.1, HRMS (ESI) calcd for C$_{23}$H$_{20}$N$_2$O$_3$S$_2$ [M+H]$^+$ 445.1614, found 445.1618.

[Chemical structure image]

Yellow Oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.12 (t, $J = 4.0$ Hz, 1H), 7.61 (d, $J = 8.0$ Hz, 2H), 7.54 (dd, $J = 8.8$, 5.2 Hz, 1H), 7.21 (d, $J = 8.0$ Hz, 2H), 7.02 (s, 1H), 6.95 (d, $J = 8.4$ Hz, 2H), 2.64 (td, $J = 7.2$, 4.4 Hz, 2H), 2.49 (t, $J = 7.2$ Hz, 2H), 2.38 (s, 3H), 1.97 – 1.89 (m, 2H), 1.22 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 168.2, 159.3 (d, $J_{C-F} = 243.6$ Hz), 144.1, 136.0, 133.7, 129.6, 127.2, 122.6 (d, $J_{C-F} = 8.8$ Hz), 118.5 (d, $J_{C-F} = 24.2$ Hz), 117.0 (d, $J_{C-F} = 9.8$ Hz), 116.3 (d, $J_{C-F} = 22.5$ Hz), 96.9, 75.6, 56.7, 35.0, 24.1, 22.4, 21.6, 19.0, HRMS (ESI) calcd for C$_{23}$H$_{28}$FN$_2$O$_3$S$_2$ [M+H]$^+$ 463.1520, found 463.1526.

[Chemical structure image]

Yellow Oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.15 (t, $J = 4.0$ Hz, 1H), 7.67 (d, $J = 8.4$ Hz, 2H), 7.52 (d, $J = 8.8$ Hz, 1H), 7.27 – 7.21 (m, 4H), 7.15 (s, 1H), 2.73 – 2.63 (m, 2H), 2.55 (t, $J = 7.2$ Hz, 2H), 2.41 (s, 3H), 2.01 – 1.92 (m, 2H), 1.24 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 168.4, 144.3, 136.2, 136.0, 131.8, 129.7, 129.6, 129.2, 127.2, 121.2, 116.5, 97.5, 75.3, 56.8, 35.0, 24.1, 22.4, 21.6, 19.1, HRMS (ESI) calcd for C$_{23}$H$_{28}$ClN$_2$O$_3$S$_2$ [M+H]$^+$ 479.1224, found 479.1232.

[Chemical structure image]

Yellow Oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.12 (t, $J = 4.0$ Hz, 1H), 7.65 (d, $J = 7.2$ Hz, 2H), 7.44 (d, $J = 8.4$ Hz, 1H), 7.39 (s, 1H), 7.34 (d, $J = 8.4$ Hz, 1H), 7.23 (d, $J = 7.2$ Hz, 2H), 7.14 (s, 1H), 2.69 – 2.62 (m, 2H), 2.53 (t, $J = 6.8$ Hz, 2H), 2.39 (s, 3H), 2.01 – 1.89 (m, 2H), 1.22 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 168.1, 144.3, 136.7, 135.9, 134.6, 132.1, 129.7, 127.2, 121.0, 117.0, 116.4, 97.6, 76.7, 56.7, 35.0, 24.1, 22.4, 21.6, 19.1, HRMS (ESI) calcd for C$_{23}$H$_{28}$BrN$_2$O$_3$S$_2$
[M+H]$^+$ 523.0719, found 523.0721.

Yellow Oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.12 (t, $J = 4.4$ Hz, 1H), 7.63 (d, $J = 8.4$ Hz, 2H), 7.45 (d, $J = 8.4$ Hz, 1H), 7.20 (d, $J = 8.0$ Hz, 2H), 7.08 (d, $J = 12.0$ Hz, 2H), 7.04 (d, $J = 8.4$ Hz, 1H), 2.69 – 2.62 (m, 2H), 2.50 (t, $J = 7.2$ Hz, 2H), 2.36 (s, 3H), 2.22 (s, 3H), 1.97 – 1.87 (m, 2H), 1.22 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 168.4, 143.9, 136.3, 135.0, 134.3, 132.5, 129.9, 129.6, 127.3, 120.2, 114.9, 95.6, 76.6, 56.7, 35.0, 24.3, 22.4, 21.6, 20.6, 19.1, HRMS (ESI) calcd for C$_{24}$H$_{31}$N$_2$O$_3$S$_2$ [M+H]$^+$ 459.1771, found 459.1779.

Yellow Oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.12 (t, $J = 4.4$ Hz, 1H), 7.58 (d, $J = 8.4$ Hz, 2H), 7.49 (d, $J = 9.2$ Hz, 1H), 7.19 (d, $J = 8.0$ Hz, 2H), 6.95 (s, 1H), 6.82 (dd, $J = 8.8$, 3.2 Hz, 1H), 6.76 (d, $J = 2.8$ Hz, 1H), 3.74 (s, 3H), 2.63 (td, $J = 7.2$, 4.4 Hz, 2H), 2.46 (t, $J = 7.2$ Hz, 2H), 2.37 (s, 3H), 1.97 – 1.82 (m, 2H), 1.22 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 168.3, 156.7, 143.7, 136.2, 130.6, 129.4, 127.2, 123.4, 117.3, 116.4, 115.4, 95.5, 76.5, 56.7, 55.5, 35.0, 24.2, 22.4, 21.6, 19.0, HRMS (ESI) calcd for C$_{26}$H$_{35}$N$_2$O$_4$S$_2$ [M+H]$^+$ 475.1720, found 475.1721.

