

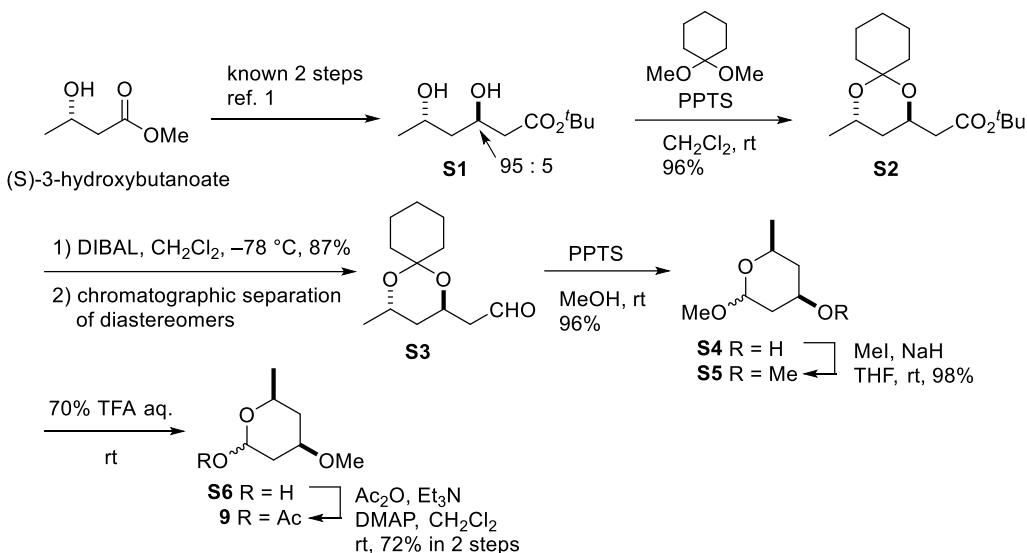
Electronic Supplementary Information

Development of a Novel Inducer of Protein–Protein Interactions Based on Aplyronine A

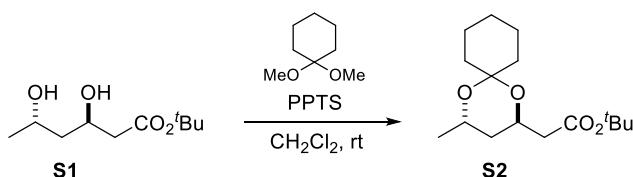
Takayuki Ohyoshi,¹ Atsuhiro Takano,¹ Mayu Namiki,¹ Tomotaka Ogura,¹ Yuto Miyazaki,¹ Yuta Ebihara,¹ Koichi Takeno,¹ Ichiro Hayakawa,^{2*} Hideo Kigoshi^{1*}

¹Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba,
1-1-1 Tennodai, Tsukuba 305-8571, Japan

²Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama
University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan

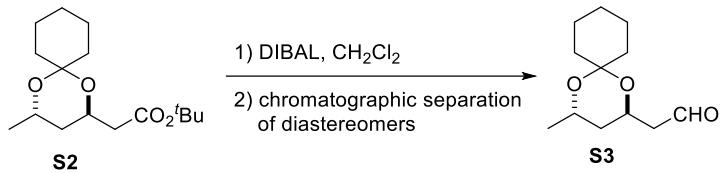

Experimental.

General: All moisture-sensitive reactions were performed under an atmosphere of argon or nitrogen, and the starting materials were azeotropically dried with benzene before use. Anhydrous MeOH, CH₂Cl₂, THF, toluene, DMSO, and pyridine were purchased from Kanto Chemical Co., Inc., or Wako Pure Chemical Industries Ltd., and used without further drying. TLC analyses were conducted on E. Merck precoated silica gel 60 F₂₅₄ (0.25 mm layer thickness). Fuji Silysia silica gel BW-820MH (75–200 μ m) and FL-60D (45–75 μ m) were used for column chromatography. Optical rotations were measured with a JASCO DIP-370 polarimeter. Infrared (IR) spectra were recorded on a JASCO FT/IR-4100 instrument and only selected peaks are reported in wavenumbers (cm⁻¹). ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE 600, a Bruker AVANCE 400, or a Bruker DPX 400 spectrometer. The ¹H and ¹³C chemical shifts (δ) were referenced with CDCl₃ (δ _H = 7.26 and δ _C = 77.0) respectively. *J* values are given in Hz. The following abbreviations are used for spin multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and br = broad. High resolution ESI/TOF mass spectra were recorded on a JEOL AccuTOFCS JMS-T100CS spectrometer.

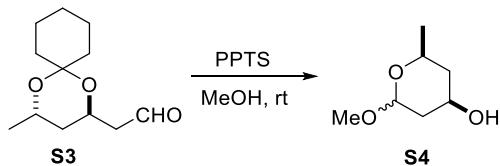

Procedures and spectroscopic data for the compounds

Synthesis of pyran segment 9

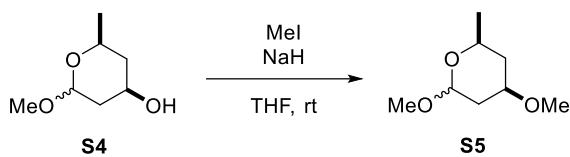
The known optically active diol **S1** was synthesized from commercially available (S)-3-hydroxybutanoate by Miyashita's method.¹ Diol **S1** contained the inseparable diastereomer at the newly generated secondary hydroxy group (*d.r.* = 95 : 5). For separation of the diastereomers, **S1** was transformed into cyclohexylidene acetal **S2**. Subsequent conversion of **S2** into aldehyde **S3** enabled the isolation of the desired diastereomer by silica gel chromatography. Under acidic condition, removal of cyclohexylidene acetal group and cyclization of resultant diol afforded methyl acetal **S4**, which was transformed into methyl ether **S5**. Hydrolysis of methyl acetal moiety in **S5** and acetylation of the resultant hemiacetal group in **S6** gave pyran segment **9**.



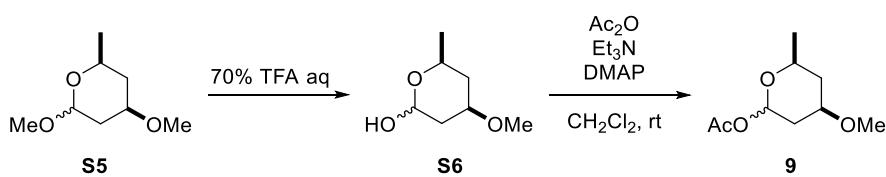
Scheme S1. Synthesis of pyran segment 9


To a stirred solution of diol **S1** (95:5 diastereomeric mixture, 1.11 g, 5.43 mmol) in CH_2Cl_2 (30 mL) were added 1,1-dimethoxycyclohexane (1.34 mL, 8.92 mmol) and PPTS (300 mg, 1.19 mmol) at

room temperature. After stirring for 18 h at room temperature, the mixture was diluted with saturated aqueous NaHCO_3 (30 mL) and extracted with CH_2Cl_2 (3×30 mL). The combined extracts were washed with brine (30 mL), dried over Na_2SO_4 , filtered, and concentrated. The crude product was purified by column chromatography on silica gel (44 g, hexane–EtOAc 10 : 1) to give cyclohexylidene acetal **S2** (95:5 diastereomeric mixture, 1.48 g, 96%) as a colorless oil: $R_f = 0.27$ (hexane : EtOAc = 8 : 1); $[\alpha]_D^{28} +7.0$ (c 1.11, CHCl_3); IR (CHCl_3) 2938, 1721, 1449, 1368, 1157 cm^{-1} ; major isomer: ^1H NMR (400 MHz, CDCl_3) δ 4.25 (dd, $J = 13.5, 8.4, 5.2, 5.2$ Hz, 1H), 3.99 (ddq, $J = 8.1, 6.3, 6.3$ Hz, 1H), 2.43 (dd, $J = 14.9, 8.4$ Hz, 1H), 2.34 (dd, $J = 14.9, 5.2$ Hz, 1H), 1.75–1.29 (m, 12H), 1.45 (s, 9H), 1.19 (d, $J = 6.3$ Hz, 3H); ^{13}C NMR (100 MHz, CDCl_3) δ 170.6, 100.4, 80.6, 63.5, 62.3, 42.6, 39.6, 34.6, 34.0, 28.3 (3C), 25.7, 23.2, 23.2, 21.9; HRMS (ESI) m/z 307.1895, calcd for $\text{C}_{16}\text{H}_{28}\text{NaO}_4$ $[\text{M}+\text{Na}]^+$ 307.1885.



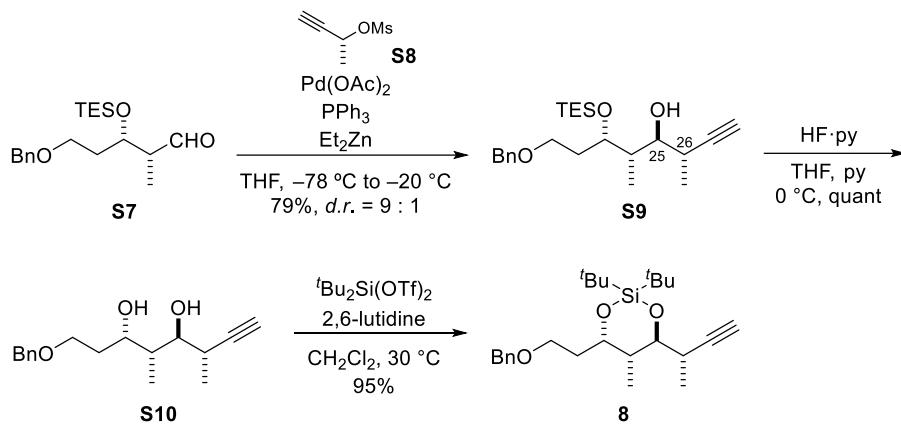
To a stirred solution of cyclohexylidene acetal **S2** (95:5 diastereomeric mixture, 1.72 g, 6.06 mmol) in CH_2Cl_2 (30 mL) was added DIBAL (1.06 M solution in hexane, 6.70 mL, 7.10 mmol) at -78°C . After stirring for 2 h at same temperature, the mixture was diluted with saturated aqueous Na/K tartrate (10 mL) and stirred at room temperature for 2 h. The resultant mixture was extracted with CH_2Cl_2 (3×10 mL). The extracts were combined, washed with brine (20 mL), dried over Na_2SO_4 , filtered, and concentrated. The crude product was purified by column chromatography on silica gel (30 g, hexane–EtOAc 5 : 1) to give a diastereomeric mixture of aldehyde (1.24 g, 96%). Diastereomers were separated by column chromatography on silica gel (20 g, CH_2Cl_2 –Et₂O 100 : 1) to give diastereomerically pure aldehyde **S3** (1.11 g, 87%) as a colorless oil: $R_f = 0.23$ (hexane : EtOAc = 8 : 1); $[\alpha]_D^{25} +18.0$ (c 0.423, CHCl_3); IR (CHCl_3) 3026, 3003, 2939, 2858, 1725, 1448, 1364, 1129 cm^{-1} ; ^1H NMR (400 MHz, CDCl_3) δ 9.78 (dd, $J = 2.5, 1.8$ Hz, 1H), 4.38 (dd, $J = 12.7$,


8.8, 4.4, 4.4 Hz, 1H), 4.01 (ddq, J = 6.3, 6.3, 6.3 Hz, 1H), 2.61 (ddd, J = 16.4, 8.8, 2.5 Hz, 1H), 2.48 (ddd, J = 16.4, 4.4, 1.8 Hz, 1H), 1.77–1.30 (m, 12H), 1.21 (d, J = 6.3 Hz, 3H); ^{13}C NMR (100 MHz, CDCl_3) δ 201.3, 100.6, 62.3, 61.9, 49.4, 39.8, 34.4, 34.0, 25.6, 23.2, 23.1, 21.8; HRMS (ESI) m/z 267.1558, calcd for $\text{C}_{13}\text{H}_{24}\text{NaO}_4$ [$\text{M}+\text{Na}+\text{MeOH}$] $^+$ 267.1572.

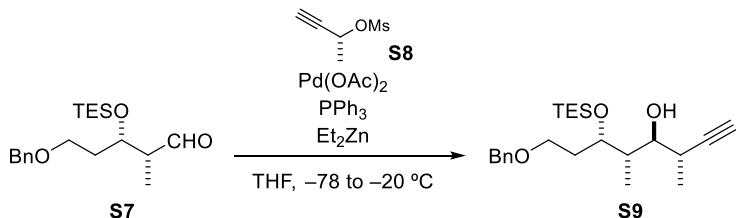
To a stirred solution of aldehyde **S3** (896 mg, 4.22 mmol) in MeOH (20 mL) was added PPTS (221 mg, 0.878 mmol) at room temperature. After stirring for 31 h at room temperature, the mixture was diluted with saturated aqueous NaHCO_3 (10 mL) and extracted with Et_2O (5×10 mL). The extracts were combined, washed with brine (20 mL), dried over Na_2SO_4 , filtered, and concentrated. The crude product was purified by column chromatography on silica gel (20 g, hexane– EtOAc 5 : 1) to give methyl acetal **S4** (594 mg, 96%) as a colorless oil: R_f = 0.15, 0.19 (hexane : EtOAc = 1 : 1); IR (CHCl_3) 3446, 3012, 1385, 1210, 1121 cm^{-1} ; ^1H NMR (400 MHz, CDCl_3) δ 4.84 (d, J = 3.4 Hz, 1H) [4.29 (dd, J = 9.6, 2.0 Hz, 1H)], 4.09 (m, 1H) [3.81 (m, 1H)], 3.84 (ddq, J = 12.6, 2.0, 6.3 Hz, 1H) [3.48 (ddq, J = 12.5, 2.0, 6.3 Hz, 1H)], 3.33 (s, 3H) [3.50 (s, 3H)], 2.07 (dddd, J = 12.6, 3.7, 2.0, 2.0 Hz, 1H) [2.17 (dddd, J = 12.0, 4.7, 2.0, 2.0 Hz, 1H)], 1.96 (dddd, J = 12.3, 4.6, 2.0, 2.0 Hz, 1H) [1.92 (dddd, J = 12.4, 4.8, 2.0, 2.0 Hz, 1H)], 1.65 (br. s, 1H) [1.61 (br. s, 1H)], 1.49 (ddd, J = 12.5, 12.3, 3.4 Hz, 1H) [1.33 (ddd, J = 12.4, 11.5, 9.6 Hz, 1H)], 1.23 (ddd, J = 12.6, 12.6, 11.8 Hz, 1H) [1.18 (ddd, J = 12.5, 12.0, 12.0 Hz, 1H)], 1.22 (d, J = 6.3 Hz, 3H) [1.28 (d, J = 6.3 Hz, 3H)] (the minor counterparts of doubled signals in the ratio of 1:0.67 are in brackets); ^{13}C NMR (100 MHz, CDCl_3) δ 99.2 [101.2], 64.0 [68.2], 63.7 [67.1], 54.5 [56.5], 42.6 [42.4], 39.1 [40.8], 21.4 [21.3] (the minor counterparts of doubled signals in the ratio of 1:0.67 are in brackets); HRMS (ESI) m/z 169.0770, calcd for $\text{C}_7\text{H}_{14}\text{O}_3$ [$\text{M}+\text{Na}$] $^+$ 169.0841.

To a stirred solution of methyl acetal **S4** (595 mg, 4.07 mmol) in THF (20 mL) was added 60% NaH (267 mg, 6.66 mmol) at room temperature. After 40 min at room temperature, MeI (700 μ L, 11.3 mmol) was added to the mixture, and the mixture was stirred at room temperature for 18 h. The resultant mixture was diluted with saturated aqueous NH₄Cl (20 mL) and extracted with Et₂O (3 \times 20 mL). The extracts were combined, washed with brine (40 mL), dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (20 g, pentane–Et₂O 4 : 1) to give methyl ether **S5** (637 mg, 98%) as a colorless oil: R_f = 0.45, 0.48 (hexane : EtOAc = 1 : 1); IR (CHCl₃) 3009, 2934, 1449, 1385, 1100 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.84 (d, *J* = 3.5 Hz, 1H) [4.29 (dd, *J* = 9.8, 2.1 Hz, 1H)], 3.82 (ddq, *J* = 12.6, 2.0, 6.3 Hz, 1H) [3.46 (ddq, *J* = 12.3, 2.0, 6.2 Hz, 1H)], 3.62 (dddd, *J* = 11.3, 11.3, 4.6, 4.6 Hz, 1H) [3.42–3.33 (m, 1H)], 3.33 (s, 3H) [3.50 (s, 3H)], 3.32 (s, 3H) [3.35 (s, 3H)], 2.13 (dddd, *J* = 12.7, 4.6, 2.0, 1.7 Hz, 1H) [2.23 (dddd, *J* = 12.0, 4.6, 2.0, 1.9 Hz, 1H)], 2.02 (dddd, *J* = 12.4, 4.6, 1.7, 1.7 Hz, 1H) [1.98 (dddd, *J* = 12.5, 4.6, 2.1, 1.9 Hz, 1H)], 1.43 (ddd, *J* = 12.4, 11.3, 3.5 Hz, 1H) [1.29 (ddd, *J* = 12.5, 11.2, 9.8 Hz, 1H)], 1.20 (d, *J* = 6.3 Hz, 3H) [1.29 (d, *J* = 6.2 Hz, 3H)], 1.15 (ddd, *J* = 12.7, 12.6, 11.3 Hz, 1H) [1.14 (ddd, *J* = 12.3, 12.0, 11.2 Hz, 1H)] (the minor counterparts of doubled signals in the ratio of 1:0.67 are in brackets); ¹³C NMR (100 MHz, CDCl₃) δ 99.4 [101.2], 72.6 [75.4], 64.0 [68.1], 55.5 [56.3], 54.7 [55.5], 39.4 [38.8], 36.0 [37.2], 21.6 [21.3] (the minor counterparts of doubled signals in the ratio of 1:0.67 are in brackets); HRMS (ESI) *m/z* 183.0987, calcd for C₈H₁₆O₃ [M+Na]⁺ 183.0997.

Methyl ether **S6** (941 mg, 5.87 mmol) was treated with 70% aqueous TFA (30 mL) at room temperature. After being stirred at room temperature for 2 h, the reaction mixture was diluted with


saturated aqueous NaHCO_3 (100 mL) at 0 °C and extracted with CHCl_3 (5×60 mL). The extracts were combined, washed with brine (50 mL), dried over Na_2SO_4 , and filtered. Removal of the solvent afforded crude hemiacetal **S6** (920 mg), which was used for the next reaction without further purification.