Yellow Oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.13 (t, $J = 4.4$ Hz, 1H), 7.66 (d, $J = 8.0$ Hz, 2H), 7.45 (d, $J = 8.4$ Hz, 1H), 7.21 (d, $J = 8.0$ Hz, 2H), 7.15 – 7.06 (m, 3H), 2.83 – 2.74 (m, 1H), 2.70 – 2.63 (m, 2H), 2.51 (t, $J = 7.2$ Hz, 2H), 2.37 (s, 3H), 2.00 – 1.89 (m, 2H), 1.22 (s, 9H), 1.17 (d, $J = 6.9$ Hz, 6H); 13C NMR (100 MHz, CDCl$_3$) δ 168.4, 145.1, 143.8, 136.4, 135.2, 129.9, 129.6, 127.4, 127.2, 120.0, 114.6, 95.4, 76.7, 56.7, 35.0, 33.3, 24.3, 23.8, 22.4, 21.6, 19.1, HRMS (ESI) calcd for C$_{26}$H$_{35}$N$_2$O$_4$S$_2$ [M+H]$^+$ 487.2084, found 487.2089.

Yellow Oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.14 (t, $J = 4.4$ Hz, 1H),
7.71 (d, \(J = 8.0 \) Hz, 2H), 7.62 (d, \(J = 8.8 \) Hz, 1H), 7.53 – 7.45 (m, 4H), 7.40 (t, \(J = 7.2 \) Hz, 2H), 7.33 (d, \(J = 7.2 \) Hz, 1H), 7.25 – 7.19 (m, 3H), 2.72 – 2.64 (m, 2H), 2.55 (t, \(J = 7.2 \) Hz, 2H), 2.37 (s, 3H), 2.03 – 1.91 (m, 2H), 1.22 (s, 9H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 168.4, 144.1, 139.4, 137.2, 136.7, 136.2, 130.6, 129.7, 128.9, 127.8, 127.6, 127.3, 126.7, 119.8, 114.9, 96.2, 76.4, 56.8, 35.0, 24.3, 22.4, 21.6, 19.1, HRMS (ESI) calcd for C\(_{29}\)H\(_{33}\)N\(_2\)O\(_3\)S\(_2\) [M+H]\(^{+}\) 521.1927, found 521.1931.

Yellow Oil. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.13 (t, \(J = 4.4 \) Hz, 1H), 7.67 (d, \(J = 8.4 \) Hz, 2H), 7.44 (d, \(J = 8.8 \) Hz, 1H), 7.27 (d, \(J = 0.8 \) Hz, 2H), 7.23 (d, \(J = 8.0 \) Hz, 2H), 7.10 (s, 1H), 2.70 – 2.64 (m, 2H), 2.52 (t, \(J = 7.2 \) Hz, 2H), 2.38 (s, 3H), 1.91 – 1.99 (m, 2H), 1.24 (s, 9H), 1.22 (s, 9H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 168.4, 147.3, 143.9, 136.5, 135.0, 129.6, 128.9, 127.2, 126.4, 119.3, 114.1, 95.3, 76.9, 56.7, 35.0, 34.3, 31.2, 24.3, 22.4, 21.6, 19.1, HRMS (ESI) calcd for C\(_{27}\)H\(_{37}\)N\(_2\)O\(_5\)S\(_2\) [M+H]\(^{+}\) 501.2240, found 501.2246.

Yellow Oil. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.14 (t, \(J = 4.0 \) Hz, 1H), 7.96 (s, 1H), 7.87 (d, \(J = 8.8 \) Hz, 1H), 7.72 (d, \(J = 8.0 \) Hz, 2H), 7.57 (d, \(J = 8.8 \) Hz, 1H), 7.46 (s, 1H), 7.25 (d, \(J = 8.0 \) Hz, 2H), 3.87 (s, 3H), 2.74 – 2.67 (m, 2H), 2.59 (t, \(J = 7.2 \) Hz, 2H), 2.38 (s, 3H), 2.06 – 1.94 (m, 2H), 1.23 (s, 9H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 168.2, 165.8, 144.5, 141.4, 135.8, 133.8, 130.4, 129.8, 127.3, 125.5, 117.3, 113.5, 97.4, 75.5, 56.7, 52.2, 35.0, 24.2, 22.4, 21.6, 19.1, HRMS (ESI) calcd for C\(_{25}\)H\(_{31}\)N\(_2\)O\(_5\)S\(_2\) [M+H]\(^{+}\) 503.1669, found 503.1675.

Yellow Oil. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.13 (t, \(J = 4.0 \) Hz, 1H), 7.70 (d, \(J = 8.0 \) Hz, 2H), 7.57 (d, \(J = 8.0 \) Hz, 2H), 7.18 (d, \(J = 8.4 \) Hz, 1H), 6.97 (dd, \(J = 8.4, 2.0 \) Hz, 1H), 2.67 (td, \(J = 6.8, 4.4 \) Hz, 2H), 2.54 (t, \(J = 7.2 \) Hz, 2H), 2.39 (s, 3H), 2.00 – 1.91 (m, 2H), 1.22 (s,
1H NMR (400 MHz, CDCl$_3$) δ 8.14 (t, $J = 4.4$ Hz, 1H), 7.74 (d, $J = 8.0$ Hz, 2H), 7.62 – 7.55 (m, 3H), 7.47 (d, $J = 8.5$ Hz, 1H), 7.29 (d, $J = 6.4$ Hz, 2H), 2.72 – 2.65 (m, 2H), 2.60 (t, $J = 7.2$ Hz, 2H), 2.40 (s, 3H), 2.05 – 1.93 (m, 2H), 1.22 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 168.0, 144.9, 141.4, 135.9, 135.6, 132.6, 130.0, 127.2, 117.8, 117.8, 114.3, 107.2, 99.2, 74.4, 56.7, 35.0, 24.1, 22.4, 21.6, 19.1, HRMS (ESI) calcld for C$_{23}$H$_{28}$ClN$_2$O$_3$S$_2$ [M+H]$^+$ 479.1224, found 479.1224.