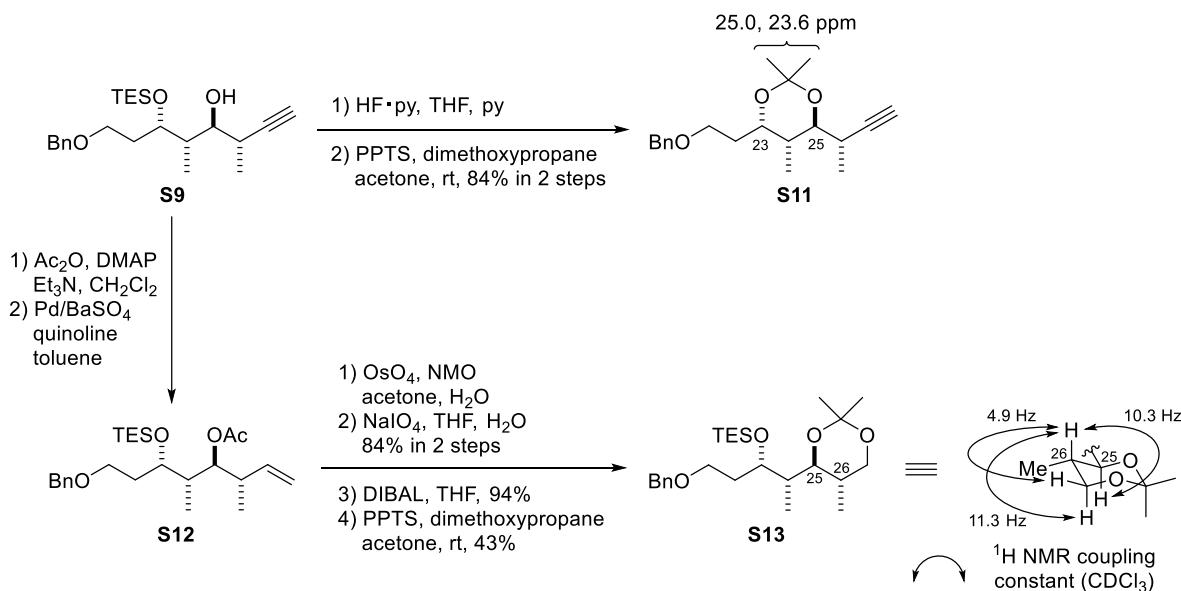
To a stirred solution of crude hemiacetal **S6** (920 mg) in CH_2Cl_2 (38 mL) were added Et_3N (5.20 mL, 37.3 mmol), Ac_2O (1.10 mL, 11.6 mmol), and DMAP (158 mg, 1.29 mmol) at room temperature. After stirring for 1 h at room temperature, the mixture was diluted with H_2O (20 mL) and extracted with CH_2Cl_2 (3×10 mL). The extracts were combined, washed with brine (10 mL), dried over Na_2SO_4 , filtered, and concentrated. The crude product was purified by column chromatography on silica gel (20 g, pentane– Et_2O 4 : 1) to give acetate **9** (789 mg, 72% in 2 steps) as a colorless oil: R_f = 0.39, 0.44 (hexane : EtOAc = 1 : 1); IR (CHCl_3) 3010, 1743, 1450, 1375, 1240, 970, 669 cm^{-1} ; ^1H NMR (400 MHz, CDCl_3) δ 6.26 (d, J = 3.0 Hz, 1H) [5.64 (dd, J = 10.2, 2.3 Hz, 1H)], 3.95 (ddq, J = 12.5, 2.2, 6.2 Hz, 1H) [3.60 (ddq, J = 11.4, 2.0, 6.2 Hz, 1H)], 3.63 (dddd, J = 11.2, 11.2, 4.5, 4.5 Hz, 1H) [3.43 (dddd, J = 11.2, 11.2, 4.5, 4.5 Hz, 1H)], 3.34 (s, 3H) [3.34 (s, 3H)], 2.14 (dddd, J = 13.2, 4.5, 2.2, 1.9 Hz, 1H) [2.25 (dddd, J = 11.9, 4.5, 2.0, 2.0 Hz, 1H)], 2.07 (m, 1H) [1.99 (dddd, J = 12.6, 4.5, 2.3, 2.0 Hz, 1H)], 2.06 (s, 3H) [2.10 (s, 3H)], 1.54 (ddd, J = 11.2, 10.2, 3.0 Hz, 1H) [1.39 (ddd, J = 12.6, 11.2, 10.2 Hz, 1H)], 1.22 (ddd, J = 13.2, 12.5, 11.2 Hz, 1H) [1.17 (ddd, J = 11.9, 11.4, 11.2 Hz, 1H)], 1.21 (d, J = 6.2 Hz, 3H) [1.29 (d, J = 6.2 Hz, 3H)] (the minor counterparts of doubled signals in the ratio of 1:0.82 are in brackets); ^{13}C NMR (100 MHz, CDCl_3) δ 169.5 [169.3], 93.0 [92.7], 71.9 [74.9], 66.7 [69.3], 55.3 [55.6], 38.8 [38.4], 34.7 [36.1], 21.5 [21.1], 21.2 [21.1] (the minor counterparts of doubled signals in the ratio of 1:0.82 are in brackets); HRMS (ESI) m/z 211.0929, calcd for $\text{C}_9\text{H}_{16}\text{NaO}_4$ $[\text{M}+\text{Na}]^+$ 211.0946.


Synthesis of acetylene segment 8

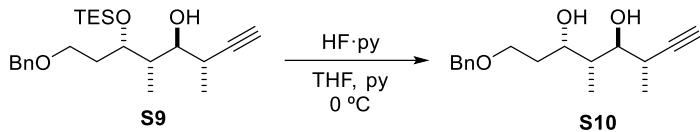
We examined the synthesis of acetylene segment **8** from known aldehyde **S7**,² which was the

intermediate in our first-generation total synthesis of aplyronine A (Scheme S2). For the stereoselective introduction of the secondary hydroxy group at C25 and the secondary methyl group at C26, we attempted Marshall's asymmetric propargylation.³ The addition of a chiral allenylzinc reagent, generated from **S8**, Pd(OAc)₂, PPh₃, and Et₂Zn, to aldehyde **S7** gave acetylene **S9**, which has the desired four contiguous stereogenic centers. Removal of the TES group gave diol **S10**, which was transformed into acetylene segment **8**.

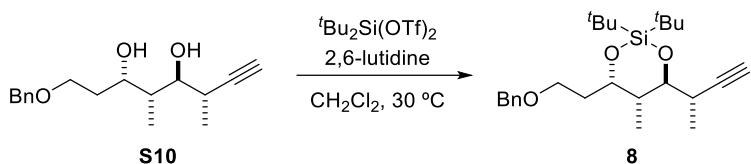
Scheme S2. Synthesis of acetylene segment **8**



To a stirred solution of Pd(OAc)₂ (30.0 mg, 0.134 mmol) in THF (4.0 mL) were added solutions of PPh₃ (183 mg, 0.523 mmol) in THF (2.0 mL), aldehyde **S7** (183 mg, 0.523 mmol) in THF (2.0 mL), and mesylate **S8** (160 mg, 1.08 mmol) in THF (2.0 mL) at -78 °C. Et₂Zn (1.1 M hexane solution, 1.50 mL, 1.60 mmol) was slowly added to the mixture at -78 °C. After stirring for 5 min at -78 °C, the reaction mixture was warmed to -20 °C and stirred for 15 h. The resultant mixture was diluted with saturated aqueous NH₄Cl (6.0 mL) and extracted Et₂O (3 × 6 mL). The extracts were combined, washed with brine (5.0 mL), dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (9.3 g, hexane-EtOAc 20 : 1) to afford acetylene

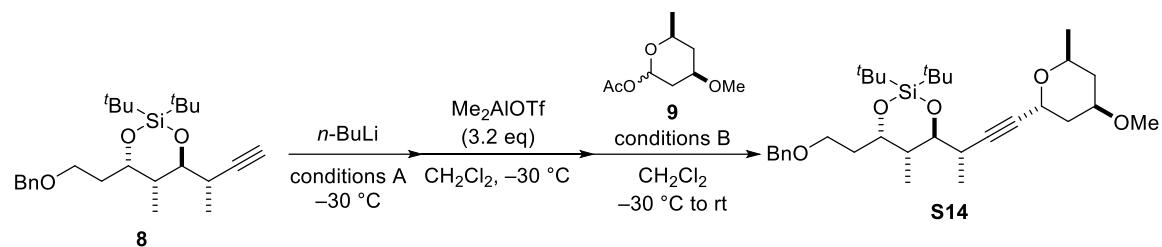

S9 (103 mg, 51%) and diastereomeric mixture of **S9** (57.3 mg, 28%, *d.r.* = 1 : 0.36) as yellow oils, respectively (total; 160 mg, 79%, *d.r.* = 91 : 1): R_f = 0.48 (hexane : EtOAc = 5 : 1); $[\alpha]_D^{26} -32.5$ (*c* 1.00, CHCl_3); IR (film) 3427, 3307, 3008, 2959, 2877, 2112, 1455, 1110, 1003 cm^{-1} ; ^1H NMR (600 MHz, CDCl_3) δ 7.36–7.27 (m, 5H), 4.52 (d, J = 11.8 Hz, 1H), 4.48 (d, J = 11.8 Hz, 1H), 4.36 (d, J = 2.2 Hz, 1H), 4.03 (dt, J = 8.9, 3.2 Hz, 1H), 3.59–3.53 (m, 2H), 3.48 (ddd, J = 9.9, 2.3, 2.2 Hz, 1H), 2.58 (ddq, J = 2.3, 2.3, 7.1 Hz, 1H), 2.11 (ddq, J = 9.9, 8.9, 7.0 Hz, 1H), 2.00 (d, J = 2.3 Hz, 1H), 1.89–1.80 (m, 2H), 1.30 (d, J = 7.1 Hz, 3H), 0.96 (t, J = 7.9 Hz, 9H), 0.81 (d, J = 7.0 Hz, 3H), 0.63 (q, J = 7.9 Hz, 6H); ^{13}C NMR (150 MHz, CDCl_3) δ 138.6, 128.5 (2C), 127.8 (2C), 127.7, 85.2, 76.1, 74.3, 73.1, 70.2, 67.3, 41.6, 31.9, 30.5, 17.8, 13.5, 7.0 (3C), 5.0 (3C); HRMS (ESI) *m/z* 413.2486, calcd for $\text{C}_{23}\text{H}_{38}\text{NaO}_3\text{Si}$ [M+Na]⁺ 413.2488.

Determination of the absolute configurations at C25 and C26 in **S9**

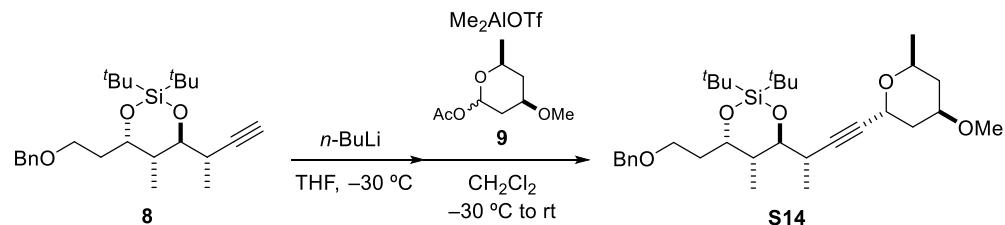

The stereochemistry of **S9** was determined as follows. Acetylene **S9** was converted into 1,3-acetonide **S11**. The relative stereochemistry of C23 and C25 in **S11** was determined to be anti by the ^{13}C chemical shifts of two acetonide methyl groups (δ_{C} 23.6, 25.0).² In addition, acetylene **S9** was converted into 1,3-acetonide **S13**, and the relative stereochemistry of C25 and C26 was determined to be anti by ^1H - ^1H coupling constants.

Determination of the absolute configurations at C25 and C26 in **S9**

A solution of acetylene **S9** (225 mg, 0.575 mmol) in a 1 : 3 : 5 mixture of HF·py, py, and THF (40 mL) was stirred at 0 °C for 3 h. The reaction mixture poured into saturated aqueous NaHCO₃ (500 mL) at 0 °C, and extracted with EtOAc (3 × 100 mL). The combined extracts were washed with brine (50 mL), dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (3.8 g, hexane–EtOAc 5 : 1 → 2 : 1) to afford diol **S10** (158 mg, quant.) as a colorless oil: R_f = 0.28 (hexane : EtOAc = 1 : 1); $[\alpha]_D^{26}$ 1.44 (c 1.00, CHCl₃); IR (CHCl₃) 3452, 3306, 3010, 2875, 2109, 1454, 1099, 984, 699, 641 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.33–7.28 (m, 5H), 4.53 (s, 2H), 4.16 (m, 1H), 3.76 (ddd, J = 9.2, 4.8, 4.8 Hz, 1H), 3.67 (ddd, J = 9.2, 9.2, 4.0 Hz, 1H), 3.53 (br. s, 1H), 3.47 (m, 1H), 3.43 (br. s, 1H), 2.63 (ddq, J = 2.4, 2.4, 7.1 Hz, 1H), 2.10 (d, J = 2.4 Hz, 1H), 2.00–1.92 (m, 2H), 1.63 (dddd, J = 8.9, 4.8, 4.0, 2.2 Hz, 1H), 1.28 (d, J = 7.1 Hz, 3H), 0.89 (d, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 138.0, 128.6 (2C), 128.0, 127.8 (2C), 85.1, 76.7, 73.6 (2C), 70.7, 70.0, 40.9, 32.7, 30.6, 18.0, 12.0; HRMS (ESI) *m/z* 299.1602, calcd for C₁₇H₂₄NaO₃ [M+Na]⁺ 299.1623.


To a stirred solution of diol **S10** (21.3 mg, 77.1 μ mol) in CH₂Cl₂ (0.40 mL) were added 2,6-lutidine (40.0 μ L, 345 μ mol) and ^tBu₂Si(OTf)₂ (50.0 μ L, 154 μ mol) at room temperature. After stirring for 2 h at 30 °C, the reaction mixture was diluted with saturated aqueous NaHCO₃ (1.0 mL) and extracted with EtOAc (2 × 1.0 mL). The extracts were combined, washed with brine (1.0 mL), dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography on

silica gel (0.8 g, hexane–EtOAc 8 : 1 → 1 : 1) to afford acetylene segment **8** (30.5 mg, 95%) as a colorless oil: R_f = 0.65 (hexane : EtOAc = 5 : 1); IR (CHCl₃) 3306, 2964, 2934, 2859, 2109, 1474, 1363, 1149, 1065, 826, 647 cm⁻¹; [α]_D²⁵ -62.8 (*c* 1.00, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.36–7.27 (m, 5H), 4.55 (s, 2H), 4.16 (ddd, *J* = 11.0, 5.5, 3.0 Hz, 1H), 3.76–3.68 (m, 2H), 3.67 (dd, *J* = 9.8, 2.4 Hz, 1H), 2.57 (ddq, *J* = 2.4, 2.4, 7.0 Hz, 1H), 2.49 (ddq, *J* = 9.8, 5.5, 7.1 Hz, 1H), 2.00 (d, *J* = 2.5 Hz, 1H), 1.83–1.73 (m, 2H), 1.28 (d, *J* = 7.0 Hz, 3H), 1.04 (s, 9H), 0.94 (s, 9H), 0.80 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 138.8, 128.5 (2C), 127.8 (2C), 127.6, 85.4, 75.3, 73.9, 73.3, 69.8, 68.1, 39.8, 31.3, 30.5, 27.7 (3C), 27.3 (3C), 21.6, 21.0, 17.6, 13.3; HRMS (ESI) *m/z* 439.2665, calcd for C₂₅H₄₀NaO₃Si [M+Na]⁺ 439.2644.

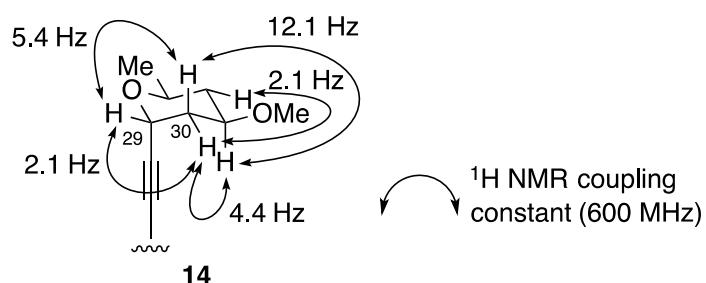

Study of coupling reaction between **8** and **9**

The coupling reaction between **8** and **9** was next examined based on the conditions reported by Miyashita¹ (Table 1). The coupling reaction using an excess of the pyran segment **9** gave the adduct **S14** in 27% yield (entry 1). Under these reaction conditions, unused acetylene segment **8** was recovered in quantitative yield but **9** was not detected. Therefore, we next examined this coupling reaction using an excess of acetylene segment **8**, resulting in an improved yield of 55% (entry 2). Next, we changed the solvent for the preparation of the Li-acetylide from **8**. The Li-acetylide was generated *in situ* from **8** in THF, and participated in the coupling reaction with Me₂AlOTf and **9** to provide the coupling compound **S14** in 66% yield (entry 3). Finally, use of the minimum amount of solvent improved the yield of **S14** (entry 4). The stereochemistry of **S14** was determined by ¹H NMR spectrum.

Table 1 Coupling reaction between acetylene segment **8** and pyran segment **9**

entry	conditions A			conditions B		yield (%)
	8 (equiv)	<i>n</i> -BuLi (equiv)	solvent	9 (equiv)	conc (M)	
1	1.0	1.0	CH ₂ Cl ₂	1.4	0.1	27
2	1.4	1.4	CH ₂ Cl ₂	1.0	0.1	55
3	1.4	1.4	THF	1.0	0.1	66
4	1.4	1.4	THF	1.0	0.3	80

(Preparation of Me₂AlOTf)²


To a stirred solution of Me₃Al (1.4 M solution in hexane, 1.72 mL, 2.41 mmol) in CH₂Cl₂ (0.5 mL) was added TfOH (220 µL, 2.49 mmol) in 0 °C. The resultant mixture was stirred at 0 °C for 30 min to afford 1.0 M Me₂AlOTf solution.

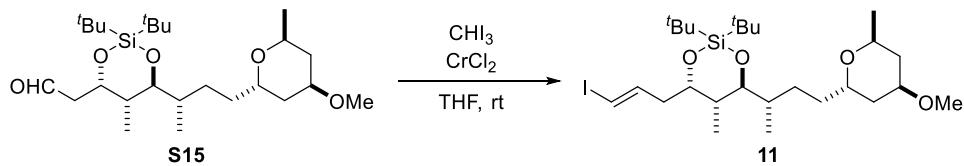
To a stirred solution of acetylene segment **8** (372 mg, 0.892 mmol) in THF (0.46 mL) was added *n*-BuLi (1.6 M hexane solution, 610 µL, 0.976 mmol) at -30 °C. After stirring for 2 h at -30 °C, the above-mentioned 1.0 M Me₂AlOTf solution (2.03 mL, 2.03 mmol) was added to the reaction mixture at -30 °C. After solution of pyran segment **9** (120 mg, 0.637 mmol) in CH₂Cl₂ (0.50 mL) was added, the reaction mixture was stirred at -30 °C for 30 min. The resultant mixture was warmed to room temperature and stirred for 30 min. The reaction mixture was diluted with saturated aqueous Na/K

tartrate (5.0 mL) and saturated aqueous NaHCO_3 (5.0 mL) and extracted with CH_2Cl_2 (3×10 mL). The extracts were combined, washed with brine (5.0 mL), dried over Na_2SO_4 , filtered, and concentrated. The crude product was purified by column chromatography on silica gel (10 g, hexane–EtOAc 24 : 1 → 14 : 1) to afford coupling compound **S14** (280 mg, 80%) and recovered acetylene segment **8** (126 mg, 34%) as colorless oils, respectively: $R_f = 0.38$ (hexane : EtOAc = 1 : 1); $[\alpha]_D^{26} = -66.6$ (*c* 1.00, CHCl_3); IR (CHCl_3) 2971, 2933, 2860, 1473, 1063 cm^{-1} ; ^1H NMR (600 MHz, CDCl_3) δ 7.36–7.26 (m, 5H), 4.84 (ddd, $J = 5.4, 2.2, 2.1$ Hz, 1H), 4.55 (s, 2H), 4.17 (ddd, $J = 11.2, 5.6, 2.7$ Hz, 1H), 4.00 (ddq, $J = 12.1, 2.0, 6.2$ Hz, 1H), 3.75–3.70 (m, 2H), 3.68 (dd, $J = 9.8, 2.4$ Hz, 1H), 3.64 (dddd, $J = 12.1, 12.1, 4.4, 4.4$ Hz, 1H), 3.33 (s, 3H), 2.62 (ddq, $J = 2.4, 2.2, 7.0$ Hz, 1H), 2.43 (ddq, $J = 9.8, 5.6, 7.1$ Hz, 1H), 2.06 (dddd, $J = 12.1, 4.4, 2.1, 2.1$ Hz, 1H), 2.00 (dddd, $J = 12.4, 4.4, 2.1, 2.0$ Hz, 1H), 1.82–1.72 (m, 2H), 1.56 (ddd, $J = 12.1, 12.1, 5.4$ Hz, 1H), 1.27 (d, $J = 7.0$ Hz, 3H), 1.20 (d, $J = 6.2$ Hz, 3H), 1.10 (ddd, $J = 12.4, 12.1, 12.1$ Hz, 1H), 1.03 (s, 9H), 0.93 (s, 9H), 0.81 (d, $J = 7.1$ Hz, 3H); ^{13}C NMR (150 MHz, CDCl_3) δ 138.8, 128.5 (2C), 127.8 (2C), 127.6, 87.8, 79.8, 75.1, 73.8 (2C), 73.3, 68.0, 66.8, 64.8, 55.5, 40.2, 39.8, 36.5, 31.4, 30.7, 27.6 (3C), 27.3 (3C), 21.9, 21.6, 20.9, 17.7, 13.2; HRMS (ESI) m/z 567.3491, calcd for $\text{C}_{32}\text{H}_{52}\text{NaO}_4\text{Si}$ [M+Na] $^+$ 567.3482.

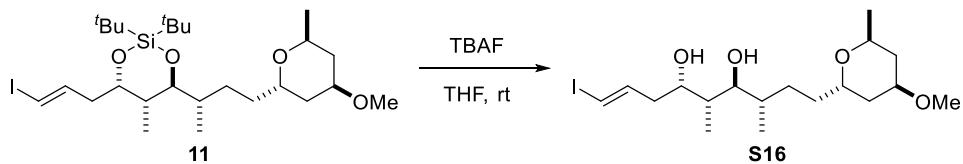
Determination of the absolute configuration at C29 in coupling compound **S14**

Configuration at C29 in coupling compound **S14** was determined by ^1H - ^1H coupling constants.