Yellow Oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.12 (t, $J = 4.4$ Hz, 1H), 7.80 – 7.74 (m, 2H), 7.59 – 7.50 (m, 2H), 7.45 – 7.39 (m, 2H), 7.29 – 7.19 (m, 3H), 7.01 (td, $J = 7.6$, 1.2 Hz, 1H), 2.70 – 2.62 (m, 2H), 2.51 (t, $J = 7.2$ Hz, 2H), 1.98 – 1.88 (m, 2H), 1.22 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 168.4, 139.1, 137.4, 133.1, 132.1, 129.1, 129.0, 127.2, 124.5, 120.0, 114.9, 96.2, 76.3, 56.7, 35.0, 24.2, 22.4, 19.1, HRMS (ESI) calcld for C$_{23}$H$_{27}$N$_2$O$_3$S$_2$ [M+H]$^+$ 431.1458, found 431.1466.

Yellow Oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.13 (t, $J = 4.4$ Hz, 1H), 7.83 – 7.74 (m, 2H), 7.55 (d, $J = 8.0$ Hz, 1H), 7.29 – 7.21 (m, 3H), 7.13 – 7.07 (m, 2H), 7.04 (td, $J = 7.6$, 0.8 Hz, 1H), 2.70 – 2.64 (m, 2H), 2.52 (t, $J = 7.2$ Hz, 2H), 2.01 – 1.89 (m, 2H), 1.22 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 168.3, 165.3 (d, $J_{C-F} = 254$ Hz), 137.1, 135.1 (d, $J_{C-F} = 3.2$ Hz), 132.3, 130.0 (d, $J_{C-F} = 9.4$ Hz), 129.2, 124.8, 120.3, 116.2 (d, $J_{C-F} = 22.5$ Hz), 115.2, 96.3, 76.2, 56.7, 35.0, 24.2, 22.4, 19.1, HRMS (ESI) calcld for C$_{22}$H$_{26}$FN$_2$O$_3$S$_2$
[M+H]$^+$ 449.1363, found 449.1369.

Yellow Oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.13 (t, J = 4.4 Hz, 1H), 7.73 – 7.66 (m, 2H), 7.55 (d, J = 8.4 Hz, 1H), 7.43 – 7.36 (m, 2H), 7.31 – 7.23 (m, 2H), 7.20 (s, 1H), 7.05 (td, J = 7.6, 0.8 Hz, 1H), 2.67 (td, J = 7.6, 4.4 Hz, 2H), 2.51 (t, J = 7.2 Hz, 2H), 2.00 – 1.87 (m, 2H), 1.22 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 168.2, 139.7, 137.6, 137.0, 132.3, 129.3, 129.2, 128.6, 124.9, 120.3, 115.2, 96.3, 76.3, 56.7, 35.0, 24.2, 22.4, 19.1, HRMS (ESI) calcd for C$_{22}$H$_{26}$ClN$_2$O$_3$S$_2$ [M+H]$^+$ 465.1068, found 465.1071.

Yellow Oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.14 (t, J = 4.4 Hz, 1H), 7.64 – 7.59 (m, 2H), 7.58 – 7.53 (m, 3H), 7.31 – 7.23 (m, 2H), 7.20 (s, 1H), 7.05 (td, J = 7.6, 0.8 Hz, 1H), 2.70 – 2.63 (m, 2H), 2.51 (t, J = 7.2 Hz, 2H), 1.99 – 1.90 (m, 2H), 1.22 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 168.3, 138.2, 137.0, 132.3, 129.2, 128.7, 128.2, 124.9, 120.3, 115.2, 96.3, 76.3, 56.7, 35.0, 24.2, 22.4, 19.1, HRMS (ESI) calcd for C$_{22}$H$_{26}$BrN$_2$O$_3$S$_2$ [M+H]$^+$ 509.0563, found 509.0562.

Yellow Oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.13 (t, J = 4.4 Hz, 1H), 7.76 – 7.68 (m, 2H), 7.54 (d, J = 8.0 Hz, 1H), 7.47 – 7.40 (m, 2H), 7.30 – 7.19 (m, 3H), 7.00 (td, J = 7.6, 0.8 Hz, 1H), 2.72 – 2.65 (m, 2H), 2.53 (t, J = 7.2 Hz, 2H), 2.01 – 1.90 (m, 2H), 1.29 (s, 9H), 1.22 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 168.3, 157.0, 137.7, 136.2, 132.1, 129.1, 127.0, 126.0, 124.0, 119.0, 114.2, 96.2, 76.4, 56.7, 35.2, 35.0, 31.0, 24.3, 22.4, 19.1, HRMS (ESI) calcd for C$_{26}$H$_{35}$N$_2$O$_3$S$_2$ [M+H]$^+$ 487.2084, found 487.2092.

Yellow Oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.14 (t, J = 4.4 Hz, 1H),
7.87 (d, $J = 8.4$ Hz, 2H), 7.73 (d, $J = 8.4$ Hz, 2H), 7.55 (d, $J = 7.6$ Hz, 1H), 7.32 (s, 1H), 7.31 – 7.27 (m, 2H), 7.13 – 7.04 (m, 1H), 2.68 (td, $J = 7.2, 4.4$ Hz, 2H), 2.50 (t, $J = 7.2$ Hz, 2H), 2.05 – 1.87 (m, 2H), 1.22 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 168.3, 143.3, 136.4, 132.7, 132.5, 129.3, 127.8, 125.4, 120.8, 117.2, 116.8, 115.6, 96.5, 76.2, 56.8, 35.0, 24.3, 22.4, 19.1, HRMS (ESI) calcd for C$_{23}$H$_{26}$N$_3$O$_3$S$_2$ [M+H]$^+$ 456.1410, found 456.1415.

Yellow Oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.13 (t, $J = 4.4$ Hz, 1H), 7.71 (d, $J = 8.8$ Hz, 2H), 7.54 (d, $J = 8.0$ Hz, 1H), 7.28 – 7.20 (m, 2H), 7.17 (s, 1H), 7.00 (td, $J = 7.6, 1.2$ Hz, 1H), 6.88 (d, $J = 8.8$ Hz, 2H), 3.82 (s, 3H), 2.71 – 2.64 (m, 2H), 2.54 (t, $J = 7.2$ Hz, 2H), 2.01 – 1.91 (m, 2H), 1.22 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 168.3, 163.2, 137.7, 132.1, 130.7, 129.4, 129.1, 124.2, 119.5, 114.5, 114.1, 96.2, 76.4, 56.7, 55.6, 35.0, 24.3, 22.4, 19.1, HRMS (ESI) calcd for C$_{23}$H$_{29}$N$_2$O$_4$S$_2$ [M+H]$^+$ 461.1563, found 461.1573.

Yellow Oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.13 (t, $J = 4.4$ Hz, 1H), 7.63 (d, $J = 8.0$ Hz, 1H), 7.54 (dd, $J = 4.8, 1.2$ Hz, 1H), 7.48 (dd, $J = 4.0, 1.2$ Hz, 1H), 7.34 – 7.25 (m, 3H), 7.06 (td, $J = 7.6, 0.8$ Hz, 1H), 6.99 (dd, $J = 4.8, 4.0$ Hz, 1H), 2.67 (td, $J = 7.6, 4.4$ Hz, 2H), 2.53 (t, $J = 7.2$ Hz, 2H), 2.01 – 1.89 (m, 2H), 1.22 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 168.3, 139.5, 137.1, 132.8, 132.6, 132.1, 129.1, 127.3, 124.9, 120.3, 115.2, 96.3, 76.2, 56.7, 35.0, 24.2, 22.4, 19.1, HRMS (ESI) calcd for C$_{20}$H$_{25}$N$_2$O$_3$S$_3$ [M+H]$^+$ 437.1022, found 437.1026.

Yellow Oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.14 (t, $J = 4.4$ Hz, 1H), 7.57 (d, $J = 8.0$ Hz, 1H), 7.42 (dd, $J = 8.0, 1.6$ Hz, 1H), 7.35 – 7.29 (m, 1H), 7.11 (td, $J = 7.6, 1.0$ Hz, 1H), 7.04 (s, 1H), 3.02 (s, 3H), 2.75 – 2.69 (m, 2H), 2.54 (t, $J = 7.2$ Hz, 2H), 2.06 – 1.95 (m, 2H), 1.21 (s, 9H); 13C NMR
(100 MHz, CDCl$_3$) δ 168.3, 137.7, 132.5, 129.5, 124.6, 119.1, 114.5, 96.8, 76.4, 56.7, 39.6, 35.0, 24.3, 22.4, 19.2, HRMS (ESI) calcd for C$_{17}$H$_{25}$N$_2$O$_3$S$_2$ [M+H]$^+$ 369.1301, found 369.1305.

Yellow Oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.14 (t, J = 4.4 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.41 (dd, J = 8.0, 1.6 Hz, 1H), 7.33 – 7.28 (m, 1H), 7.10 (td, J = 7.6, 1.2 Hz, 1H), 6.98 (s, 1H), 2.75 – 2.69 (m, 2H), 2.61 (t, J = 7.2 Hz, 2H), 2.51 – 2.43 (m, 1H), 2.06 – 1.96 (m, 2H), 1.21 (s, 9H), 1.20 – 1.17 (m, 2H), 0.99 – 0.92 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 168.3, 137.9, 132.3, 129.3, 124.5, 120.1, 115.0, 96.4, 76.7, 56.7, 35.0, 30.1, 24.4, 22.4, 19.2, 5.8, HRMS (ESI) calcd for C$_{19}$H$_{27}$N$_2$O$_3$S$_2$ [M+H]$^+$ 395.1458, found 395.1459.

2. General procedure for the synthesis of products

To a microwave rotor were added DCE, substrate (1.0 equiv), Cu(OAc)$_2$ (20 mol%), AgSbF$_6$ (10 mol %) and chloranil (0.6 equiv) sequentially. The mixture was heated at 80 °C in microwave for 2.5 h. After the reaction was complete as monitored by TLC. CH$_2$Cl$_2$ and H$_2$O were added to the resulting mixture. After separation of the organic layer, the water layer was extracted with CH$_2$Cl$_2$. The combined organic layer was dried over anhydrous Na$_2$SO$_4$, filtered, evaporated, and purified via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to afford the desired product as a solid.

Pale grey solid; yield: 86%; mp: 134-135 °C. 1H NMR (400 MHz, CDCl$_3$) δ 8.33 (d, J = 8.4 Hz, 2H), 7.87 (d, J = 7.6 Hz, 2H), 7.63 (d, J = 7.6 Hz, 2H),
7.48 (ddd, J = 8.4, 7.2, 1.2 Hz, 2H), 7.34 (td, J = 7.6, 0.8 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H), 2.21 (s, 3H); ^13^C NMR (100 MHz, CDCl_3) \(\delta\) 144.9, 138.4, 134.9, 129.7, 127.4, 126.5, 126.4, 123.9, 120.0, 115.2, 21.5, HRMS (ESI) calcd for C\(_{19}\)H\(_{16}\)NO\(_2\)S [M+H]^+ 322.0896, found 322.0902.

White solid; yield: 82%; mp: 171-172 °C. \(^1\)H NMR (400 MHz, CDCl_3) \(\delta\) 8.32 (d, J = 8.4 Hz, 1H), 8.28 (dd, J = 9.2, 4.4 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 8.4 Hz, 2H), 7.55 – 7.48 (m, 2H), 7.39 – 7.33 (m, 1H), 7.20 (td, J = 8.8, 2.4 Hz, 1H), 7.09 (d, J = 8.0 Hz, 2H), 2.26 (s, 3H); \(^13^C\) NMR (100 MHz, CDCl_3) \(\delta\) 159.9 (d, \(J_{C-F}\) = 240.6 Hz), 145.0, 139.2, 134.7, 134.5 (d, \(J_{C-F}\) = 1.3 Hz), 129.7, 128.0, 127.8 (d, \(J_{C-F}\) = 9.6 Hz), 126.5, 125.9 (d, \(J_{C-F}\) = 3.6 Hz), 124.0, 120.2, 116.4 (d, \(J_{C-F}\) = 8.8 Hz), 115.47, 114.8 (d, \(J_{C-F}\) = 24.6 Hz), 106.2 (d, \(J_{C-F}\) = 4.0 Hz), 21.5, HRMS (ESI) calcd for C\(_{19}\)H\(_{15}\)FNO\(_2\)S [M+H]^+ 340.0802, found 340.0803.