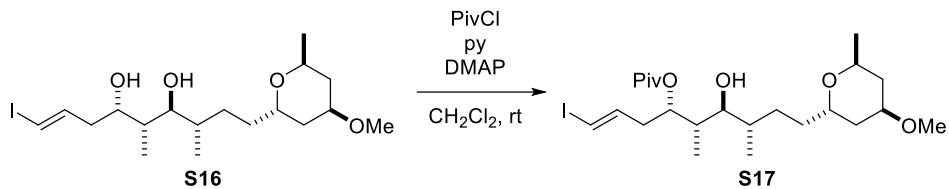
Determination of the absolute configuration at C29 in **S14**



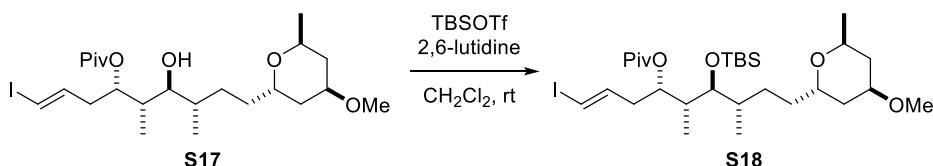
A mixture of coupling compound **S14** (179 mg, 0.329 mmol) and 20% Pd(OH)₂/C (wetted with ca. 50% water, 20.5 mg) in EtOAc (4.0 mL) was stirred under hydrogen atmosphere at room temperature for 4 h. The mixture was filtered through a pad of Celite, and the residue was washed with EtOAc. The filtrate and the washings were combined and concentrated. The residual oil was purified by column chromatography on silica gel (3.5 g, hexane–EtOAc 10 : 1 → 5 : 1) to afford alcohol **10** (134 mg, 89%) as a colorless oil: R_f = 0.20 (hexane : EtOAc = 2 : 1); $[\alpha]_D^{25}$ −78.0 (*c* 1.00, CHCl₃); IR (CHCl₃) 3471, 2963, 2935, 2860, 1474, 1383, 1064, 825, 648 cm^{−1}; ¹H NMR (600 MHz, CDCl₃) δ 4.26 (ddd, *J* = 11.4, 5.5, 1.8 Hz, 1H), 4.01 (m, 1H), 3.93–3.84 (m, 2H), 3.75 (dd, *J* = 9.2, 2.3 Hz, 1H), 3.69 (ddq, *J* = 10.2, 2.2, 6.2 Hz, 1H), 3.53 (dddd, *J* = 10.3, 10.3, 4.3, 4.3 Hz, 1H), 3.34 (s, 3H), 2.59 (br. s, 1H), 2.26 (m, 1H), 1.98 (dddd, *J* = 12.3, 4.3, 2.2, 2.2 Hz, 1H), 1.91–1.82 (m, 2H), 1.81 (dddd, *J* = 12.3, 4.3, 2.2, 2.2 Hz, 1H), 1.62–1.57 (m, 3H), 1.44–1.29 (m, 2H), 1.23 (m, 1H), 1.19 (d, *J* = 6.2 Hz, 3H), 1.17 (ddd, *J* = 12.3, 10.3, 10.2 Hz, 1H), 1.01 (s, 9H), 1.00 (s, 9H), 1.00 (d, *J* = 6.8 Hz, 3H), 0.77 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 77.9, 77.5, 73.5, 71.6, 64.7, 62.3, 55.4, 38.9, 38.9, 35.1, 34.9, 32.8, 29.2, 27.8 (3C), 27.5 (3C), 24.1, 21.9, 21.8, 21.1, 16.9, 13.5; HRMS (ESI) *m/z* 481.3348, calcd for C₂₅H₅₀NaO₅Si [M+Na]⁺ 481.3325.


To a stirred solution of alcohol **10** (198 mg, 0.434 mmol) in CH₂Cl₂ (2.2 mL) were added pyridine (120 μ L, 1.49 mmol) and Dess–Martin periodinane (200 mg, 0.472 mmol) at 0 °C. After stirring for 20 min at room temperature, the mixture was diluted with saturated aqueous Na₂S₂O₃ (5.0 mL), saturated aqueous NaHCO₃ (5.0 mL), and H₂O (5.0 mL). The resultant mixture was extracted with

Et_2O (3×5.0 mL). The extracts were combined, washed with brine (1.0 mL), dried over Na_2SO_4 , filtered, and concentrated. The crude product was purified by column chromatography on silica gel (24.7 g, hexane–EtOAc 20 : 1 → 19 : 1 → 5 : 1) to afford aldehyde **S15** (167 mg, 85%) as a colorless oil: $R_f = 0.53$ (hexane : EtOAc = 2 : 1); $[\alpha]_D^{24} -71.9$ (c 1.00, CHCl_3); IR (CHCl_3) 2963, 2934, 2860, 1726, 1473, 1384, 1128, 1021, 825, 669 cm^{-1} ; ^1H NMR (600 MHz, CDCl_3) δ 9.84 (dd, $J = 4.0, 1.4$ Hz, 1H), 4.69 (ddd, $J = 11.2, 5.6, 3.2$ Hz, 1H), 4.03–3.99 (m, 1H), 3.73 (dd, $J = 9.7, 1.9$ Hz, 1H), 3.69 (ddq, $J = 10.1, 2.0, 6.3$ Hz, 1H), 3.54 (dddd, $J = 10.1, 10.1, 4.2, 4.2$ Hz, 1H), 3.34 (s, 3H), 2.65 (ddd, $J = 15.2, 11.2, 4.0$ Hz, 1H), 2.39 (ddd, $J = 15.2, 3.2, 1.4$ Hz, 1H), 2.36 (ddq, $J = 9.7, 5.6, 7.1$ Hz, 1H), 1.98 (dddd, $J = 12.5, 4.2, 2.0, 2.0$ Hz, 1H), 1.90 (m, 1H), 1.81 (dddd, $J = 12.9, 4.2, 2.0, 2.0$ Hz, 1H), 1.67–1.58 (m, 2H), 1.43–1.32 (m, 2H), 1.23 (m, 1H), 1.20 (d, $J = 6.3$ Hz, 3H), 1.18 (ddd, $J = 12.5, 10.1, 10.1$ Hz, 1H), 1.01 (d, $J = 6.8$ Hz, 3H), 1.00 (s, 9H), 0.97 (s, 9H), 0.74 (d, $J = 7.1$ Hz, 3H); ^{13}C NMR (150 MHz, CDCl_3) δ 202.6, 77.2, 73.5, 73.1, 71.4, 64.8, 55.4, 45.8, 38.8, 38.3, 35.2, 34.4, 29.1, 27.6 (3C), 27.3 (3C), 23.7, 21.9, 21.8, 20.9, 16.9, 13.2; HRMS (ESI) m/z 479.3172, calcd for $\text{C}_{25}\text{H}_{48}\text{NaO}_5\text{Si}$ $[\text{M}+\text{Na}]^+$ 479.3169.

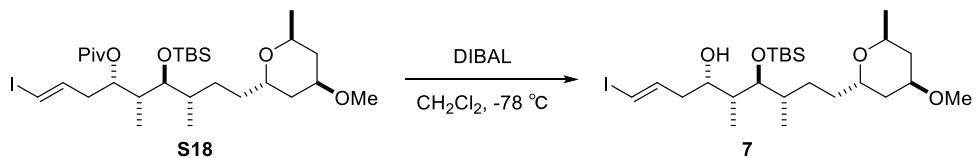

THF was degassed by freeze-thawing. To a stirred solution of aldehyde **S15** (167 mg, 0.366 mmol) in THF (6.8 mL) were added CrCl_2 (460 mg, 3.74 mmol) and CHI_3 (288 mg, 0.731 mmol) at room temperature in a glove box. After stirring for 2 h at room temperature in a glove box, the resultant mixture was diluted with saturated aqueous NaHCO_3 (5.0 mL) and extracted with Et_2O (3×5.0 mL). The extracts were combined, washed with brine (1.0 mL), dried over Na_2SO_4 , filtered, and concentrated. The crude product was purified by column chromatography on silica gel (42.0 g, hexane–EtOAc 50 : 1 → 0 : 1) to afford iodoolefin **11** (179 mg, 85%, $E/Z = 5.5 : 1$) as a colorless solid: $R_f = 0.18$ (hexane : EtOAc = 2 : 1); m.p. 104–106 $^{\circ}\text{C}$; $[\alpha]_D^{25} -97.5$ (c 1.00, CHCl_3); IR (CHCl_3)

2934, 2859, 2736, 1474, 1384, 1125, 1065, 825, 669 cm^{-1} ; ^1H NMR (600 MHz, CDCl_3) δ 6.70 (ddd, J = 14.5, 7.6, 6.5 Hz, 1H), 6.08 (ddd, J = 14.5, 1.2, 1.2 Hz, 1H), 4.05 (ddd, J = 11.0, 5.3, 2.8 Hz, 1H), 4.01 (m, 1H), 3.72 (dd, J = 9.6, 2.1 Hz, 1H), 3.68 (ddq, J = 10.2, 2.1, 6.3 Hz, 1H), 3.54 (dddd, J = 10.2, 10.2, 4.2, 4.2 Hz, 1H), 3.34 (s, 3H), 2.31 (dddd, J = 14.5, 11.0, 6.5, 1.2 Hz, 1H), 2.26 (ddq, J = 9.6, 5.3, 7.1 Hz, 1H), 2.17 (dddd, J = 14.5, 7.6, 2.8, 1.2 Hz, 1H), 1.98 (dddd, J = 12.5, 4.2, 2.1, 2.1 Hz, 1H), 1.89 (m, 1H), 1.81 (dddd, J = 12.8, 4.2, 2.1, 2.1 Hz, 1H), 1.62–1.57 (m, 2H), 1.42–1.30 (m, 2H), 1.24 (m, 1H), 1.19 (d, J = 6.3 Hz, 3H), 1.17 (ddd, J = 12.5, 10.2, 10.2 Hz, 1H), 1.00 (s, 9H), 0.99 (d, J = 6.5 Hz, 3H), 0.99 (s, 9H), 0.75 (d, J = 7.1 Hz, 3H); ^{13}C NMR (150 MHz, CDCl_3) δ 144.6, 77.5, 76.0, 75.8, 73.5, 71.5, 64.7, 55.4, 38.9, 38.7, 38.0, 35.1, 34.6, 29.1, 27.7 (3C), 27.4 (3C), 23.9, 21.9, 21.8, 21.0, 16.9, 13.3; HRMS (ESI) m/z 603.2345, calcd for $\text{C}_{26}\text{H}_{49}\text{InaO}_4\text{Si} [\text{M}+\text{Na}]^+$ 603.2342.

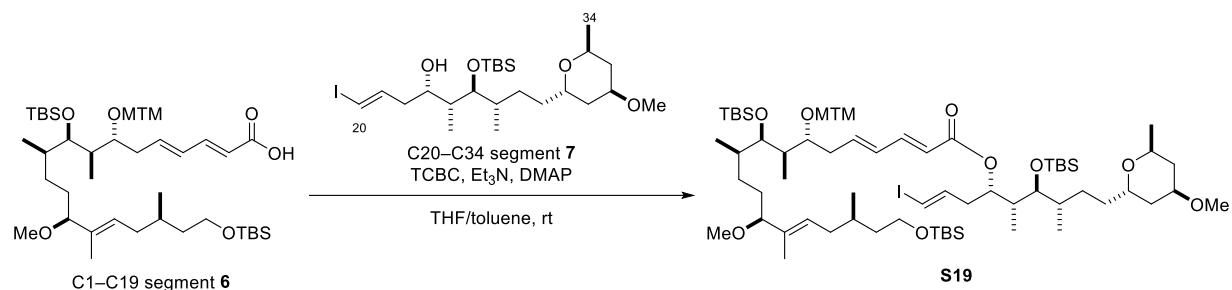


To a stirred solution of iodoolefin **11** (166 mg, 0.286 mmol) in THF (1.7 mL) was added TBAF (1.0 M solution in THF, 170 μL , 1.70 mmol) at room temperature. After stirring for 1.5 d at room temperature, the reaction mixture was diluted with water and extracted with EtOAc (4×3.0 mL). The extracts were combined, washed with brine (5.0 mL), dried over Na_2SO_4 , filtered, and concentrated. The crude product was purified by column chromatography on silica gel (5.0 g, hexane–EtOAc 4 : 1 \rightarrow 3 : 1 \rightarrow 1 : 1) to afford diol **S16** (125 mg, 99%) as a colorless oil: R_f = 0.22 (hexane : EtOAc = 1 : 1); $[\alpha]_D^{22}$ = -14.9 (c 1.08, CHCl_3); ^1H NMR (600 MHz, CDCl_3) δ 6.55 (ddd, J = 14.4, 7.4, 7.0 Hz, 1H), 6.13 (d, J = 14.4 Hz, 1H), 4.05–3.96 (m, 2H), 3.72 (dddd, J = 12.5, 9.3, 6.2, 3.0 Hz, 1H), 3.53 (ddq, J = 8.8, 3.9, 6.3 Hz, 1H), 3.33 (s, 3H), 3.35 (m, 1H), 2.97 (br. s, 1H), 2.31 (ddd, J = 14.2, 7.5, 7.4 Hz, 1H), 2.13 (ddd, J = 14.2, 7.0, 6.7 Hz, 1H), 1.96 (m, 1H), 1.89–1.74 (m, 3H), 1.70 (m, 1H), 1.66–1.56 (m, 2H), 1.21 (d, J = 6.3 Hz, 3H), 1.34–1.18 (m, 2H), 0.97 (d, J = 7.1 Hz, 3H), 0.87 (d, J = 6.7 Hz, 3H), 0.98–0.85 (m, 1H). A signal due to a proton (OH) was not observed.; ^{13}C NMR (150 MHz, CDCl_3) δ 143.2, 80.4, 76.9, 73.2, 71.3, 70.6, 65.0, 55.3, 40.9, 38.1, 37.3, 35.3, 34.9, 29.0, 27.7, 21.6,

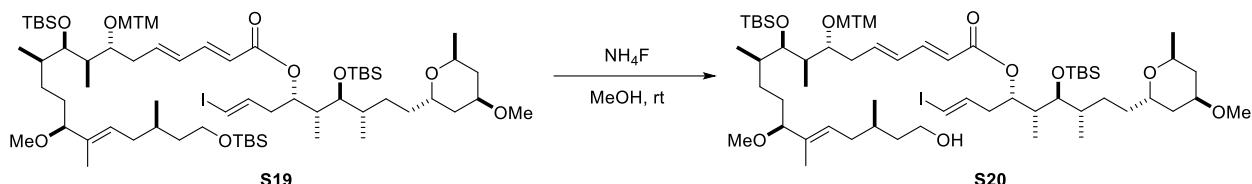
16.5, 11.4; HRMS (ESI) m/z 463.1326, calcd for $C_{18}H_{33}NaIO_4$ $[M+Na]^+$ 463.1321.



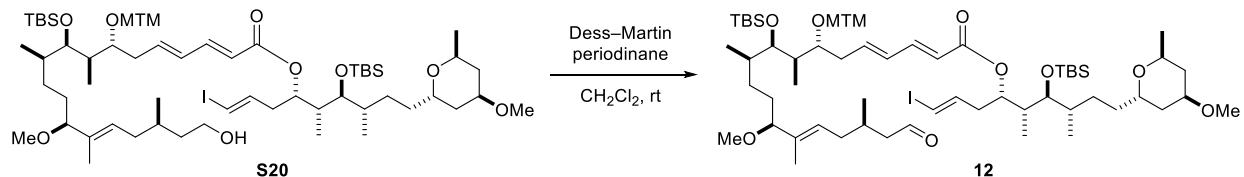
To a stirred solution of diol **S16** (22.7 mg, 51.5 μ mol) in CH_2Cl_2 (0.50 mL) and pyridine (0.25 mL) were added PivCl (12.7 μ L, 103 μ mol) and DMAP (3.1 mg, 25.8 μ mol) at room temperature. After stirring for 5 h at room temperature, the reaction mixture was diluted with water and extracted with CH_2Cl_2 (3×2.0 mL). The extracts were combined, washed with brine (3.0 mL), dried over Na_2SO_4 , filtered, and concentrated. The crude product was purified by column chromatography on silica gel (0.7 g, hexane–EtOAc 6 : 1 \rightarrow 4 : 1) to afford pivalate **S17** (27.0 mg, quant.) as a colorless oil: R_f = 0.78 (hexane : EtOAc = 3 : 1); $[\alpha]_D^{25} -8.5$ (c 0.95, $CHCl_3$); 1H NMR (600 MHz, $CDCl_3$) δ 6.41 (ddd, J = 14.4, 7.7, 6.4 Hz, 1H), 6.12 (d, J = 14.4 Hz, 1H), 5.30 (ddd, J = 7.4, 4.2, 1.5 Hz, 1H), 3.99 (m, 1H), 3.68 (dddd, J = 12.8, 9.4, 6.3, 3.0 Hz, 1H), 3.53 (ddq, J = 9.8, 4.7, 6.2 Hz, 1H), 3.33 (s, 3H), 3.04 (br. s, 1H), 2.95 (dd, J = 9.5, 2.3 Hz, 1H), 2.48 (ddd, J = 15.2, 7.7, 7.4 Hz, 1H), 2.21 (dddd, J = 15.2, 6.4, 4.4, 1.5 Hz, 1H), 1.97 (m, 1H), 1.88 (m, 1H), 1.80 (dddd, J = 12.8, 4.0, 2.0, 1.8 Hz, 1H), 1.75 (dddd, J = 16.2, 7.1, 6.7, 1.8 Hz, 1H), 1.66 (m, 1H), 1.59 (ddd, J = 12.8, 10.4, 5.4 Hz, 1H), 1.39 (ddd, J = 12.8, 6.7, 3.1 Hz, 1H), 1.22 (d, J = 6.2 Hz, 3H), 1.20 (s, 9H), 1.32–1.13 (m, 3H), 0.98 (d, J = 6.8 Hz, 3H), 0.85 (d, J = 6.9 Hz, 3H); ^{13}C NMR (150 MHz, $CDCl_3$) δ 179.6, 141.7, 77.6, 76.5, 73.3, 71.6, 71.4, 64.6, 55.3, 40.0, 39.4, 39.1, 38.6, 34.9, 33.3, 29.2, 27.3 (3C), 24.2, 21.8, 17.7, 9.7; HRMS (ESI) m/z 547.1868, calcd for $C_{23}H_{41}NaIO_5$ $[M+Na]^+$ 547.1896.


To a stirred solution of pivalate **S17** (145 mg, 0.276 mmol) in CH_2Cl_2 (2.5 mL) were added 2,6-lutidine (130 μ L, 1.11 mmol) and TBSOTf (0.13 mL, 0.55 mmol) at room temperature. After stirring

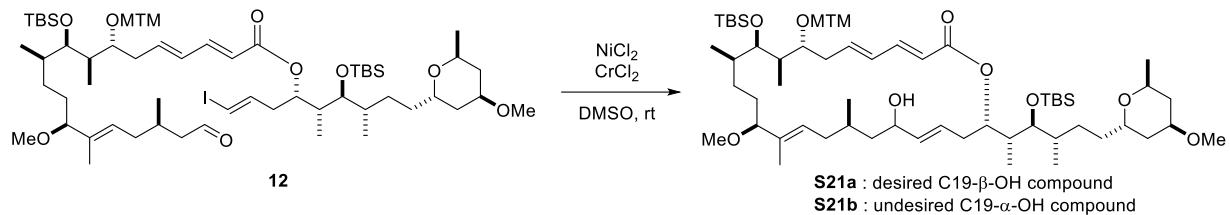
for 2 h at room temperature, the reaction mixture was diluted with water and extracted with CH_2Cl_2 (3×3.0 mL). The extracts were combined, washed with brine (5.0 mL), dried over Na_2SO_4 , filtered, and concentrated. The crude product was purified by column chromatography on silica gel (4.4 g, hexane–EtOAc 12 : 1 → 9 : 1) to afford TBS ether **S18** (172 mg, 97%) as a colorless oil: $R_f = 0.67$ (hexane : EtOAc = 3 : 1); $[\alpha]_D^{29} -20.7$ (*c* 2.11, CHCl_3); ^1H NMR (600 MHz, CDCl_3) δ 6.41 (ddd, *J* = 14.5, 7.4, 7.4 Hz, 1H), 6.06 (ddd, *J* = 14.5, 1.0, 1.0 Hz, 1H), 5.02 (ddd, *J* = 6.4, 6.4, 4.2 Hz, 1H), 3.96 (dddd, *J* = 9.6, 4.8, 4.8, 2.6 Hz, 1H), 3.66 (dddd, *J* = 13.0, 9.6, 6.4, 3.0 Hz, 1H), 3.51 (ddq, *J* = 9.8, 4.7, 6.1 Hz, 1H), 3.39 (dd, *J* = 6.7, 2.4 Hz, 1H), 3.33 (s, 3H), 2.33 (ddd, *J* = 7.4, 6.4, 1.0 Hz, 2H), 1.97 (m, 1H), 1.86–1.76 (m, 3H), 1.65–1.53 (m, 2H), 1.42 (m, 1H), 1.27–1.13 (m, 3H), 1.19 (d, *J* = 6.1 Hz, 3H), 1.17 (s, 9H), 0.92 (d, *J* = 6.9 Hz, 3H), 0.90 (s, 9H), 0.90 (d, *J* = 6.7 Hz, 3H), 0.06 (s, 3H), 0.04 (s, 3H); ^{13}C NMR (150 MHz, CDCl_3) δ 177.7, 141.8, 78.3, 73.3, 72.3, 71.9, 64.6, 55.2, 41.1, 39.8, 39.0, 38.7, 36.2, 34.8, 29.8, 27.5, 27.3, 27.2 (3C), 26.2 (3C), 25.9, 21.7, 18.4, 17.3, 11.4, –3.9, –4.1; HRMS (ESI) *m/z* 661.2742, calcd for $\text{C}_{29}\text{H}_{55}\text{NaIO}_5\text{Si} [\text{M}+\text{Na}]^+$ 661.2761.