White solid; yield: 84%; mp: 135-136 °C. \(^1\)H NMR (400 MHz, CDCl_3) \(\delta\) 8.31 (d, J = 8.4 Hz, 1H), 8.25 (d, J = 8.8 Hz, 1H), 7.87 – 7.80 (m, 2H), 7.66 (d, J = 8.4 Hz, 2H), 7.54 – 7.47 (m, 1H), 7.43 (dd, J = 9.2, 2.4 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.09 (d, J = 8.0 Hz, 2H), 2.25 (s, 3H); \(^13^C\) NMR (100 MHz, CDCl_3) \(\delta\) 145.2, 138.9, 136.7, 134.7, 129.8, 129.7, 128.1, 127.8, 127.4, 126.5, 125.3, 124.2, 120.2, 119.9, 116.3, 115.3, 21.5, HRMS (ESI) calcd for C\(_{19}\)H\(_{15}\)ClNO\(_2\)S [M+H]^+ 356.0507, found 356.0504.

White solid; yield: 83%; mp: 143-144 °C. \(^1\)H NMR (400 MHz, CDCl_3) \(\delta\) 8.31 (d, J = 8.4 Hz, 1H), 8.20 (d, J = 8.8 Hz, 1H), 7.99 (d, J = 2.0 Hz, 1H), 7.83 (d, J = 7.6 Hz, 1H), 7.66 (d, J = 8.4 Hz, 2H), 7.57 (dd, J = 8.8, 2.0 Hz, 1H), 7.54 – 7.47 (m, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.09 (d, J = 8.0 Hz, 2H), 2.25 (s, 3H); \(^13^C\) NMR (100 MHz, CDCl_3) \(\delta\) 145.2, 138.7, 137.1, 134.6, 130.1, 129.8, 128.3, 128.2,
White solid; yield: 56%; mp: 121-122 °C. 1H NMR (400 MHz, CDCl$_3$) δ
8.30 (d, $J = 8.0$ Hz, 1H), 8.19 (d, $J = 8.4$ Hz, 1H), 7.85 (d, $J = 7.6$ Hz, 1H),
7.70 – 7.63 (m, 3H), 7.49 – 7.41 (m, 1H), 7.36 – 7.31 (m, 1H), 7.29 (dd, $J = 8.4$, 1.2
Hz, 1H), 7.07 (d, $J = 8.0$ Hz, 2H), 2.47 (s, 3H), 2.24 (s, 3H); 13C NMR (100 MHz,
CDCl$_3$) δ 144.7, 138.7, 136.5, 135.0, 133.6, 129.6, 128.6, 127.2, 126.6, 126.5, 123.8,
120.1, 119.9, 115.2, 114.9, 21.5, 21.3, HRMS (ESI) calcd for C$_{19}$H$_{15}$BrNO$_2$S [M+H]$^+$
356.0507, found 356.0504.

White solid; yield: 48%; mp: 129-130 °C. 1H NMR (400 MHz, CDCl$_3$) δ
8.30 (d, $J = 8.4$ Hz, 1H), 8.22 (d, $J = 8.8$ Hz, 1H), 7.84 (d, $J = 7.6$ Hz, 1H),
7.64 (d, $J = 8.4$ Hz, 2H), 7.52 – 7.44 (m, 1H), 7.37 – 7.30 (m, 2H), 7.09 – 7.05 (m,
3H), 3.89 (s, 3H), 2.25 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 156.8, 144.7, 139.1,
134.8, 132.7, 129.6, 127.6, 127.4, 126.6, 126.5, 123.8, 119.9, 116.3, 115.5, 115.3,
103.2, 55.8, 21.5, HRMS (ESI) calcd for C$_{20}$H$_{17}$NNaO$_3$S [M+Na]$^+$ 374.0821, found
374.0825.

White solid; yield: 74%; mp: 94-95 °C. 1H NMR (400 MHz, CDCl$_3$) δ
8.30 (d, $J = 8.4$ Hz, 1H), 8.22 (d, $J = 8.8$ Hz, 1H), 7.89 (d, $J = 7.6$ Hz, 1H), 7.73
(s, 1H), 7.70 (d, $J = 8.0$ Hz, 2H), 7.46 (t, $J = 8.0$ Hz, 1H), 7.38 – 7.31 (m, 1H), 7.08 (d,
$J = 8.0$ Hz, 2H), 3.11 – 2.98 (m, 1H), 2.25 (s, 3H), 1.32 (d, $J = 6.8$ Hz, 6H); 13C NMR
(100 MHz, CDCl$_3$) δ 144.74, 144.72, 138.6, 136.7, 135.1, 129.6, 127.1, 126.6, 126.5,
126.4, 126.3, 123.7, 119.9, 117.3, 115.1, 114.9, 34.0, 24.3, 21.5, HRMS (ESI) calcd
for C$_{22}$H$_{22}$NO$_2$S [M+H]$^+$ 364.1366, found 364.1370.
White solid; yield: 70%; mp: 139-140 °C. 1H NMR (400 MHz, CDCl$_3$) δ
8.38 (d, $J = 8.8$ Hz, 1H), 8.34 (d, $J = 8.4$ Hz, 1H), 8.09 (d, $J = 1.6$ Hz, 1H), 7.95 (d, $J = 7.6$ Hz, 1H), 7.75 – 7.70 (m, 3H), 7.69 – 7.64 (m, 2H), 7.54 – 7.45 (m, 3H), 7.41 – 7.34 (m, 2H), 7.11 (d, $J = 8.4$ Hz, 2H), 2.26 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 145.0, 140.9, 138.8, 137.8, 137.3, 135.0, 129.7, 128.9, 127.6, 127.3, 127.3, 126.9, 126.8, 126.5, 126.4, 124.0, 120.1, 118.4, 115.4, 115.2, 21.6, HRMS (ESI) calcd for C$_{25}$H$_{20}$NO$_2$S [M+H]$^+$ 398.1209, found 398.1211.

White solid; yield: 72%; mp: 158-159 °C. 1H NMR (400 MHz, CDCl$_3$) δ
8.30 (d, $J = 8.4$ Hz, 1H), 8.22 (d, $J = 8.8$ Hz, 1H), 7.94 – 7.86 (m, 2H), 7.71 (d, $J = 7.6$ Hz, 2H), 7.53 (d, $J = 8.8$ Hz, 1H), 7.46 (t, $J = 7.6$ Hz, 1H), 7.34 (t, $J = 7.6$ Hz, 1H), 7.09 (d, $J = 8.0$ Hz, 2H), 2.24 (s, 3H), 1.40 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 147.0, 144.7, 138.6, 136.3, 135.1, 129.7, 127.1, 126.7, 126.5, 126.0, 125.2, 123.7, 119.8, 116.3, 115.1, 114.6, 34.8, 31.7, 21.5, HRMS (ESI) calcd for C$_{23}$H$_{24}$NO$_2$S [M+H]$^+$ 378.1522, found 378.1525.

White solid; yield: 84%; mp: 176-177 °C. 1H NMR (400 MHz, CDCl$_3$) δ
8.61 (s, 1H), 8.35 (dd, $J = 16.0$, 8.8 Hz, 2H), 8.18 (d, $J = 8.8$ Hz, 1H), 7.97 (d, $J = 7.6$ Hz, 1H), 7.71 (d, $J = 8.0$ Hz, 2H), 7.53 (t, $J = 7.6$ Hz, 1H), 7.40 (t, $J = 7.6$ Hz, 1H), 7.12 (d, $J = 8.0$ Hz, 2H), 3.97 (s, 3H), 2.47 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 167.0, 145.3, 141.2, 138.9, 134.8, 129.8, 128.7, 128.0, 126.5, 126.3, 125.8, 125.7, 124.3, 122.0, 120.4, 115.1, 114.7, 52.3, 21.6, HRMS (ESI) calcd for C$_{21}$H$_{18}$NO$_4$S [M+H]$^+$ 380.0951, found 380.0948.

White solid; yield: 85%; mp: 170-171 °C. 1H NMR (400 MHz, CDCl$_3$) δ
8.36 (s, 1H), 8.29 (d, $J = 8.0$ Hz, 1H), 7.85 (d, $J = 7.6$ Hz, 1H), 7.79 (d, $J = 8.4$ Hz, 1H), 7.71 (d, $J = 7.6$ Hz, 2H), 7.49 (t, $J = 7.6$ Hz, 1H), 7.35 (dd, $J = 14.4$, 7.6 Hz, 2H), 7.13 (d, $J = 7.6$ Hz, 2H), 2.27 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 145.2,
138.8, 138.5, 134.8, 133.1, 129.8, 127.7, 126.5, 125.5, 124.9, 124.4, 124.1, 120.7, 120.0, 115.4, 115.1, 21.6, HRMS (ESI) calcd for C_{19}H_{13}ClNO_{2}S [M+H]^+ 356.0507, found 356.0507.

White solid; yield: 82%; mp: 189-190 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.44 (d, \(J = 8.8\) Hz, 1H), 8.35 (d, \(J = 8.4\) Hz, 1H), 8.22 (d, \(J = 1.2\) Hz, 1H), 7.94 (d, \(J = 7.6\) Hz, 1H), 7.76 (dd, \(J = 8.8, 1.6\) Hz, 1H), 7.72 (d, \(J = 8.4\) Hz, 2H), 7.63 – 7.56 (m, 1H), 7.44 (t, \(J = 7.2\) Hz, 1H), 7.16 (d, \(J = 8.2\) Hz, 2H), 2.30 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 145.7, 140.4, 138.8, 134.6, 130.6, 130.0, 128.9, 126.7, 126.5, 124.6, 124.5, 120.4, 119.1, 115.7, 115.1, 107.3, 21.6, HRMS (ESI) calcd for C\(_{20}\)H\(_{15}\)N\(_2\)O\(_2\)S [M+H]^+ 347.0849, found 347.0853.

White solid; yield: 81%; mp: 134-135 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.33 (d, \(J = 8.4\) Hz, 2H), 7.90 – 7.87 (m, 2H), 7.82 – 7.77 (m, 2H), 7.48 (ddd, \(J = 8.4, 7.2, 1.2\) Hz, 2H), 7.45 – 7.39 (m, 1H), 7.35 (td, \(J = 7.6, 0.8\) Hz, 2H), 7.32 – 7.26 (m, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 138.4, 137.9, 133.8, 129.0, 127.5, 126.5, 126.4, 124.0, 120.0, 115.2, HRMS (ESI) calcd for C\(_{18}\)H\(_{14}\)NO\(_2\)S [M+H]^+ 308.0740, found 308.0741.

White solid; yield: 80%; mp: 152-153 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.31 (d, \(J = 8.4\) Hz, 2H), 7.90 (d, \(J = 7.2\) Hz, 2H), 7.84 – 7.76 (m, 2H), 7.49 (ddd, \(J = 8.8, 7.6, 1.2\) Hz, 2H), 7.40 – 7.33 (m, 2H), 6.96 (t, \(J = 8.4\) Hz, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 165.7 (d, \(J_{C,F} = 255.3\) Hz), 138.3, 133.8 (d, \(J_{C,F} = 3.0\) Hz), 129.3 (d, \(J_{C,F} = 9.6\) Hz), 127.6, 126.6, 124.2, 120.1, 116.4 (d, \(J_{C,F} = 22.7\) Hz), 115.2, HRMS (ESI) calcd for C\(_{18}\)H\(_{13}\)FNO\(_2\)S [M+H]^+ 326.0646, found 326.0651.