To a stirred solution of TBS ether **S18** (35.0 mg, 54.8 μmol) in CH_2Cl_2 (1.0 mL) was added solution of DIBAL (1.06 M solution in CH_2Cl_2 , 160 μL , 170 μmol) at -78°C . After stirring for 2 h at -78°C , the reaction mixture was diluted with saturated aqueous Na/K tartrate (10 mL) and stirred at room temperature for 2 h. The resultant mixture was extracted with CH_2Cl_2 (3×2 mL). The extracts were combined, washed with brine (3 mL), dried over Na_2SO_4 , filtered, and concentrated. The crude product was purified by column chromatography on silica gel (1.1 g, hexane–EtOAc 9 : 1 → 7 : 1 → 5 : 1) to afford alcohol **7** (25.6 mg, 84%) as a colorless oil: $R_f = 0.51$ (hexane : EtOAc = 3 : 1); $[\alpha]_D^{29} -25.5$ (*c* 2.13, CHCl_3); ^1H NMR (500 MHz, CDCl_3) δ 6.52 (ddd, *J* = 14.5, 7.9, 6.8 Hz, 1H), 6.10 (ddd, *J* = 14.5, 1.3, 1.3 Hz, 1H), 4.12 (dd, *J* = 6.9, 6.8 Hz, 1H), 3.96 (m, 1H), 3.70 (dd, *J* = 12.8, 9.5, 6.4,

3.0 Hz, 1H), 3.57–3.46 (m, 3H), 3.33 (s, 3H), 2.28 (dddd, J = 14.2, 7.9, 6.8, 1.3 Hz, 1H), 2.05 (ddd, J = 14.2, 6.9, 6.8 Hz, 1H), 1.97 (ddq, J = 12.4, 8.5, 2.1 Hz, 1H), 1.87–1.76 (m, 2H), 1.76–1.65 (m, 2H), 1.60 (ddd, J = 12.9, 10.0, 5.4 Hz, 1H), 1.52 (m, 1H), 1.29–1.16 (m, 2H), 1.21 (d, J = 7.5 Hz, 3H), 1.08 (ddd, J = 10.7, 4.1, 2.4 Hz, 1H), 0.98 (d, J = 8.5 Hz, 3H), 0.92 (d, J = 6.3 Hz, 3H), 0.91 (s, 9H), 0.11 (s, 3H), 0.10 (s, 3H); ^{13}C NMR (125 MHz, CDCl_3) δ 143.2, 83.1, 76.5, 73.2, 71.6, 70.0, 64.9, 55.3, 41.3, 38.3, 38.1, 36.8, 34.8, 30.2, 29.7, 26.1 (3C), 21.7, 18.2, 15.7, 12.3, –3.9, –4.0; HRMS (ESI) m/z 577.2175, calcd for $\text{C}_{24}\text{H}_{47}\text{NaIO}_4\text{Si} [\text{M}+\text{Na}]^+$ 577.2186.


To a stirred solution of the C1–C19 segment **6** (86.0 mg, 0.120 mmol) in THF (5.0 mL) were added Et_3N (100 μL , 0.720 mmol) and TCBC (94.0 μL , 0.601 mmol) at 0 °C. After stirring at 0 °C for 5 min, the mixture was allowed to warm to room temperature and stirred for 2 h. Then, a solution of the C20–C34 segment **7** (92.5 mg, 0.170 mmol) and DMAP (147 mg, 1.20 mmol) in toluene (5.0 mL) was added. The resulting mixture was stirred for 1 h, poured into saturated aqueous NaHCO_3 (10 mL), and extracted with EtOAc (10 mL \times 3). The combined extracts were washed with brine (10 mL), dried over Na_2SO_4 , and concentrated. The crude product was purified by column chromatography on silica gel (5.4 g, hexane– EtOAc 15 : 1) to afford ester **S19** (124.9 mg, 83%) as a pale yellow oil: R_f = 0.64 (hexane : EtOAc = 3 : 1); $[\alpha]_D^{24}$ –18.8 (c 1.38, CHCl_3); IR (CHCl_3) 3000, 2955, 2929, 2857, 1704, 1640, 1463, 1382, 1363, 1256, 1177, 1089, 1038, 1004, 940, 908, 836; ^1H NMR (500 MHz, CDCl_3) δ 7.23 (dd, J = 15.4, 10.4 Hz, 1H), 6.46 (ddd, J = 14.4, 7.3, 7.2 Hz, 1H), 6.24 (dd, J = 14.8, 10.3 Hz, 1H), 6.19 (ddd, J = 14.8, 7.1, 7.1 Hz, 1H), 6.09 (d, J = 14.4 Hz, 1H), 5.78 (d, J = 15.4 Hz, 1H), 5.34 (ddd, J = 7.2, 7.2, 1.0 Hz, 1H), 5.11 (dd, J = 10.1, 6.3 Hz, 1H), 4.61 (d, J = 11.6 Hz, 1H), 4.59 (d, J = 11.6 Hz, 1H), 3.96 (m, 1H), 3.75–3.46 (m, 6H), 3.44 (dd, J = 6.3, 3.1 Hz, 1H), 3.38 (dd,

J = 6.9, 6.9 Hz, 1H), 3.33 (s, 3H), 3.15 (s, 3H), 2.49–2.23 (m, 4H), 2.14 (s, 3H), 2.09 (dd, *J* = 14.4, 7.2 Hz, 1H), 1.98 (m, 1H), 1.91–1.76 (m, 4H), 1.72–1.39 (m, 11H), 1.49 (s, 3H), 1.30–1.15 (m, 3H), 1.20 (d, *J* = 6.2 Hz, 3H), 0.96–0.81 (m, 4H), 0.94 (d, *J* = 7.2 Hz, 3H), 0.92 (d, *J* = 6.9 Hz, 3H), 0.91 (d, *J* = 5.8 Hz, 3H), 0.889 (s, 9H), 0.888 (s, 9H), 0.885 (s, 9H), 0.84 (d, *J* = 7.1 Hz, 3H), 0.05 (s, 3H), 0.044 (s, 3H), 0.039 (s, 12H); ^{13}C NMR (125 MHz, CDCl_3) δ 166.6, 144.7, 141.7, 140.8, 134.9, 130.4, 128.0, 119.8, 88.2, 79.0, 78.5, 77.3, 75.8, 73.3, 73.2, 72.5, 72.0, 64.6, 61.4, 55.6, 55.3, 40.2, 39.6, 39.52, 39.50, 38.7, 37.5, 36.4, 35.0, 34.8, 33.5, 31.7, 30.2, 29.8, 29.7, 28.6, 27.5, 26.2 (3C), 26.1 (3C), 26.0 (3C), 21.8, 19.7, 18.4, 18.3, 17.2, 15.6, 14.4, 11.5, 11.0, 10.4, –3.7, –3.8, –3.9 (2C), –5.3 (2C); HRMS (ESI) *m/z* 1273.6816, calcd for $\text{C}_{62}\text{H}_{119}\text{NaIO}_9\text{SSi}_3$ [M+Na] $^+$ 1273.6815.


To a stirred solution of ester **S19** (124 mg, 99.8 μmol) in MeOH (6.0 mL) was added NH_4F (370 mg, 9.98 mmol) at room temperature. The mixture was stirred at room temperature for 3.5 d, poured into a mixture of saturated aqueous NH_4Cl (8 mL) and H_2O (8 mL), and extracted with EtOAc (10 mL \times 3). The combined extracts were washed with brine (10 mL), dried over Na_2SO_4 , and concentrated. The crude product was purified by column chromatography on silica gel (3.7 g, hexane–EtOAc 4 : 1 \rightarrow 3 : 1) to afford alcohol **S20** (106 mg, 93%) as a colorless oil: R_f = 0.30 (hexane : EtOAc = 3 : 1); $[\alpha]_D^{26}$ –38.3 (*c* 1.17, CHCl_3); IR (CHCl_3) 3477, 3004, 2955, 2930, 2857, 1702, 1644, 1616, 1463, 1382, 1362, 1301, 1256, 1176, 1089, 1042, 1003, 955, 941, 854, 837; ^1H NMR (600 MHz, CDCl_3) δ 7.23 (dd, *J* = 15.4, 10.8 Hz, 1H), 6.45 (ddd, *J* = 14.4, 7.2, 7.1 Hz, 1H), 6.24 (dd, *J* = 14.9, 10.8 Hz, 1H), 6.18 (ddd, *J* = 14.9, 7.2, 7.2 Hz, 1H), 6.10 (d, *J* = 14.4 Hz, 1H), 5.78 (d, *J* = 15.4 Hz, 1H), 5.34 (dd, *J* = 7.1, 6.9 Hz, 1H), 5.11 (dd, *J* = 10.1, 6.2 Hz, 1H), 4.61 (d, *J* = 11.4 Hz, 1H), 4.59 (d, *J* = 11.4 Hz, 1H), 3.96 (m, 1H), 3.74–3.63 (m, 3H), 3.61 (dd, *J* = 3.4, 3.4 Hz, 1H), 3.57 (ddd, *J* = 6.4, 6.4, 3.5 Hz, 1H), 3.51 (ddq, *J* = 9.9, 4.8, 6.2 Hz, 1H), 3.43 (dd, *J* = 6.2, 3.0 Hz, 1H), 3.38 (dd, *J* = 6.9, 6.9 Hz, 1H), 3.33 (s, 3H), 3.15 (s, 3H), 2.49–2.26 (m, 4H), 2.14 (s, 3H), 2.10 (ddd, *J* = 14.2, 7.1, 6.9 Hz, 1H),

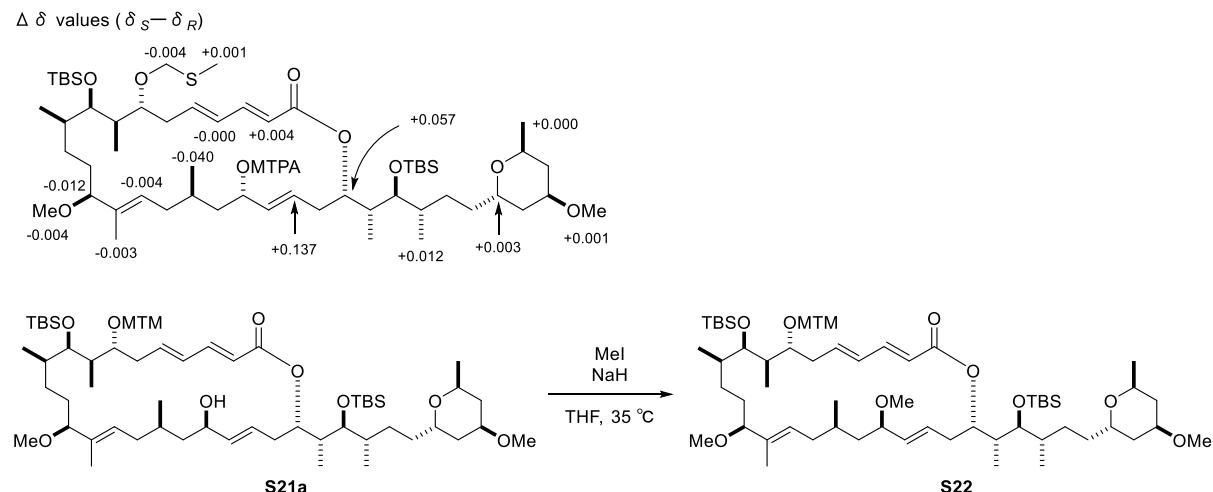
1.98 (m, 1H), 1.91 (ddd, $J = 14.2, 7.2, 7.1$ Hz, 1H), 1.87–1.76 (m, 4H), 1.74–1.34 (m, 11H), 1.50 (s, 3H), 1.32–1.13 (m, 3H), 1.20 (d, $J = 6.2$ Hz, 3H), 1.00–0.86 (m, 1H), 0.94 (d, $J = 7.1$ Hz, 3H), 0.92 (d, $J = 6.7$ Hz, 3H), 0.91 (d, $J = 6.5$ Hz, 3H), 0.89 (s, 18H), 0.84 (d, $J = 6.9$ Hz, 3H), 0.05 (s, 6H), 0.043 (s, 3H), 0.038 (s, 3H); ^{13}C NMR (150 MHz, CDCl_3) δ 166.7, 144.8, 141.7, 140.7, 135.1, 130.4, 127.6, 119.8, 88.1, 79.0, 78.5, 77.4, 75.8, 73.30, 73.27, 72.6, 72.0, 64.6, 61.1, 55.7, 55.3, 40.2, 39.7, 39.58, 39.55, 38.7, 37.5, 36.4, 34.9, 34.8, 33.5, 31.7, 30.2, 29.9, 28.6, 27.6, 26.2 (3C), 26.1 (3C), 21.8, 19.7, 18.44, 18.42, 17.2, 15.5, 14.4, 11.5, 11.0, 10.4, –3.7, –3.9, –3.96, –3.98; HRMS (ESI) m/z 1159.5940, calcd for $\text{C}_{56}\text{H}_{105}\text{NaIO}_9\text{SSi}_2$ [M+Na] $^+$ 1159.5960.

To a stirred solution of alcohol **S20** (12.1 mg, 0.107 mmol) in CH_2Cl_2 (3.0 mL) was added Dess–Martin periodinane (6.7 mg, 0.158 mmol) at room temperature. The mixture was stirred at room temperature for 1 h, poured into a mixture of saturated aqueous $\text{Na}_2\text{S}_2\text{O}_3$ (2.0 mL), saturated aqueous NaHCO_3 (2.0 mL), and H_2O (2.0 mL), and extracted with CH_2Cl_2 (5 mL \times 3). The combined extracts were washed with brine (10 mL), dried over Na_2SO_4 , and concentrated. The crude product was purified by column chromatography on silica gel (0.24 g, hexane–EtOAc 7 : 1) to afford aldehyde **12** (11.2 mg, 93%) as a colorless oil: $R_f = 0.64$ (hexane : EtOAc = 3 : 1); $[\alpha]_D^{23} -22.3$ (c 1.27, CHCl_3); IR (CHCl_3) 3004, 2955, 2930, 2857, 1718, 1704, 1644, 1463, 1382, 1362, 1301, 1255, 1176, 1136, 1090, 1039, 1003, 954, 940, 854, 837; ^1H NMR (600 MHz, CDCl_3) δ 9.76 (br. t, 1H), 7.23 (dd, $J = 15.4, 10.7$ Hz, 1H), 6.46 (ddd, $J = 14.3, 7.3, 7.3$ Hz, 1H), 6.24 (dd, $J = 14.9, 10.7$ Hz, 1H), 6.18 (ddd, $J = 14.9, 7.2, 7.2$ Hz, 1H), 6.10 (d, $J = 14.3$ Hz, 1H), 5.78 (d, $J = 15.4$ Hz, 1H), 5.33 (dd, $J = 6.8, 6.8$ Hz, 1H), 5.11 (dd, $J = 10.1, 6.1$ Hz, 1H), 4.61 (d, $J = 11.7$ Hz, 1H), 4.59 (d, $J = 11.7$ Hz, 1H), 3.96 (m, 1H), 3.68 (ddd, $J = 9.5, 6.5, 2.8$ Hz, 1H), 3.61 (dd, $J = 3.4, 3.4$ Hz, 1H), 3.57 (ddd, $J = 6.5, 6.5, 3.3$ Hz, 1H), 3.52 (ddq, $J = 9.9, 4.8, 6.2$ Hz, 1H), 3.44 (dd, $J = 6.1, 3.0$ Hz, 1H), 3.38 (dd, $J = 6.8, 6.8$ Hz, 1H), 3.33 (s, 3H), 3.15 (s, 3H), 2.47–2.29 (m, 5H), 2.26 (ddd, $J = 16.3, 7.8, 2.3$ Hz, 1H), 2.13 (m,

1H), 2.14 (s, 3H), 2.02–1.94 (m, 2H), 1.89–1.77 (m, 3H), 1.67–1.37 (m, 9H), 1.50 (s, 3H), 1.26–1.13 (m, 3H), 1.20 (d, J = 6.2 Hz, 3H), 1.01–0.80 (m, 1H), 0.98 (d, J = 6.5 Hz, 3H), 0.94 (d, J = 7.1 Hz, 3H), 0.92 (d, J = 6.9 Hz, 3H), 0.89 (s, 18H), 0.87 (d, J = 7.3 Hz, 3H), 0.84 (d, J = 6.9 Hz, 3H), 0.05 (s, 6H), 0.043 (s, 3H), 0.039 (s, 3H); ^{13}C NMR (150 MHz, CDCl_3) δ 202.5, 166.6, 144.7, 141.7, 140.7, 136.4, 130.4, 126.3, 119.9, 88.0, 78.9, 78.5, 75.8, 73.30, 73.25, 72.5, 72.0, 64.6, 55.8, 55.3, 50.6, 40.2, 39.6 (2C), 38.7, 37.5, 36.4, 34.8, 34.7, 33.5, 31.8, 29.9, 29.7, 28.7, 28.6, 27.6, 25.2 (3C), 26.1 (3C), 21.8, 20.0, 18.44, 18.43, 17.2, 15.6, 14.4, 11.6, 11.0, 10.5, –3.7, –3.8, –3.96, –3.98; HRMS (ESI) m/z 1157.5798, calcd for $\text{C}_{56}\text{H}_{103}\text{NaIO}_9\text{SSi}_2$ [M+Na] $^+$ 1157.5804.