White solid; yield: 83%; mp: 135-136 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.30

514
(d, J = 8.4 Hz, 2H), 7.90 (d, J = 7.6 Hz, 2H), 7.74 – 7.69 (m, 2H), 7.53 – 7.46 (m, 2H), 7.41 – 7.34 (m, 2H), 7.29 – 7.21 (m, 2H); \[^{13}\text{C}\] NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 140.5, 138.2, 136.1, 129.4, 127.8, 127.6, 126.6, 124.3, 120.2, 115.2, HRMS (ESI) calcd for C\textsubscript{18}H\textsubscript{13}ClNO\textsubscript{2}S [M+H]\(^+\) 342.0350, found 326.0351.

White solid; yield: 81%; mp: 145-146 °C. \(^1\text{H}\) NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 8.30 (d, J = 8.4 Hz, 2H), 7.91 (d, J = 8.0 Hz, 2H), 7.67 – 7.60 (m, 1H), 7.49 (ddd, J = 8.4, 7.2, 1.2 Hz, 2H), 7.45 – 7.35 (m, 2H); \[^{13}\text{C}\] NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 138.2, 136.7, 132.4, 129.1, 127.9, 127.6, 126.6, 124.3, 120.2, 115.2, HRMS (ESI) calcd for C\textsubscript{18}H\textsubscript{13}BrNO\textsubscript{2}S [M+H]\(^+\) 385.9845, found 385.9839.

White solid; yield: 78%; mp: 184-185 °C. \(^1\text{H}\) NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 8.35 (d, J = 8.4 Hz, 2H), 7.91 (d, J = 7.6 Hz, 2H), 7.80 – 7.73 (m, 1H), 7.50 (ddd, J = 8.4, 7.2, 1.2 Hz, 2H), 7.39 – 7.30 (m, 4H), 1.19 (s, 9H); \[^{13}\text{C}\] NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 157.7, 138.4, 135.2, 127.4, 126.4, 126.3, 126.1, 123.8, 120.0, 115.0, 35.1, 30.9, HRMS (ESI) calcd for C\textsubscript{22}H\textsubscript{22}NO\textsubscript{2}S [M+H]\(^+\) 364.1366, found 364.1371.

White solid; yield: 72%; mp: 181-182 °C. \(^1\text{H}\) NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 8.29 (d, J = 8.4 Hz, 2H), 7.91 (d, J = 8.0 Hz, 2H), 7.83 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.4 Hz, 2H), 7.51 (t, J = 7.6 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H); \[^{13}\text{C}\] NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 141.3, 138.0, 132.8, 127.8, 127.0, 126.8, 124.8, 120.4, 117.5, 116.9, 115.2, HRMS (ESI) calcd for C\textsubscript{19}H\textsubscript{13}N\textsubscript{2}O\textsubscript{2}S [M+H]\(^+\) 333.0692, found 333.0637.

White solid; yield: 77%; mp: 175-176 °C. \(^1\text{H}\) NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 8.33 (d, J = 8.4 Hz, 2H), 7.89 (d, J = 8.0 Hz, 2H), 7.77 – 7.70 (m, 2H), 7.48 (ddd, J = 8.8, 7.6, 1.2 Hz, 2H), 7.39 – 7.31 (m, 2H), 6.75 – 6.65 (m, 2H), 3.67 (s, 3H); \[^{13}\text{C}\] NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 163.7, 138.4, 129.5, 128.7, 127.4, 126.4,
123.9, 120.0, 115.2, 114.2, 55.5, HRMS (ESI) calcd for C_{19}H_{16}NO_{3}S [M+H]^+ 338.0845, found 338.0842.

White solid; yield: 74%; mp: 157-158 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.32 (d, \(J = 8.4\) Hz, 2H), 7.92 (d, \(J = 7.6\) Hz, 2H), 7.58 (dd, \(J = 4.0, 1.2\) Hz, 1H), 7.54 – 7.48 (m, 2H), 7.45 – 7.36 (m, 3H), 6.88 (dd, \(J = 4.8, 4.0\) Hz, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 138.2, 137.3, 132.9, 132.5, 127.5, 127.3, 126.8, 124.4, 120.1, 115.5, HRMS (ESI) calcd for C_{16}H_{12}NO_{2}S \[M+H\]^+ 314.0304, found 314.0304.

White solid; yield: 60%; mp: 108-109 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.17 (d, \(J = 8.4\) Hz, 2H), 8.01 (d, \(J = 7.2\) Hz, 2H), 7.55 – 7.47 (m, 2H), 7.45 – 7.40 (m, 2H), 2.98 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 138.4, 127.6, 126.3, 124.2, 120.2, 114.7, 38.7, HRMS (ESI) calcd for C_{13}H_{11}NNaO_{2}S \[M+Na\]^+ 268.0403, found 268.0407.

White solid; yield: 65%; mp: 59-60 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.06 (d, \(J = 8.4\) Hz, 2H), 7.91 – 7.85 (m, 2H), 7.39 – 7.33 (m, 2H), 7.28 (td, \(J = 7.6, 0.8\) Hz, 2H), 2.48 – 2.41 (m, 1H), 1.24 – 1.18 (m, 2H), 0.74 – 0.67 (m, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 138.7, 127.4, 126.2, 123.8, 120.2, 114.8, 30.2, 5.2, HRMS (ESI) calcd for C_{13}H_{14}NO_{2}S \[M+H\]^+ 272.0740, found 272.0742.

3. Scale-up Synthesis and Further Transformations

Under nitrogen, to a round flask containing 2d, Pd(PPh\(_3\))\(_2\)Cl\(_2\) (5 mol%), and CuI (5 mol%) were added acetonitrile, piperidine (V/V = 2:1, 0.75 M) and phenylacetylene (1.1 eq). The reaction mixture was stirred and heated to reflux for 12 hours. After the reaction mixture was cooled down to room temperature, saturated
aqueous NH₄Cl was added to quench the reaction. The mixture was then extracted with ethyl acetate. All organic fractions were combined and washed with water and brine, dried over Na₂SO₄ and concentrated in vacuo. The resulting crude product was purified by flash column chromatography on silica gel to afford product 2d′.