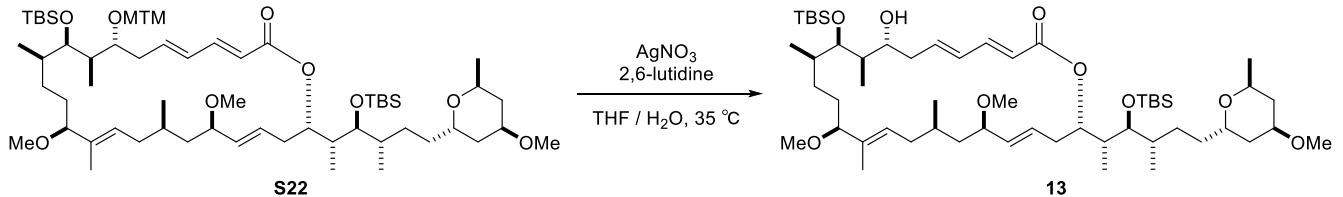
DMSO was degassed by freeze-thawing. To a stirred solution of aldehyde **12** (71.6 mg, 63.1 μmol) in DMSO (5.0 mL) were added CrCl_2 (77.5 mg, 631 μmol) and NiCl_2 (1.6 mg, 12.6 μmol) at room temperature in a glove box. The mixture was stirred at room temperature for 6 h in a glove box, poured into H_2O (15 mL), and extracted with Et_2O (15 mL \times 3). The combined extracts were washed with brine (10 mL), dried over MgSO_4 , and concentrated. The crude product was purified by column chromatography on silica gel (5.0 g, hexane– EtOAc 7 : 1 \rightarrow 5 : 1 \rightarrow 2 : 1) to afford **S21a** (30.6 mg, 46%) and **S21b** (22.6 mg, 35%) as colorless oils, respectively: **S21a**: R_f = 0.20 (hexane : EtOAc = 2 : 1); $[\alpha]_D^{27}$ –8.0 (c 1.86, CHCl_3); IR (CHCl_3) 3622, 3453, 3006, 2956, 2930, 2858, 1704, 1642, 1463, 1382, 1362, 1302, 1254, 1177, 1138, 1082, 1046, 1003, 970, 909, 875, 857, 837; ^1H NMR (600 MHz, CDCl_3) δ 7.22 (dd, J = 15.4, 10.1 Hz, 1H), 6.24–6.26 (m, 2H), 5.82 (d, J = 15.3 Hz, 1H), 5.57 (ddd, J = 15.0, 10.5, 4.3 Hz, 1H), 5.30–5.20 (m, 2H), 5.05 (m, 1H), 4.59 (d, J = 11.6 Hz, 1H), 4.53 (d, J = 11.6 Hz, 1H), 4.09 (ddd, J = 9.2, 9.2, 4.7 Hz, 1H), 3.96 (m, 1H), 3.67 (dd, J = 13.5, 10.2, 7.0, 3.7 Hz, 1H), 3.60 (m, 1H), 3.52 (m, 2H), 3.43 (dd, J = 5.0, 4.1 Hz, 1H), 3.38 (dd, J = 10.6, 4.4 Hz, 1H), 3.33 (s, 3H), 3.18 (s, 3H), 2.39 (ddd, J = 13.9, 1.9, 1.9 Hz, 1H), 2.33 (m, 1H), 2.25 (ddd, J = 13.9,

10.9, 10.9 Hz, 1H), 2.17 (s, 3H), 2.03–1.94 (m, 2H), 1.86–1.76 (m, 3H), 1.75–1.36 (m, 10H), 1.45 (s, 3H), 1.35–1.06 (m, 6H), 1.20 (d, J = 6.24 Hz, 3H), 0.98–0.77 (m, 1H), 0.96 (d, J = 7.1 Hz, 3H), 0.922 (d, J = 6.8 Hz, 3H), 0.916 (d, J = 6.8 Hz, 3H), 0.90 (s, 9H), 0.88 (s, 9H), 0.87 (d, J = 7.0 Hz, 3H), 0.81 (d, J = 6.1 Hz, 3H), 0.12 (s, 3H), 0.06 (s, 3H), 0.05 (s, 3H), 0.04 (s, 3H) A signal due to a proton (OH) was not observed.; ^{13}C NMR (150 MHz, CDCl_3) δ 166.3, 144.4, 140.7, 135.1, 134.2, 130.0, 129.8, 129.5, 120.4, 87.5, 79.1, 77.5, 76.8, 73.3, 72.7, 72.2, 72.1, 64.6, 55.6 (2C), 55.3, 42.7, 38.7, 38.5, 37.5, 36.6, 36.3, 34.8, 32.9, 30.7, 29.9, 29.7, 29.6, 27.9, 26.2 (3C), 26.0 (3C), 22.7, 21.8, 21.0, 20.1, 18.5, 18.3, 17.2, 14.5, 14.2, 12.5, 12.0, 9.8, –3.8, –4.0, –4.3 (2C); HRMS (ESI) m/z 1031.6837, calcd for $\text{C}_{56}\text{H}_{104}\text{NaO}_9\text{SSi}_2$ [M+Na] $^+$ 1031.6837; **S21b**: R_f = 0.49 (hexane : EtOAc = 2 : 1); $[\alpha]_D^{27}$ – 2.5 (c 1.89, CHCl_3); IR (CHCl_3) 3453, 2999, 2954, 2930, 2857, 1703, 1641, 1463, 1382, 1362, 1301, 1256, 1178, 1136, 1088, 1038, 1003, 973, 909, 857, 837; ^1H NMR (600 MHz, CDCl_3) δ 7.22 (dd, J = 15.5, 10.7 Hz, 1H), 6.22 (dd, J = 15.0, 10.7 Hz, 1H), 6.14 (ddd, J = 15.0, 7.3, 7.3 Hz, 1H), 5.78 (d, J = 15.5 Hz, 1H), 5.62 (ddd, J = 15.2, 8.7, 4.9 Hz, 1H), 5.50 (dd, J = 15.2, 5.0 Hz, 1H), 5.30–5.17 (m, 2H), 4.61–4.55 (m, 2H), 4.16–4.02 (m, 1H), 3.96 (m, 1H), 3.71–3.62 (m, 2H), 3.58–3.47 (m, 2H), 3.46 (dd, J = 6.4, 4.8 Hz, 1H), 3.36 (dd, J = 9.6, 5.0 Hz, 1H), 3.33 (s, 3H), 3.15 (s, 3H), 2.52–2.23 (m, 3H), 2.17 (s, 3H), 2.15 (m, 1H), 1.97 (m, 1H), 1.87–1.74 (m, 3H), 1.48 (s, 3H), 1.72–1.36 (m, 10H), 1.19 (d, J = 6.2 Hz, 3H), 1.31–1.07 (m, 6H), 0.96 (d, J = 7.1 Hz, 3H), 0.92 (d, J = 6.9 Hz, 3H), 0.90 (s, 9H), 0.88 (s, 9H), 0.85 (d, J = 6.9 Hz, 3H), 0.81 (d, J = 6.6 Hz, 3H), 1.01–0.79 (m, 4H), 0.11 (s, 3H), 0.06 (s, 3H), 0.05 (s, 3H), 0.04 (s, 3H) A signal due to a proton (OH) was not observed.; ^{13}C NMR (150 MHz, CDCl_3) δ 166.7, 144.7, 140.0, 135.9, 134.5, 130.3, 128.2, 125.8, 120.1, 87.9, 78.9, 73.4, 73.3 (2C), 73.1, 72.0, 69.8, 64.6, 55.5, 55.2 (2C), 44.5, 42.3, 38.7, 37.4, 36.5, 34.8, 31.6, 30.9, 29.9, 29.7, 29.5, 27.9, 26.2 (3C), 26.01, 25.96 (3C), 22.6, 21.7, 19.8, 18.4, 18.3, 17.3, 14.5, 14.4, 14.1, 12.4, 12.0, 10.1, –3.8, –4.0, –4.2 (2C); HRMS (ESI) m/z 1031.6809, calcd for $\text{C}_{56}\text{H}_{104}\text{NaO}_9\text{SSi}_2$ [M+Na] $^+$ 1031.6837.


Determination of the absolute configuration at C19 of **S21b**

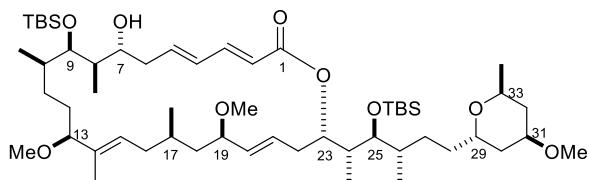
(S)-MTPA ester of **S21b**

To a stirred solution of alcohol **S21b** (2.5 mg, 2.5 μmol) in CH_2Cl_2 (1.0 mL) were added (*R*)-(+)MTPACl (9.4 μL , 50 μmol) and DMAP (9.1 mg, 75 μmol). The reaction mixture was stirred at room temperature for 2 h, poured into saturated aqueous NaHCO_3 (2.0 mL), and extracted with CH_2Cl_2 (3.0 mL \times 3). The combined extracts were washed with brine (5 mL), dried over Na_2SO_4 , and concentrated. The crude product was purified by preparative TLC (hexane–EtOAc 9 : 1) to afford (S)-MTPA ester of **S21b** (2.6 mg, 87%) as a colorless oil.

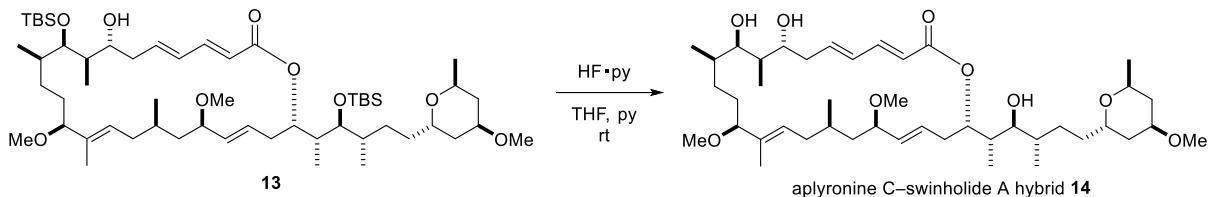

(R)-MTPA ester of **S21b**

A solution of alcohol **S21b** (2.9 mg, 2.9 μmol) in CH_2Cl_2 (1.0 mL) was similarly treated with (S)-MTPACl and DMAP to afford (R)-MTPA ester of **S21b** (2.8 mg, 80%) as a colorless oil. The $\Delta\delta$ values ($\delta_S - \delta_R$) for these MTPA esters are described below:

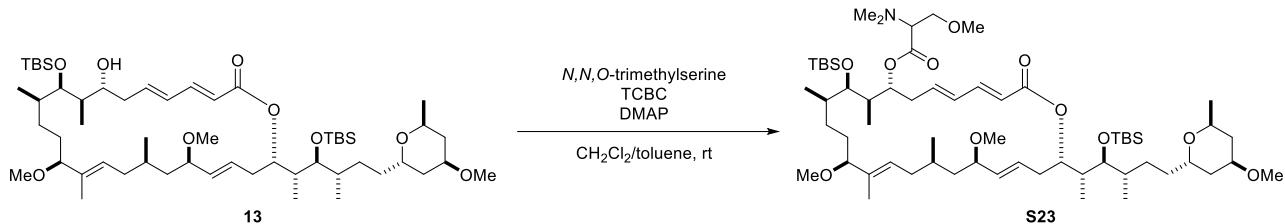
To a stirred solution of **S21a** (6.7 mg, 6.64 μmol) in THF (2.0 mL) were added MeI (33.0 μL , 530 μmol) and NaH (60% in mineral oil, 13.3 mg, 332 μmol) at room temperature. The mixture was allowed to warm to 35 °C, and stirring was continued for 9 h. The reaction mixture was poured into saturated aqueous NH_4Cl (2.0 mL) and extracted with EtOAc (2.0 mL \times 3). The combined extracts were dried over Na_2SO_4 and concentrated. The crude product was purified by column chromatography on silica gel (0.2 g, hexane–EtOAc 9 : 1 \rightarrow 6 : 1) to afford methyl ether **S22** (5.6


mg, 82%) as a colorless oil: $R_f = 0.63$ (hexane : EtOAc = 2 : 1); $[\alpha]_D^{26} +38.9$ (c 1.81, CHCl₃); IR (CHCl₃) 3003, 2954, 2930, 2857, 2824, 1703, 1645, 1617, 1462, 1379, 1362, 1302, 1257, 1177, 1137, 1081, 1045, 1003, 972, 909, 858, 837; ¹H NMR (600 MHz, CDCl₃) δ 7.22 (dd, J = 15.3, 10.2 Hz, 1H), 6.27–6.14 (m, 2H), 5.82 (d, J = 15.3 Hz, 1H), 5.55 (ddd, J = 15.0, 10.6, 4.2 Hz, 1H), 5.28 (ddd, J = 11.1, 4.8, 1.9 Hz, 1H), 5.05 (m, 2H), 4.59 (d, J = 11.5 Hz, 1H), 4.53 (d, J = 11.5 Hz, 1H), 3.96 (m, 1H), 3.68 (dddd, J = 12.9, 9.5, 6.4, 3.0 Hz, 1H), 3.60 (m, 1H), 3.56–3.46 (m, 3H), 3.44 (dd, J = 5.3, 4.0 Hz, 1H), 3.38 (dd, J = 10.7, 4.4 Hz, 1H), 3.33 (s, 3H), 3.19 (s, 3H), 3.16 (s, 3H), 2.44 (ddd, J = 14.0, 1.9, 1.9 Hz, 1H), 2.33 (m, 1H), 2.28 (ddd, J = 14.0, 10.8, 10.8 Hz, 1H), 2.16 (s, 3H), 2.02–1.94 (m, 2H), 1.88–1.77 (m, 3H), 1.74–1.38 (m, 10H), 1.44 (s, 3H), 1.35–1.05 (m, 6H), 1.20 (d, J = 6.2 Hz, 3H), 1.03–0.71 (m, 1H), 0.96 (d, J = 7.1 Hz, 3H), 0.924 (d, J = 6.8 Hz, 3H), 0.918 (d, J = 7.0 Hz, 3H), 0.90 (s, 9H), 0.88 (s, 9H), 0.86 (d, J = 6.8 Hz, 3H), 0.79 (d, J = 6.3 Hz, 3H), 0.12 (s, 3H), 0.06 (s, 3H), 0.044 (s, 3H), 0.039 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 166.3, 144.4, 140.6, 134.1, 132.9, 131.3, 130.0, 129.6, 120.4, 87.5, 81.4, 79.0, 77.5, 76.8, 73.3, 72.7, 72.1 (2C), 64.6, 55.6 (2C), 55.3, 42.9, 38.7, 38.5, 37.5, 36.5, 36.3, 34.8, 32.9, 30.6, 29.9, 29.7, 29.5, 27.9, 26.2 (3C), 26.0 (3C), 22.7, 21.8 (2C), 20.1, 18.5, 18.3, 17.2, 14.5, 14.1, 12.4, 12.1, 9.8, –3.8, –4.0, –4.3 (2C); HRMS (ESI) *m/z* 1045.6997, calcd for C₅₇H₁₀₆NaO₉SSi₂ [M+Na]⁺ 1045.6994.

To a stirred solution of methyl ether **S22** (17.8 mg, 17.4 μmol) in THF (2.0 mL) and H₂O (0.4 mL) were added 2,6-lutidine (0.40 mL, 3.45 mmol) and AgNO_3 (640 mg, 3.77 mmol) at room temperature. After stirring at 30 °C for 19 h in the dark, the reaction mixture was filtered through a pad of Celite, and the residue was washed with EtOAc (20 mL). The filtrate and the washings were combined, washed and brine (10 mL), dried over MgSO₄, and concentrated. The crude product was purified by column chromatography on silica gel (0.53 g, hexane–EtOAc 8 : 1 → 6 : 1) to afford alcohol **13** (15.1

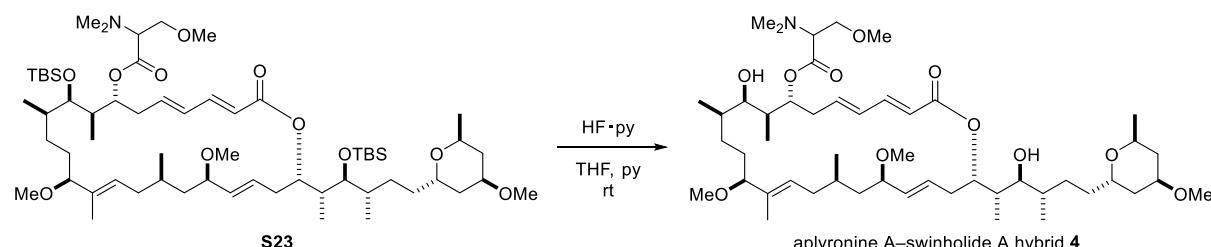

mg, 90%) as a colorless oil: $R_f = 0.54$ (hexane : EtOAc = 2 : 1); $[\alpha]_D^{27} +32.8$ (c 0.71, CHCl_3); IR (CHCl_3) 3449, 3003, 2954, 2930, 2857, 2825, 1704, 1643, 1616, 1463, 1380, 1362, 1302, 1257, 1139, 1083, 1024, 1003, 973, 908, 853, 837; ^1H NMR (600 MHz, CDCl_3) δ 7.23 (dd, $J = 15.4, 10.4$ Hz, 1H), 6.23 (dd, $J = 15.2, 10.4$ Hz, 1H), 6.18 (m, 1H), 5.80 (d, $J = 15.4$ Hz, 1H), 5.52 (ddd, $J = 14.9, 10.4, 4.3$ Hz, 1H), 5.26 (m, 1H), 5.19–5.08 (m, 2H), 3.95 (m, 1H), 3.78 (m, 1H), 3.67 (m, 1H), 3.60 (m, 1H), 3.55–3.47 (m, 2H), 3.45 (dd, $J = 4.3, 4.3$ Hz, 1H), 3.39 (dd, $J = 9.7, 4.8$ Hz, 1H), 3.33 (s, 3H), 3.19 (s, 3H), 3.15 (s, 3H), 2.68 (br. s, 1H), 2.45 (m, 1H), 2.36 (ddd, $J = 14.3, 5.3, 5.3$ Hz, 1H), 2.33–2.23 (m, 2H), 2.05 (ddd, $J = 6.3, 6.2, 6.2$ Hz, 1H), 1.97 (m, 1H), 1.87–1.76 (m, 3H), 1.72–1.36 (m, 9H), 1.45 (s, 3H), 1.36–1.10 (m, 6H), 1.19 (d, $J = 6.2$ Hz, 3H), 0.95 (d, $J = 7.1$ Hz, 3H), 0.92 (d, $J = 6.8$ Hz, 3H), 0.91–0.88 (m, 4H), 0.90 (s, 9H), 0.89 (s, 9H), 0.88 (d, $J = 7.4$ Hz, 3H), 0.79 (d, $J = 6.5$ Hz, 3H), 0.12 (s, 3H), 0.08 (s, 3H), 0.062 (s, 3H), 0.059 (s, 3H); ^{13}C NMR (150 MHz, CDCl_3) δ 166.5, 144.6, 140.2, 134.0, 133.5, 130.6, 130.5, 129.1, 120.3, 87.7, 82.0, 79.0, 76.8, 74.1, 73.3, 73.0, 72.1, 64.6, 55.7, 55.6, 55.2, 42.9, 42.2, 40.4, 38.7, 38.3, 38.1, 36.6, 35.5, 34.8, 31.6, 30.4, 29.9, 29.7, 27.9, 26.2 (3C), 25.9 (3C), 21.8, 20.2, 18.5, 18.2, 17.3, 16.4, 14.1, 13.3, 12.4, 10.1, –3.8, –4.1, –4.3, –4.4; HRMS (ESI) m/z 985.6936, calcd for $\text{C}_{55}\text{H}_{102}\text{NaO}_9\text{Si}_2$ $[\text{M}+\text{Na}]^+$ 985.6960.

Assignment of ^1H NMR spectra of alcohol **13**



2 : 5.80 (d)	10 : 1.72–1.36	19 : 3.55–3.47 (m)	27 : 1.72–1.36, 1.36–1.10
3 : 7.23 (dd)	11 : 1.72–1.36 1.36–1.10	20 : 5.19–5.08 (m)	28 : 1.87–1.76, 1.72–1.36
4 : 6.23 (dd)	12 : 1.72–1.36, 1.36–1.10	21 : 5.52 (ddd)	29 : 3.95 (m)
5 : 6.18 (m)	13 : 3.45 (dd)	22 : 2.36 (ddd), 1.72–1.36	30 : 1.87–1.76, 1.72–1.36
6 : 2.33–2.23 (m)	15 : 5.19–5.08 (m)	23 : 5.26 (m)	31 : 3.55–3.47 (m)
7 : 3.60 (m)	16 : 2.05 (dd), 1.72–1.36	24 : 1.87–1.76	32 : 1.36–1.10
8 : 1.72–1.36	17 : 0.91–0.88	25 : 3.78 (m)	33 : 3.67 (m)
9 : 3.39 (dd)	18 : 1.36–1.10	26 : 1.72–1.36	34 : 1.19 (d)

^1H NMR data for alcohol **13** in CDCl_3 [carbon number : chemical shift (coupling pattern)]



A solution of alcohol **13** (7.8 mg, 8.1 μ mol) in a 5 : 3 : 7 mixture of HF·py, py, and THF (2.0 mL) was stirred at room temperature for 12 h. The mixture was poured into saturated aqueous NaHCO₃ (15 mL) and stirred at 0 °C for 30 min. The resultant mixture was extracted with EtOAc (8.0 mL \times 3). The combined extracts were washed with brine (15 mL), dried over Na₂SO₄, and concentrated. The crude product was purified by column chromatography on silica gel (0.25 g, hexane–acetone 2 : 1 \rightarrow 1 : 1) to give ApC–SwA hybrid **14** (5.0 mg, 83%) as a colorless oil: R_f = 0.21 (hexane : acetone = 2 : 1); $[\alpha]_D^{27}$ +16.5 (*c* 0.44, CHCl₃); IR (CHCl₃) 3445, 3005, 2931, 2875, 2825, 1704, 1685, 1637, 1617, 1457, 1378, 1362, 1261, 1244, 1145, 1099, 1081, 1002, 972, 869; ¹H NMR (600 MHz, CDCl₃) δ 7.28 (dd, *J* = 15.3, 10.6 Hz, 1H), 6.23 (dd, *J* = 15.1, 10.6 Hz, 1H), 6.16 (ddd, *J* = 15.1, 9.8, 5.5 Hz, 1H), 5.85 (d, *J* = 15.3 Hz, 1H), 5.55 (ddd, *J* = 14.9, 10.5, 4.6 Hz, 1H), 5.41 (d, *J* = 10.5 Hz, 1H), 5.15 (dd, *J* = 15.3, 9.0 Hz, 1H), 5.11 (dd, *J* = 7.3, 7.3 Hz, 1H), 4.00 (m, 1H), 3.73 (m, 1H), 3.69 (ddd, *J* = 9.6, 6.5, 2.9 Hz, 1H), 3.64 (dd, *J* = 7.6, 3.7 Hz, 1H), 3.57–3.46 (m, 2H), 3.42 (dd, *J* = 8.5, 6.5 Hz, 1H), 3.33 (s, 3H), 3.23 (d, *J* = 4.8 Hz, 1H), 3.20 (s, 3H), 3.18 (s, 3H), 3.01 (ddd, *J* = 9.6, 6.4, 2.4 Hz, 1H), 2.53 (ddd, *J* = 14.4, 9.8, 7.6 Hz, 1H), 2.50–2.42 (m, 2H), 2.37 (dq, *J* = 9.6, 6.8 Hz, 1H), 2.25 (ddd, *J* = 14.4, 5.5, 3.7 Hz, 1H), 2.20 (m, 1H), 2.03–1.94 (m, 2H), 1.88 (dddd, *J* = 13.5, 9.3, 9.3, 3.8 Hz, 1H), 1.85–1.72 (m, 3H), 1.72–1.55 (m, 5H), 1.52–1.43 (m, 1H), 1.46 (s, 3H), 1.40 (dddd, *J* = 12.7, 7.1, 6.4, 3.4 Hz, 1H), 1.34–1.17 (m, 5H), 1.20 (d, *J* = 6.2 Hz, 3H), 1.08 (m, 1H), 1.04 (d, *J* = 7.0 Hz, 3H), 0.99 (d, *J* = 6.8 Hz, 3H), 0.91 (d, *J* = 6.9 Hz, 3H), 0.88 (d, *J* = 6.9 Hz, 3H), 0.76 (d, *J* = 5.7 Hz, 3H). A signal due to two protons (OH) were not observed.; ¹³C NMR (150 MHz, CDCl₃) δ 168.0, 145.1, 140.7, 134.7, 133.1, 131.1, 130.4, 128.9, 119.6, 87.2, 81.3, 76.4, 75.4, 74.8, 73.3, 73.1, 71.5, 64.7, 55.7, 55.6, 55.2, 41.4, 40.1, 38.6, 38.14, 38.09, 36.6, 36.2, 35.7, 35.0, 33.2, 29.7, 29.5, 29.3, 26.3, 24.2, 21.8, 19.6, 17.6, 15.5, 11.9, 10.04, 10.02; HRMS (ESI) *m/z* 757.5216, calcd for C₄₃H₇₄NaO₉ [M+Na]⁺ 757.5231.