Yellow solid; yield: 82%; mp: 72-73 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.32 (dd, J = 8.4, 4.0 Hz, 2H), 8.08 (d, J = 1.0 Hz, 1H), 7.90 (d, J = 7.2 Hz, 1H), 7.69 (d, J = 8.4 Hz, 2H), 7.66 (dd, J = 8.8, 1.6 Hz, 1H), 7.58 – 7.48 (m, 3H), 7.42 – 7.33 (m, 4H), 7.11 (d, J = 8.0 Hz, 2H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.1, 138.8, 137.9, 134.8, 131.6, 130.8, 129.8, 128.4, 128.3, 127.9, 126.6, 126.5, 125.8, 124.2, 123.3, 123.2, 120.2, 118.9, 115.2, 115.2, 89.3, 89.2, 21.5, HRMS (ESI) calcd for C₂₇H₁₉NNaO₂S [M+Na]⁺ 444.1029, found 444.1032.

4. NMR spectra

¹H NMR spectrum of 1a
\[^{13}C \text{ NMR spectrum of 1a} \]
1H NMR spectrum of 1b

13C NMR spectrum of 1b
1H NMR spectrum of 1c
13C NMR spectrum of 1c

1H NMR spectrum of 1d
13C NMR spectrum of 1d
1H NMR spectrum of 1e

13C NMR spectrum of 1e
1H NMR spectrum of 1f
13C NMR spectrum of 1f

1H NMR spectrum of 1g
13C NMR spectrum of 1g
^{1}H NMR spectrum of 1h

^{13}C NMR spectrum of 1h
1H NMR spectrum of 1i
13C NMR spectrum of 1i

1H NMR spectrum of 1j
13C NMR spectrum of 1j
1H NMR spectrum of 1k

13C NMR spectrum of 1k
H NMR spectrum of 11

\[\text{1H NMR spectrum of 11} \]
13C NMR spectrum of 1l

1H NMR spectrum of 1m
13C NMR spectrum of 1m
1H NMR spectrum of 1n

13C NMR spectrum of 1n
1H NMR spectrum of 1o
13C NMR spectrum of 1o

1H NMR spectrum of 1p
13C NMR spectrum of 1p
1H NMR spectrum of 1q

13C NMR spectrum of 1q
H NMR spectrum of 1r
13C NMR spectrum of 1r

1H NMR spectrum of 1s
13C NMR spectrum of 1s
1H NMR spectrum of 1t

13C NMR spectrum of 1s
^1H NMR spectrum of 1u
$^{13}\text{C} \text{ NMR spectrum of 1u}$

$^{1}\text{H} \text{ NMR spectrum of 1v}$
13C NMR spectrum of 1v
1H NMR spectrum of 2a

13C NMR spectrum of 2a
\[\text{1H NMR spectrum of 2b} \]
\(^{13}\text{C} \) NMR spectrum of 2b

\(^{1}\text{H} \) NMR spectrum of 2c
13C NMR spectrum of 2c
1H NMR spectrum of 2d

13C NMR spectrum of 2d
1H NMR spectrum of 2e
13C NMR spectrum of 2e

1H NMR spectrum of 2f
13C NMR spectrum of 2f
1H NMR spectrum of 2g

13C NMR spectrum of 2g
1H NMR spectrum of 2h
13C NMR spectrum of 2h

1H NMR spectrum of 2i
13C NMR spectrum of 2i
1H NMR spectrum of 2j

13C NMR spectrum of 2j
1H NMR spectrum of 2k
13C NMR spectrum of 2k

1H NMR spectrum of 2l
13C NMR spectrum of 2l
^{1}H NMR spectrum of $2m$

^{13}C NMR spectrum of $2m$
1H NMR spectrum of 2n
13C NMR spectrum of 2n

1H NMR spectrum of 2o
13C NMR spectrum of 2o
1H NMR spectrum of 2p

13C NMR spectrum of 2p
1H NMR spectrum of 2q
13C NMR spectrum of 2q

1H NMR spectrum of 2r
13C NMR spectrum of 2r
^{1}H NMR spectrum of 2s

^{13}C NMR spectrum of 2s
'H NMR spectrum of 2t
13C NMR spectrum of 2t

1H NMR spectrum of 2u
\[^{13}\text{C NMR spectrum of 2u} \]
^{1}H NMR spectrum of 2v

^{13}C NMR spectrum of 2v
1H NMR spectrum of 2d'}
$\text{13C NMR spectrum of 2d'}$
5. X-ray single crystal data for product

<table>
<thead>
<tr>
<th>Identification code</th>
<th>2s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{19}H_{15}NO_{3}S</td>
</tr>
<tr>
<td>Formula weight</td>
<td>337.38</td>
</tr>
<tr>
<td>Temperature</td>
<td>113(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>17.5290(4) Å</td>
</tr>
<tr>
<td>b</td>
<td>10.1840(2) Å</td>
</tr>
<tr>
<td>c</td>
<td>18.2727(4) Å</td>
</tr>
<tr>
<td>Volume</td>
<td>3214.79(13) Å³</td>
</tr>
<tr>
<td>Z, Calculated density</td>
<td>8, 1.394 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.218 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1408</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.20 x 0.18 x 0.12 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>3.53 to 35.68 deg.</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-28 <= h <= 27, -16 <= k <= 16, -28 <= l <= 29</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>49049 / 14126 [R(int) = 0.0435]</td>
</tr>
<tr>
<td>Completeness to theta = 27.90</td>
<td>94.9 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9743 and 0.9577</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>14126 / 0 / 435</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.019</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0532, wR2 = 0.1437</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0990, wR2 = 0.1653</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.261 and -0.306 e. Å^{-3}</td>
</tr>
</tbody>
</table>