To a stirred solution of alcohol **13** (8.3 mg, 8.6 μ mol), L-*N,N,O*-trimethylserine (21.1 mg, 14.3 μ mol), and D-*N,N,O*-trimethylserine (10.6 mg, 71.8 μ mol) in CH_2Cl_2 (2.0 mL) and toluene (2.0 mL) were added Et_3N (66.0 μ L, 474 μ mol), TCBC (53.8 μ L, 345 μ mol), and DMAP (26.3 mg, 215 μ mol) at room temperature. After stirring at room temperature for 1 h, the reaction mixture was diluted with saturated aqueous NaHCO_3 (3.0 mL) and extracted with CH_2Cl_2 (5.0 mL \times 2). The combined extracts were washed with brine (5.0 mL), dried over Na_2SO_4 , and concentrated. The crude product was purified by column chromatography on silica gel (0.50 g, hexane–EtOAc 1 : 1 \rightarrow 2 : 3) to afford trimethylserine ester **S23** (*S/R* = 1/1 as to the trimethylserine part) (9.1 mg, 97%) as a colorless oil: R_f = 0.11 (hexane : EtOAc = 2 : 1); $[\alpha]_D^{27}$ +13.9 (*c* 0.83, CHCl_3); IR (CHCl_3) 3000, 2930, 2857, 2827, 1705, 1646, 1617, 1463, 1382, 1361, 1303, 1256, 1175, 1100, 1086, 1036, 1002, 971, 858, 838; ^1H NMR (600 MHz, CDCl_3) δ 7.18 (dd, *J* = 15.3, 11.0 Hz, 1H), 6.21 (dd, *J* = 14.7, 11.0 Hz, 1H), 6.08 (ddd, *J* = 14.7, 7.4, 7.4 Hz, 1H), 5.822 [5.818] (d, *J* = 15.3 Hz, 1H), 5.54 (ddd, *J* = 15.0, 10.5, 4.3 Hz, 1H), 5.27 (ddd, *J* = 11.0, 2.4, 2.4 Hz, 1H), 5.16–4.98 (m, 2H), 4.83 (m, 1H), 3.95 (m, 1H), 3.68 (dd, *J* = 12.8, 9.5, 6.4, 3.0 Hz, 1H), 3.64–3.60 (m, 2H), 3.56–3.46 (m, 2H), 3.46–3.41 (m, 2H), 3.41–3.34 (m, 2H), 3.36 [3.35] (s, 3H), 3.33 (s, 3H), 3.187 [3.188] (s, 3H), 3.163 [3.162] (s, 3H), 2.55–2.34 (m, 3H), 2.40 (s, 6H), 2.28 (m, 1H), 2.08–1.88 (m, 3H), 1.88–1.77 (m, 3H), 1.77–1.37 (m, 8H), 1.47 (s, 3H), 1.37–1.11 (m, 6H), 1.19 (d, *J* = 6.2 Hz, 3H), 1.09–0.85 (m, 1H), 0.96 (d, *J* = 6.5 Hz, 3H), 0.95 (d, *J* = 6.0 Hz, 3H), 0.92 (d, *J* = 6.8 Hz, 3H), 0.90 (s, 9H), 0.89 (s, 9H), 0.773 (d, *J* = 6.2 Hz, 3H), 0.769 (d, *J* = 6.1 Hz, 3H), 0.12 (s, 3H), 0.06 (s, 3H), 0.03 (s, 3H), 0.02 (s, 3H) (the counterparts of doubled signals in the ratio of about 1:1 are in brackets); ^{13}C NMR (150 MHz, CDCl_3) δ 170.2, 166.16 [166.14], 144.0 [143.9], 138.9, 134.5, 133.1, 131.0, 130.9, 129.3 [129.2], 121.0 [120.9], 87.62 [87.57], 81.3, 79.07 [79.04], 75.3, 73.3, 72.9, 72.0, 71.4 [71.3], 67.4, 67.2, 64.7, 59.13 [59.08], 55.61 [55.60],

55.3 (2C), 42.81 [42.77], 42.3, 42.2 (2C), 41.1, 38.7, 38.5 [38.4], 36.6, 36.1, 34.8, 32.8, 29.9, 29.7, 29.6, 28.0, 26.2 (3C), 26.0 (3C), 21.8, 20.1, 18.5, 18.3, 17.21, 17.19, 14.8, 12.4, 11.84, 11.76, 9.8, –3.8, –4.1, –4.2, –4.3 (the counterparts of doubled signals in the ratio of about 1:1 are in brackets); HRMS (ESI) m/z 1114.7725, calcd for $C_{61}H_{113}NO_{11}Si_2$ [M+H] $^+$ 1114.7750.

A solution of trimethylserine ester **S23** (8.6 mg, 7.9 μ mol) in a 5 : 3 : 7 mixture of HF·py, py, and THF (2.0 mL) was stirred at room temperature for 12 h. The mixture was poured into saturated aqueous NaHCO₃ (15 mL) and stirred at 0 °C for 30 min. The resultant mixture was extracted with EtOAc (8.0 mL \times 3). The combined extracts were washed with brine (15 mL), dried over Na₂SO₄, and concentrated. The crude product was purified by column chromatography on silica gel (0.25 g, CHCl₃–MeOH 20 : 1) to give ApA–SwA hybrid **4** (6.0 mg, 88%) as a colorless oil: R_f = 0.45 (CHCl₃ : MeOH = 9 : 1); $[\alpha]_D^{27}$ +40.3 (*c* 0.55, CHCl₃); IR (CHCl₃) 3502, 3003, 2930, 2874, 2829, 1717, 1644, 1618, 1457, 1382, 1299, 1271, 1245, 1174, 1146, 1100, 1039, 1001, 972, 867, 841; ¹H NMR (600 MHz, CDCl₃) δ 7.24 (dd, *J* = 15.3, 10.8 Hz, 1H), 6.22 (dd, *J* = 15.0, 10.8 Hz, 1H), 6.12 (ddd, *J* = 15.0, 9.5, 5.2 Hz, 1H), 5.90 (d, *J* = 15.3 Hz, 1H), 5.56 (ddd, *J* = 14.9, 10.4, 4.3 Hz, 1H), 5.42 (d, *J* = 11.0 Hz, 1H), 5.11–5.00 (m, 2H), 4.77 (m, 1H), 4.00 (m, 1H), 3.69 (dddd, *J* = 12.9, 9.5, 6.4, 3.0 Hz, 1H), 3.65–3.59 (m, 2H), 3.56–3.45 (m, 3H), 3.43 (ddd, *J* = 10.5, 3.9, 3.9 Hz, 1H), 3.37–3.32 (m, 1H), 3.35 [3.36] (s, 3H), 3.34 (s, 3H), 3.19 (s, 3H), 3.18 (s, 3H), 3.08 (d, *J* = 4.7 Hz, 1H), 3.03 (m, 1H), 2.54–2.44 (m, 2H), 2.38 (s, 6H), 2.23 (ddd, *J* = 14.2, 5.2, 1.8 Hz, 1H), 2.22 (br. s, 1H), 2.02–1.84 (m, 4H), 1.84–1.76 (m, 2H), 1.73–1.53 (m, 6H), 1.49 (d, *J* = 2.8 Hz, 3H), 1.44–1.32 (m, 2H), 1.32–1.05 (m, 7H), 1.20 (d, *J* = 6.2 Hz, 3H), 1.10 (m, 1H), 1.00 (d, *J* = 7.4 Hz, 3H), 0.99 (d, *J* = 7.0 Hz, 3H), 0.98 (d, *J* = 4.6 Hz, 3H), 0.88 (d, *J* = 6.9 Hz, 3H), 0.718 [0.724] (d, *J* = 6.0 Hz, 3H) (the counterparts of doubled signals in the ratio of about 1:1 are in brackets); ¹³C NMR (150 MHz, CDCl₃) δ 170.0

[170.2], 167.6, 144.49 [145.53], 139.48 [139.51], 135.03 [134.99], 132.9, 131.43 [131.41], 130.87 [130.84], 129.15 [129.21], 120.43 [120.38], 86.8 [86.7], 81.6, 77.2, 76.4, 73.3, 72.9, 71.52 [71.46], 70.6, 67.49 [67.46], 64.7, 59.12 [59.14], 55.712, 55.714, 55.6, 55.3, 42.43 [42.40] (2C), 41.3, 40.11, 40.09, 38.6, 37.1, 36.8, 35.0, 33.5, 33.2, 29.8, 29.3, 28.9, 24.2, 21.8, 19.7, 17.6, 15.70, 15.66, 12.1, 12.0, 10.00, 9.98 (the counterparts of doubled signals in the ratio of about 1:1 are in brackets); HRMS (ESI) *m/z* 886.6003, calcd for C₄₉H₈₅NO₁₁ [M+H]⁺ 886.6020.

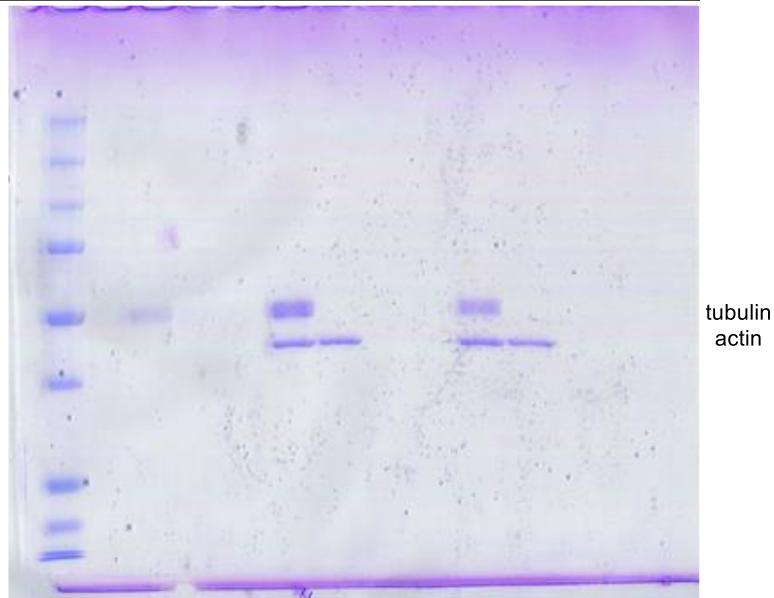
References

- 1) Nakamura, R.; Tanino, K.; Miyashita, M. *Org. Lett.* **2005**, *7*, 2929.
- 2) Kigoshi, H.; Ojika, M.; Ishigaki, T.; Suenaga, K.; Mutou, T.; Sakakura, A.; Ogawa, T.; Yamada, K. *J. Am. Chem. Soc.* **1994**, *116*, 7443; (b) Kigoshi, H.; Suenaga, K.; Mutou, T.; Ishigaki, T.; Atsumi, T.; Ishikawa, H.; Sakakura, A.; Ogawa, T.; Ojika, M.; Yamada, K. *J. Org. Chem.* **1996**, *61*, 5326.
- 3) (a) Marshall, J. A.; Schaaf, G. M. *J. Org. Chem.* 2001, *66*, 7825; (b) Marshall, J. A.; Schaaf, G. M. *J. Org. Chem.* **2002**, *67*, 2751.
- 4) Rychnovsky, S. D.; Rogers, B.; Yang, G. *J. Org. Chem.* **1993**, *58*, 3511.

Cytotoxic activity

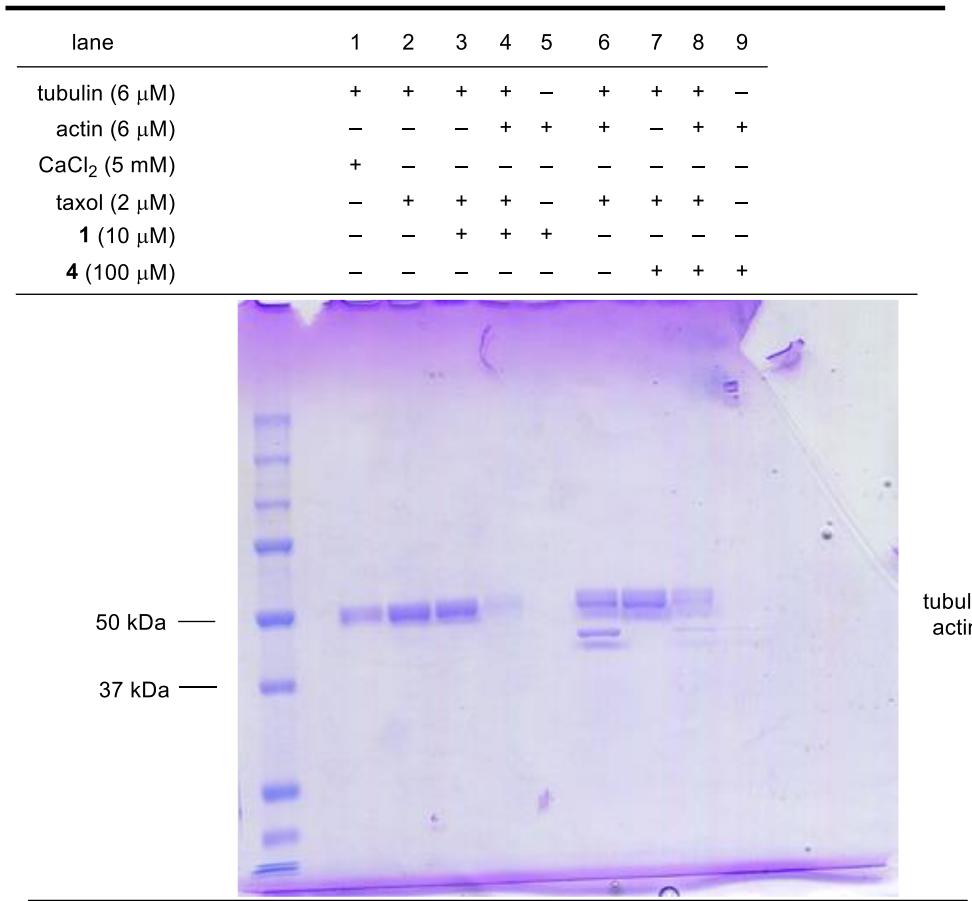
Stock cultures of HeLa S3 cells were maintained in Eagle's Minimum Essential Medium containing Earle's Balanced Salts and 10% fetal bovine serum and 1% antibiotic-antimycotic mixed stock solution at 37 °C under 5% CO₂. For the purpose of the experiment, 2×10⁴ cells suspended in 100 uL of medium per well were plated in 96-well plate. After 12 h incubation at 37 °C under 5% CO₂ to allow cell attachment, compounds in 100 uL of medium were added to the well at different concentrations and incubated for 96 h under the same conditions. After 3 h of the MTT addition to each well, the medium/MTT mixtures were removed, and the formazan crystals formed were dissolved in 150 uL of DMSO per well. After 30 min, optical absorbance at 540 nm were measured with a microplate reader. The cytotoxic effects of each compound were obtained as IC₅₀ values.

Actin depolymerizing activity


To a solution of actin (3 μ M, from rabbit skeletal muscle, Cytoskeleton) in G-buffer (200 μ L) was added a 0.12 M solution of MgCl₂ (1.6 μ L), and the mixture was stirred at 25 °C for 30 min to give F-actin solution. To the solutions of F-actin were added samples in DMSO, and the resulting mixtures were stirred at 25 °C for 30 min and then ultracentrifuged (60000 rpm, 22 °C, 1 h). The supernatants and the precipitates were dissolved in 1 \times SDS buffer (30 μ L, Sigma) and boiled at 95 °C for 5 min. SDS-PAGE was performed by using a precast 10% polyacrylamide gel (ATTO), and the gels were stained with a Quick-CBB kit (Wako).

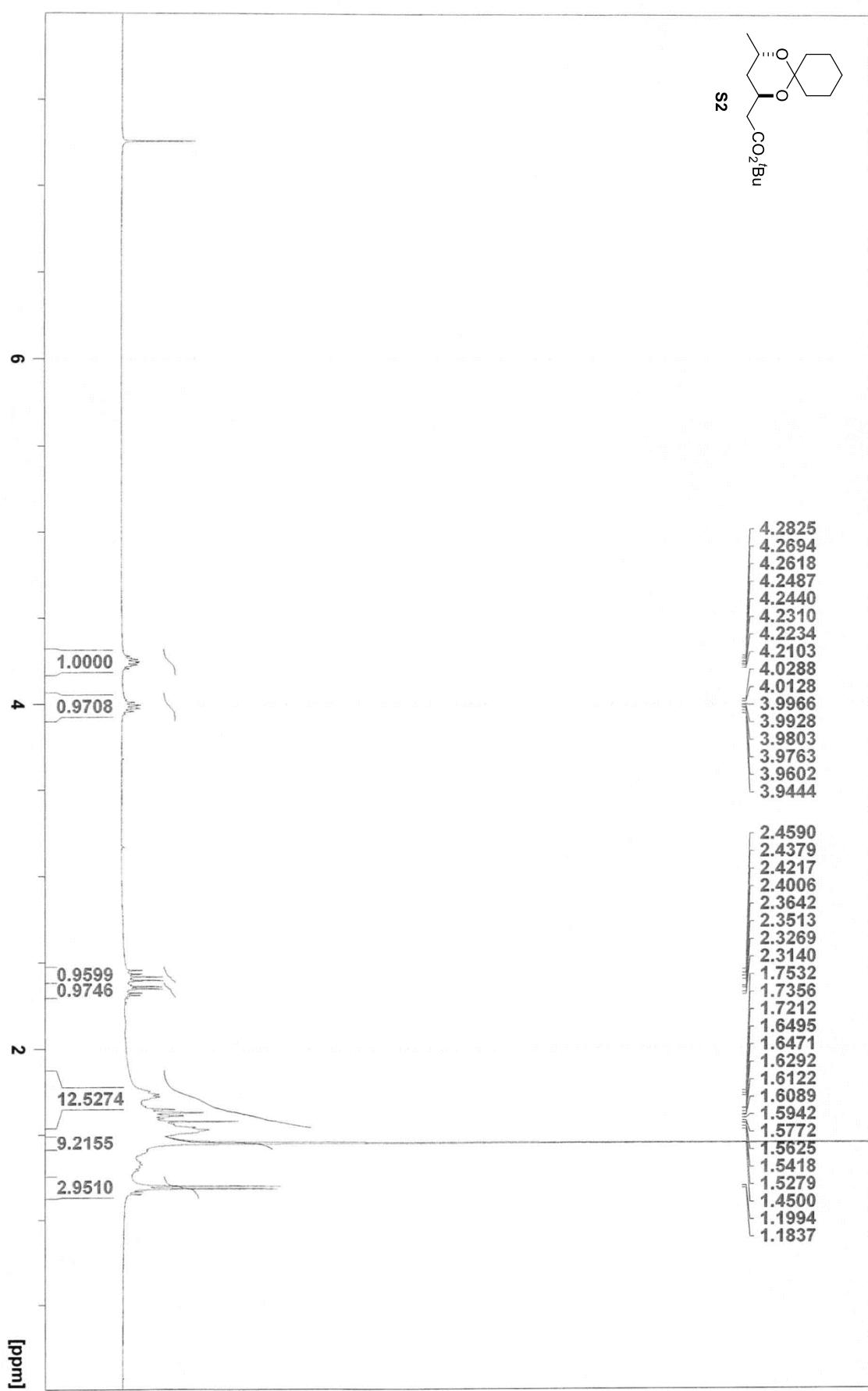
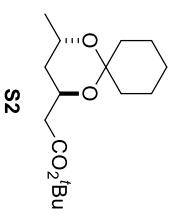
Tubulin depolymerizing assay

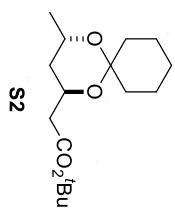
To a solution of actin (6 μ M, from rabbit skeletal muscle, Cytoskeleton) in BRB80 (50 μ L) were added samples (1 mM or 10 mM in DMSO, 1.0 μ L), tubulin in BRB80 (50 μ L), H₂O (0.5 μ L), and taxol (2 mM in DMSO, 0.3 μ L). The resulting mixtures were stood at 37 °C for 30 min and then ultracentrifuged (60000 rpm, 37 °C, 1 h). The supernatants and the precipitates were dissolved in 1 \times SDS buffer (20 μ L, Sigma) and boiled at 95 °C for 5 min. SDS-PAGE was performed by using a precast 10% polyacrylamide gel (ATTO), and the gels were stained with a Quick-CBB kit (Wako).


*When the samples were not added, the same amount of the corresponding solution was added.

lane	1	2	3	4	5	6	7	8	9
tubulin (6 μ M)	+	+	+	+	-	+	+	+	-
actin (6 μ M)	-	-	-	+	+	+	-	+	+
CaCl ₂ (5 mM)	+	-	-	-	-	-	-	-	-
taxol (2 μ M)	-	+	+	+	-	+	+	+	-
1 (10 μ M)	-	-	+	+	+	-	-	-	-
4 (100 μ M)	-	-	-	-	-	-	+	+	+

Figure S1. SDS-PAGE of the supernatants

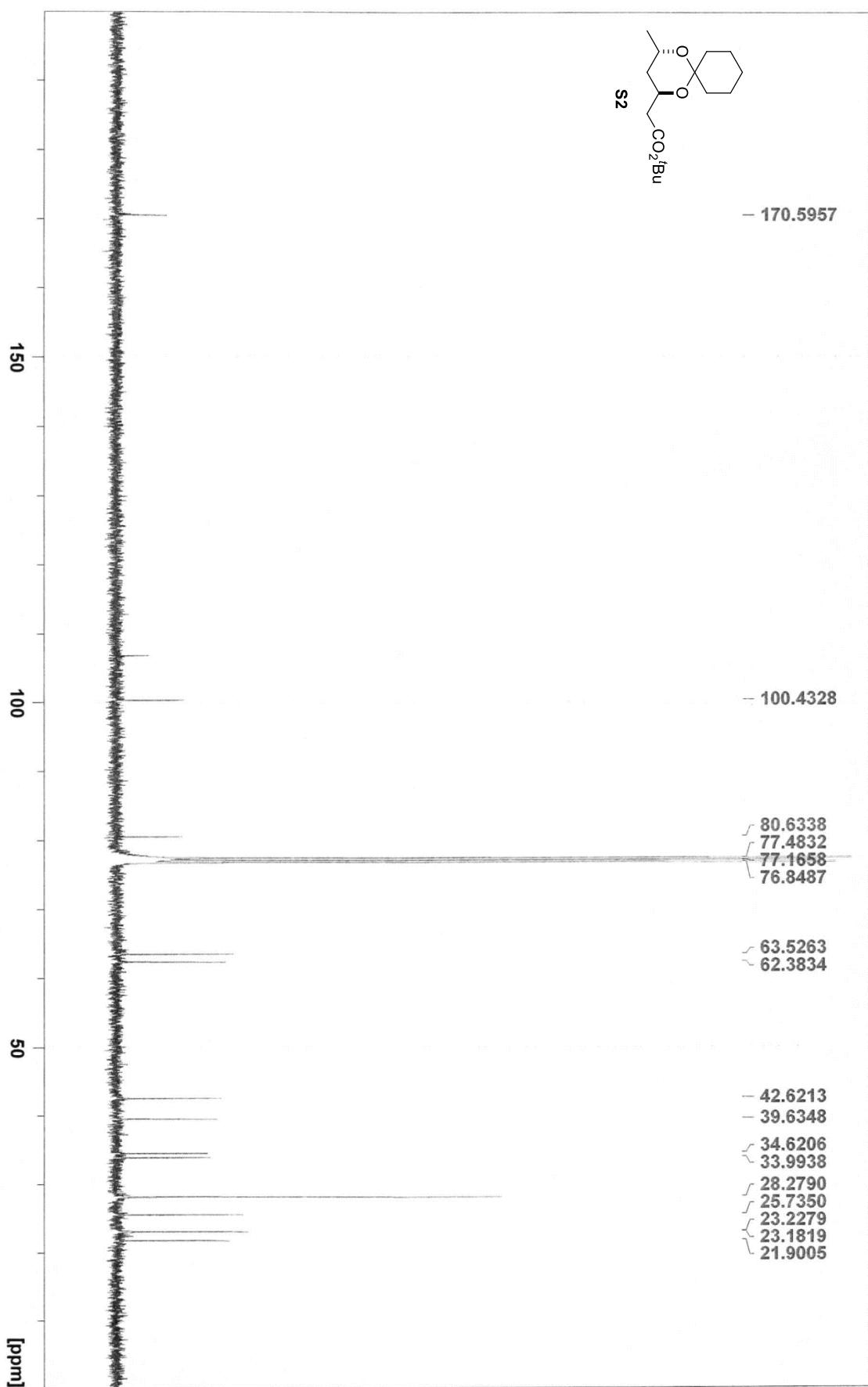


Tubulin was polymerized with taxol in the presence of actin and/or **1** or **4**, and then precipitated by ultracentrifugation. Proteins in the supernatant and the precipitate were analyzed by SDS-PAGE, and detected with CBB stain. Depolymerized protein was detected in the supernatant fraction.

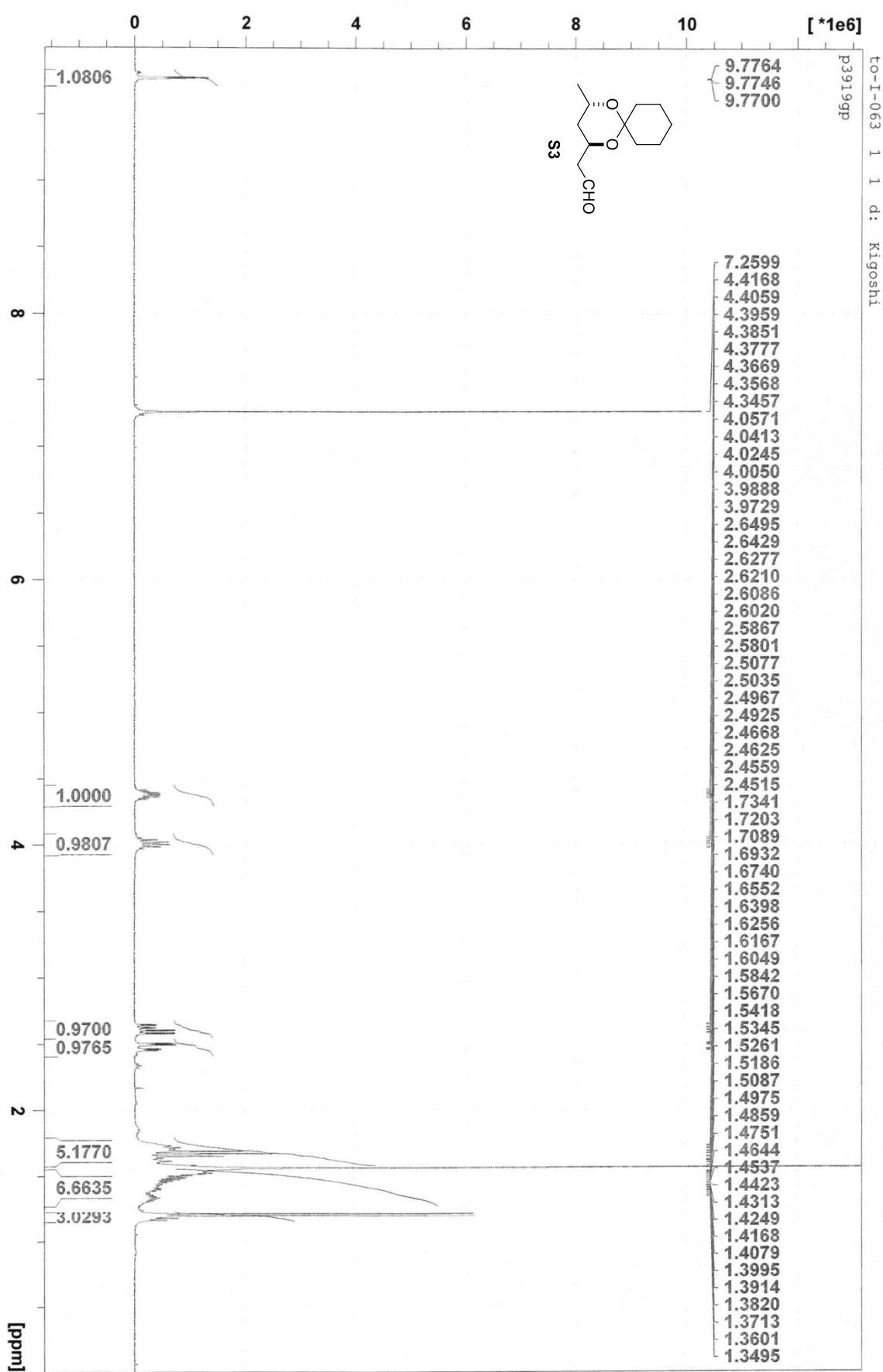

Figure S2. SDS-PAGE of the preipitates

Tubulin was polymerized with taxol in the presence of actin and/or **1** or **4**, and then precipitated by ultracentrifugation. Proteins in the supernatant and the precipitate were analyzed by SDS-PAGE, and detected with CBB stain. Polymerized protein was detected in the precipitate fraction.

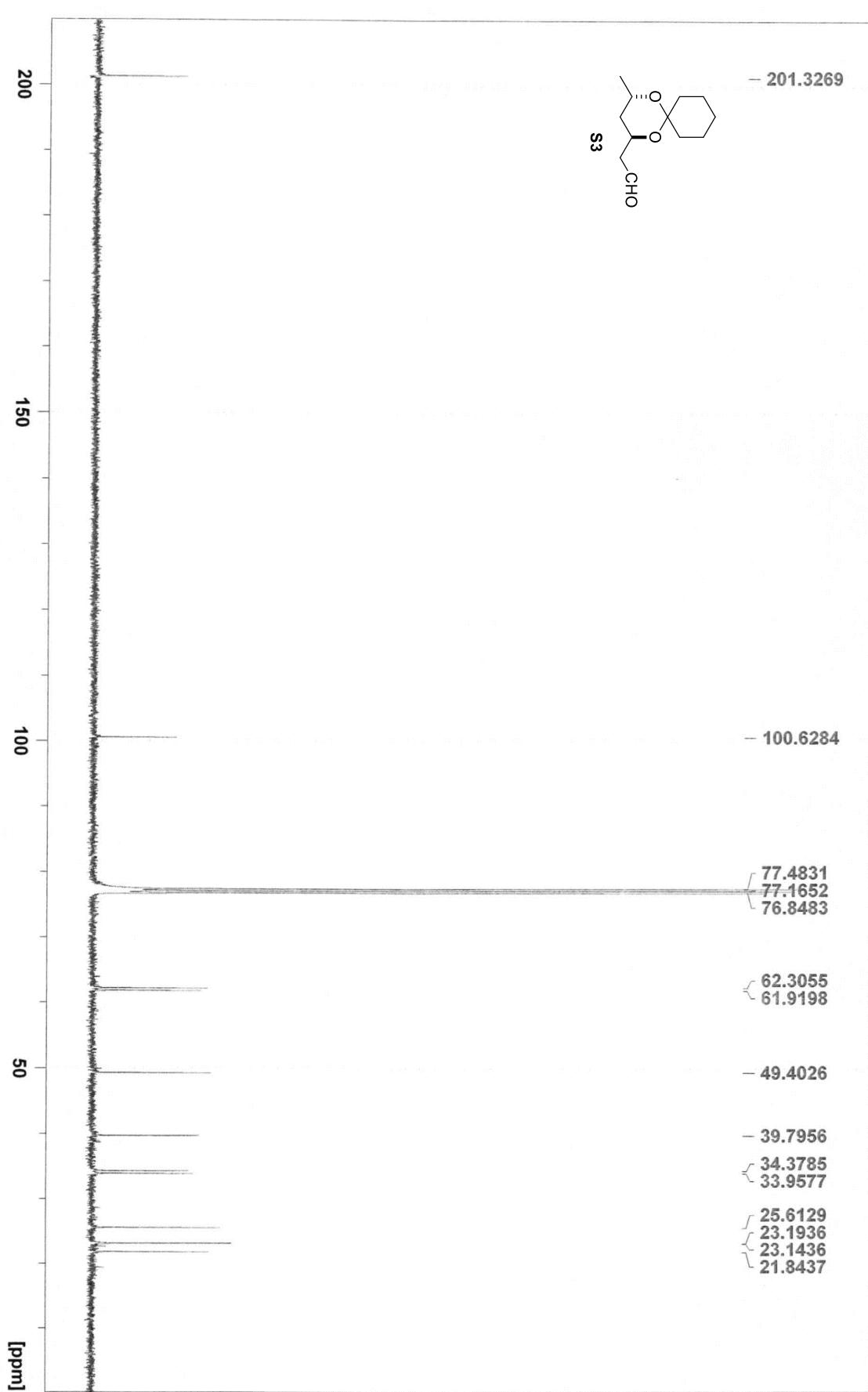
to-II-74-2 1 1 d: kigoshi

to-II-74-2-carbon 1 1 d: kiloshi

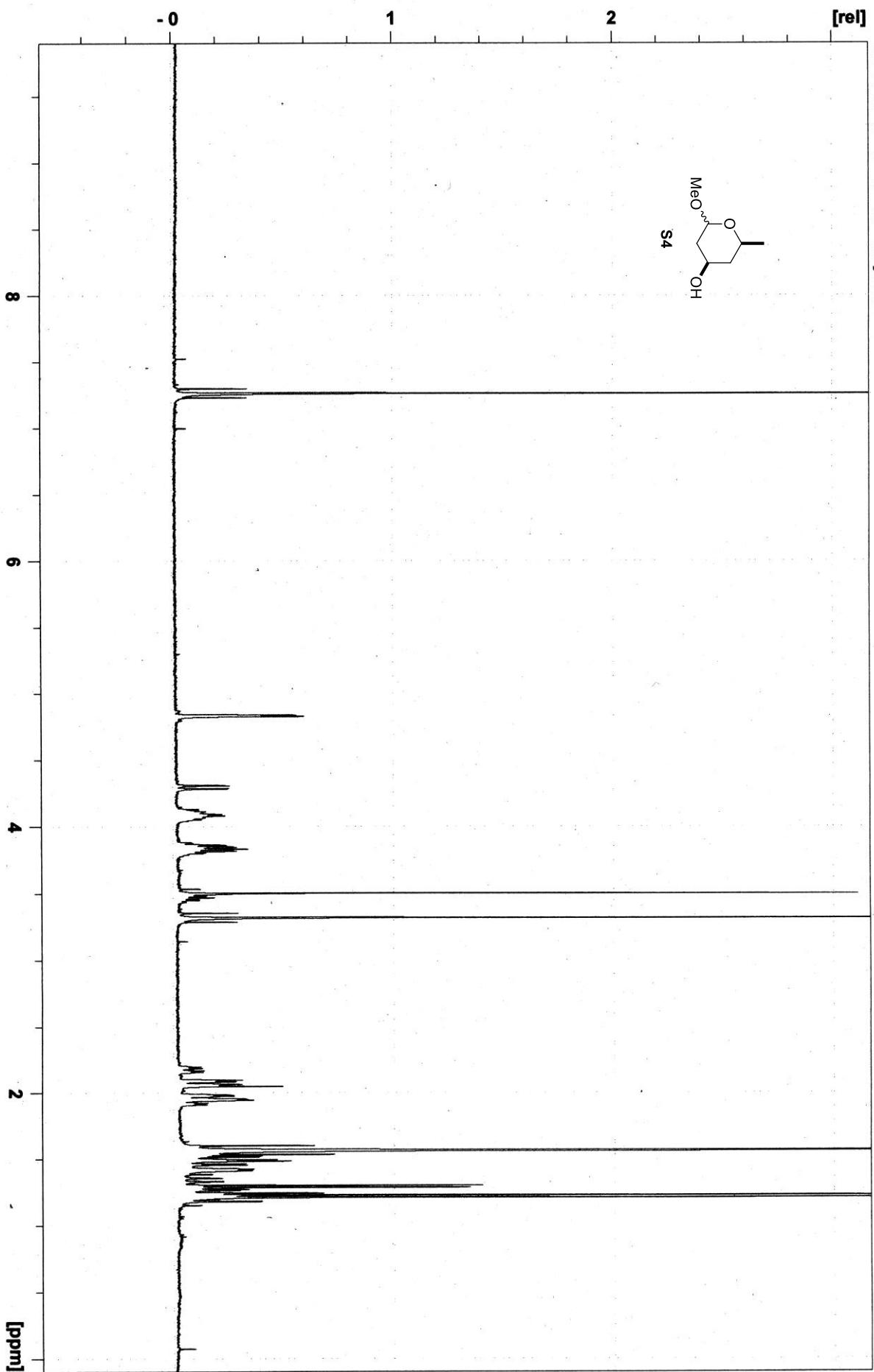
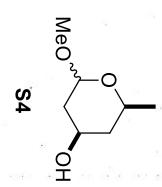

- 170.5957


- 100.4328

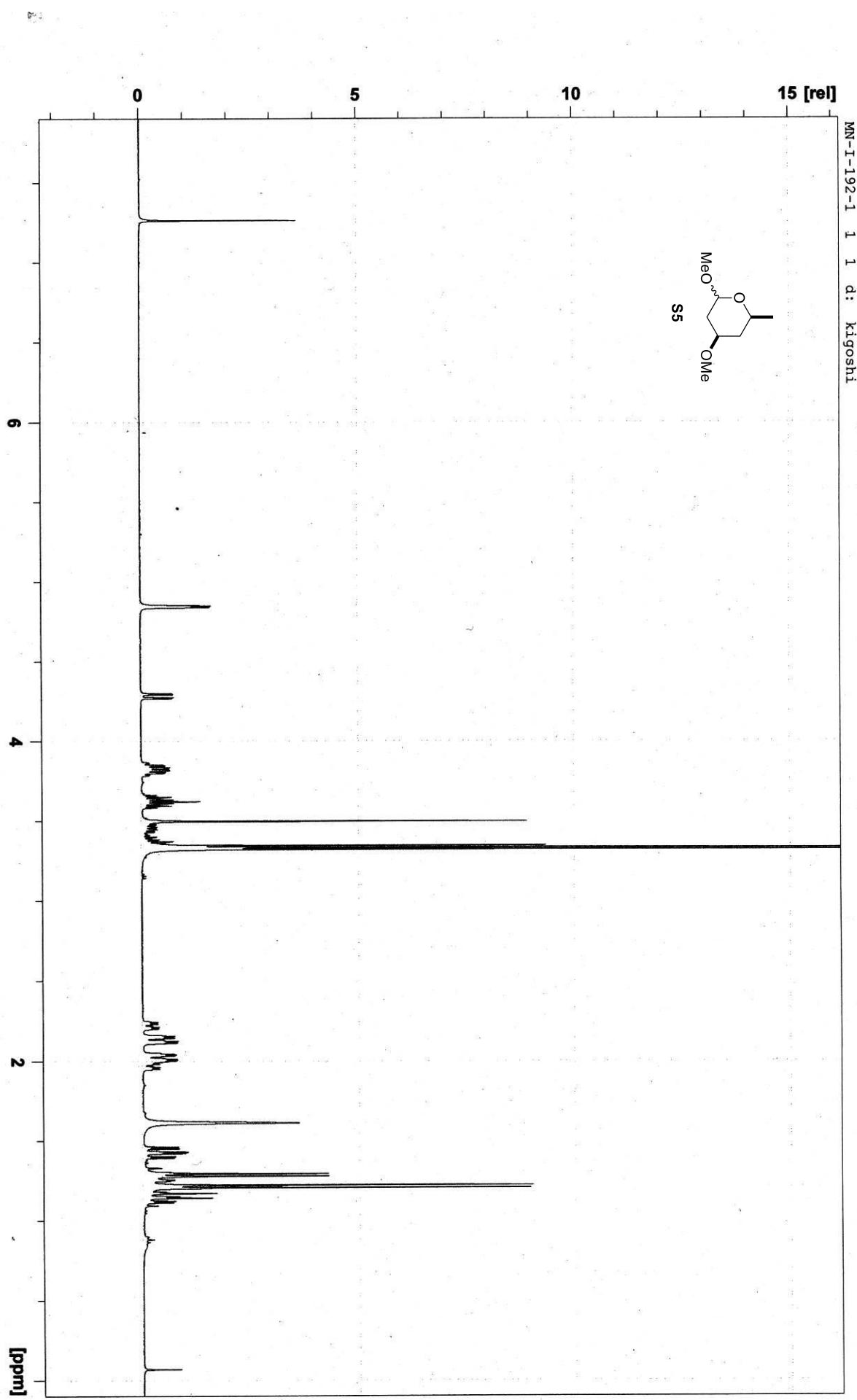
80.6338
77.4832
77.1658
76.8487


63.5263
62.3834

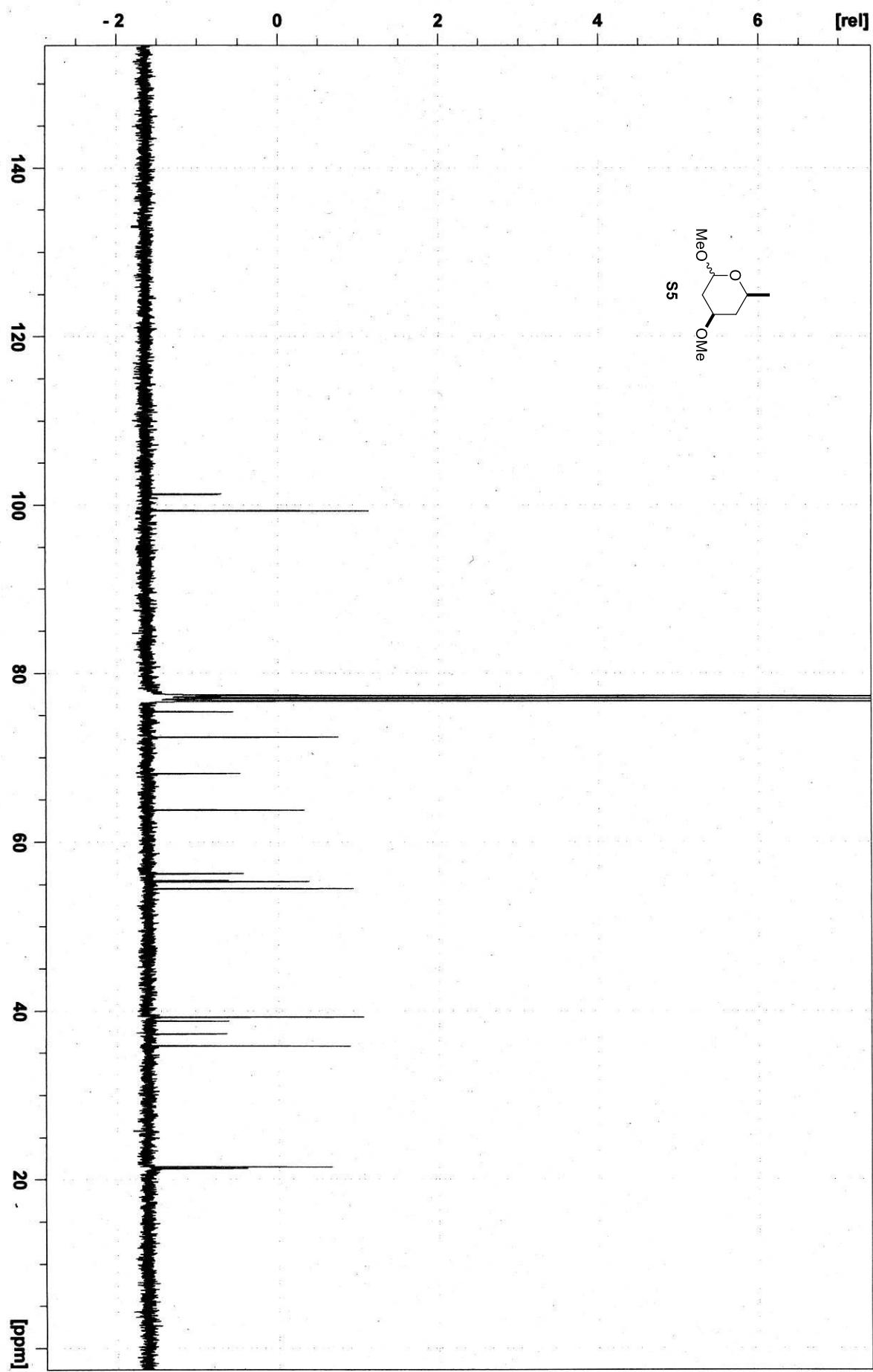
- 42.6213
- 39.6348
34.6206
33.9938
28.2790
25.7350
23.2279
23.1819
21.9005

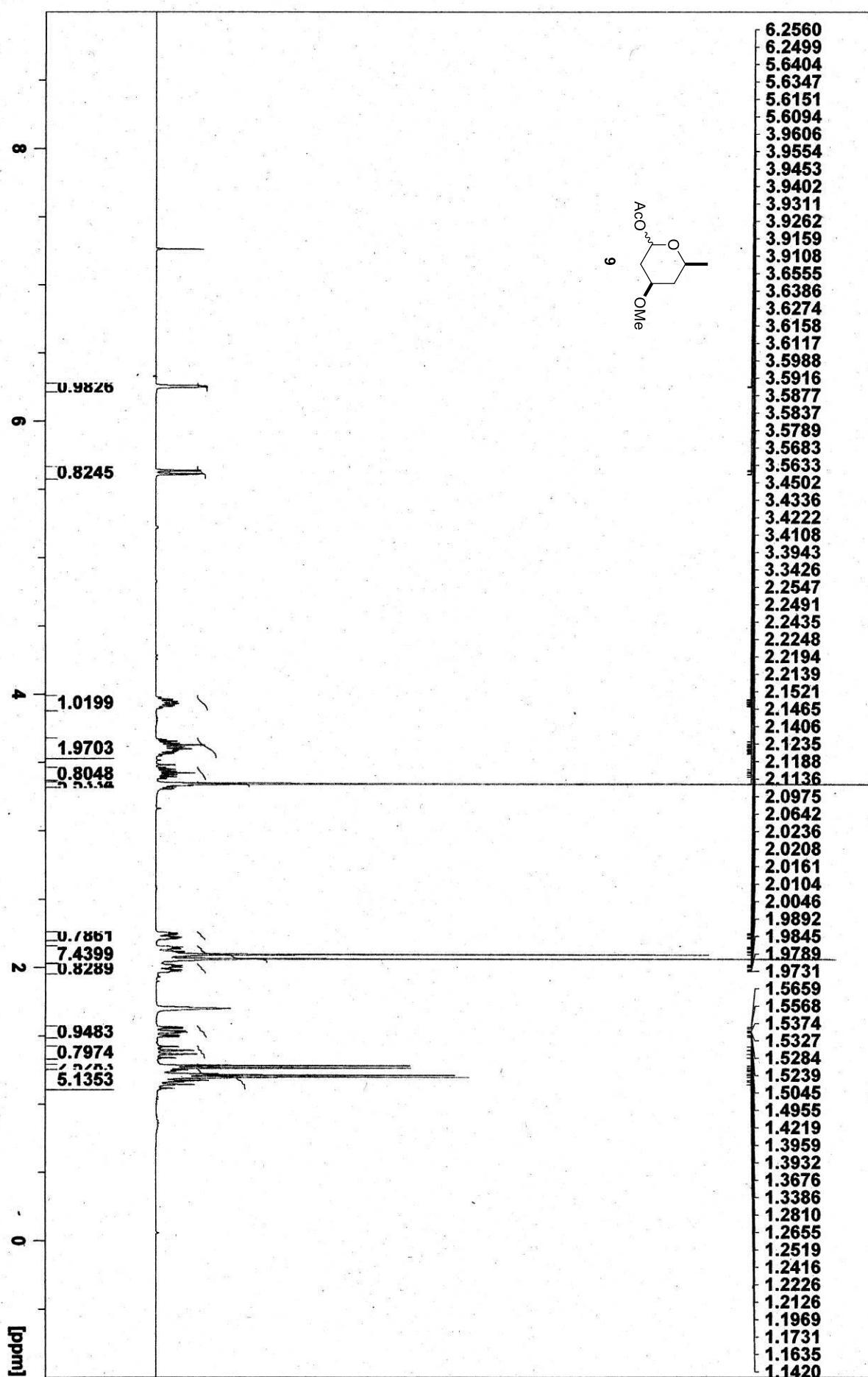



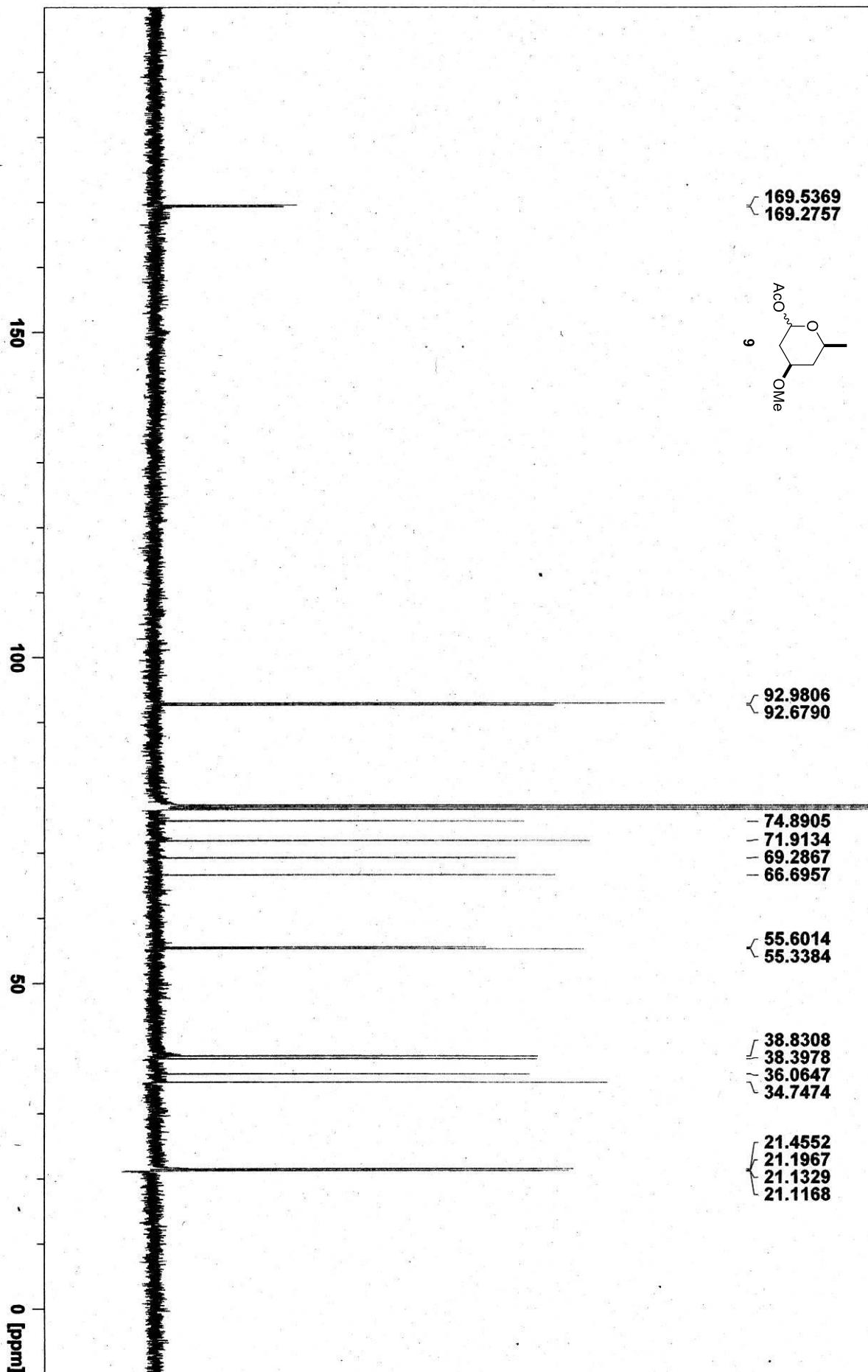
to-III-75-1-carbon-take2 1 1 d: kigoshi

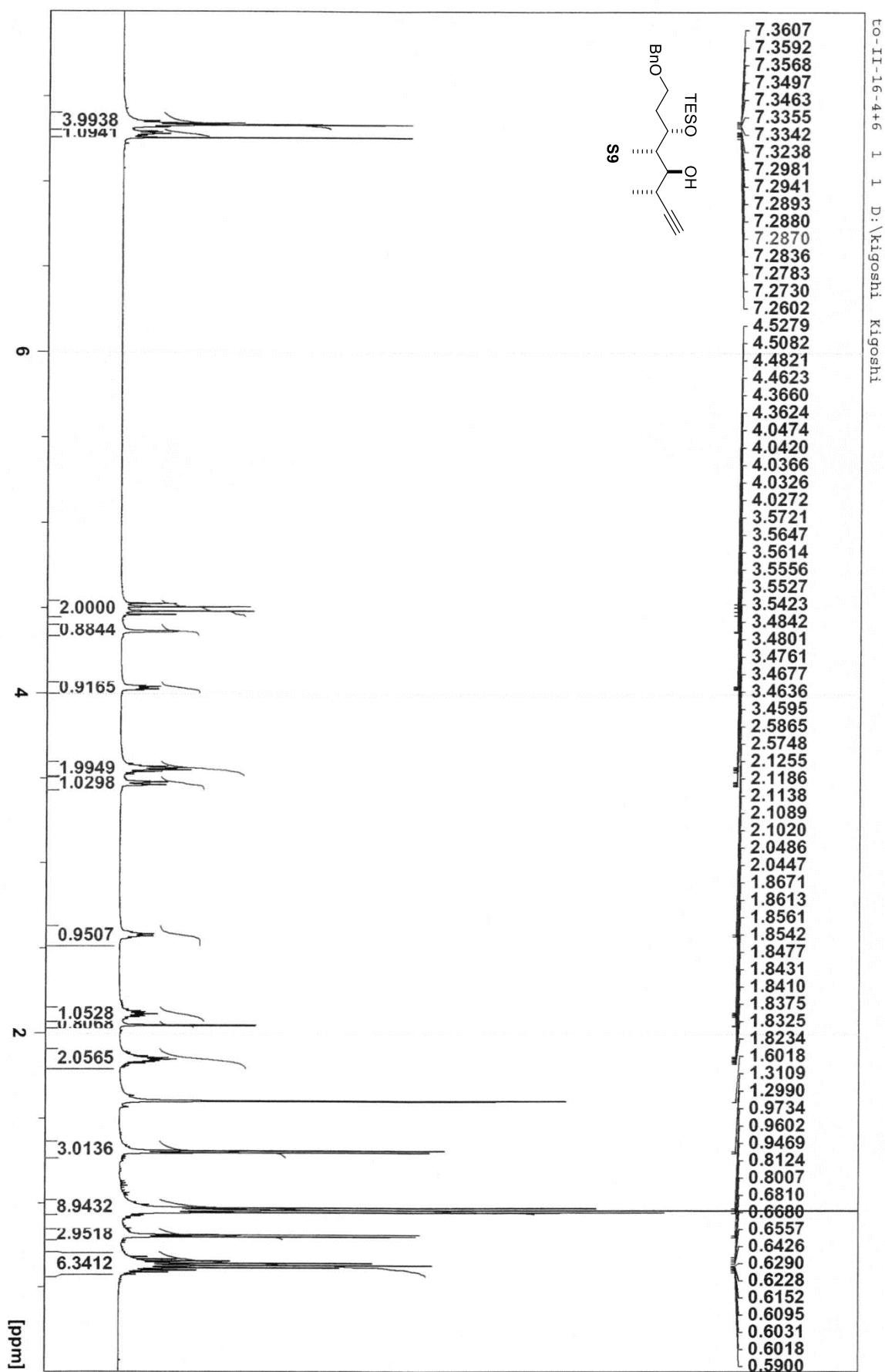


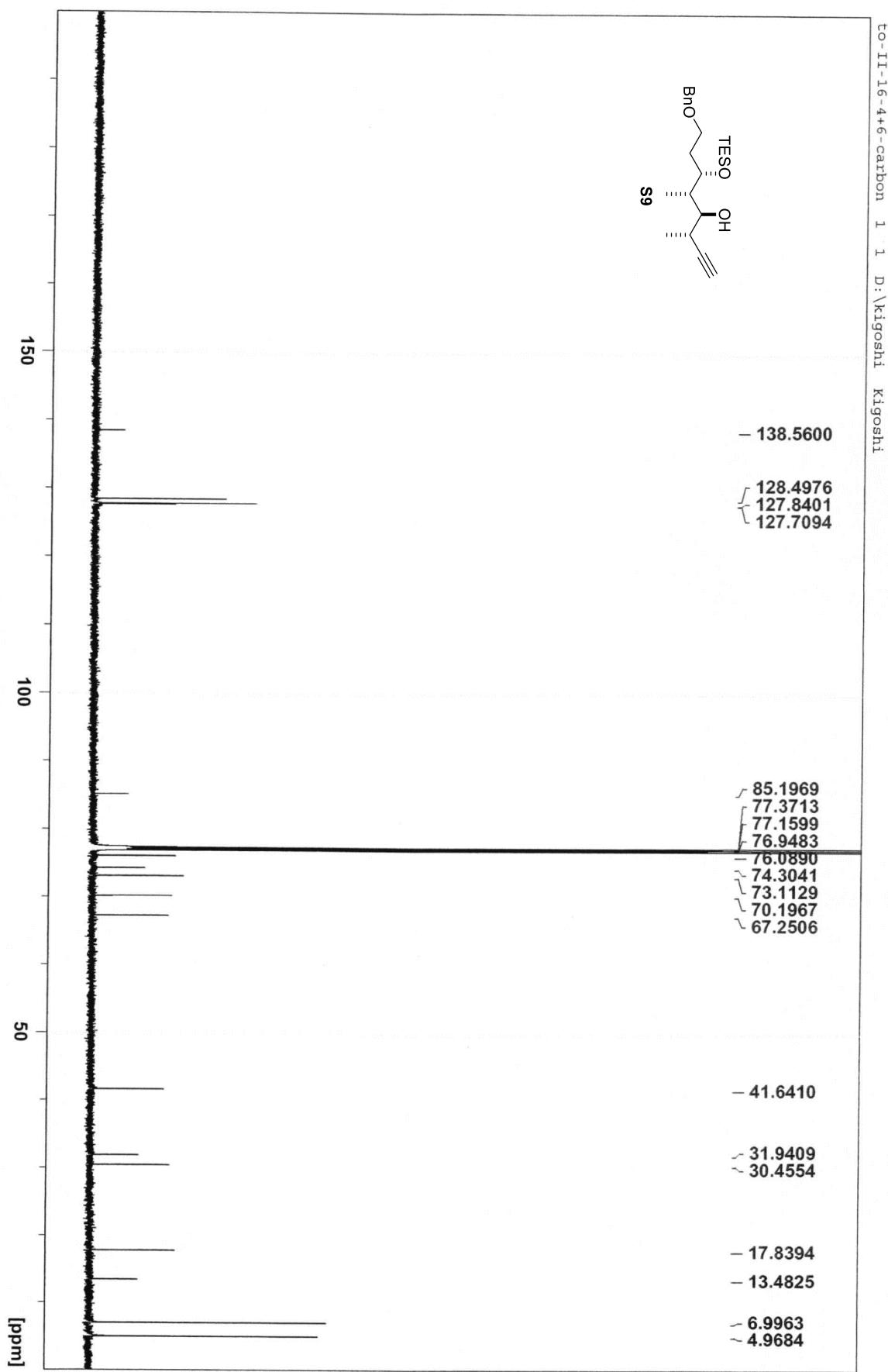
MN-I-85-3 1 1 d: kigoshi

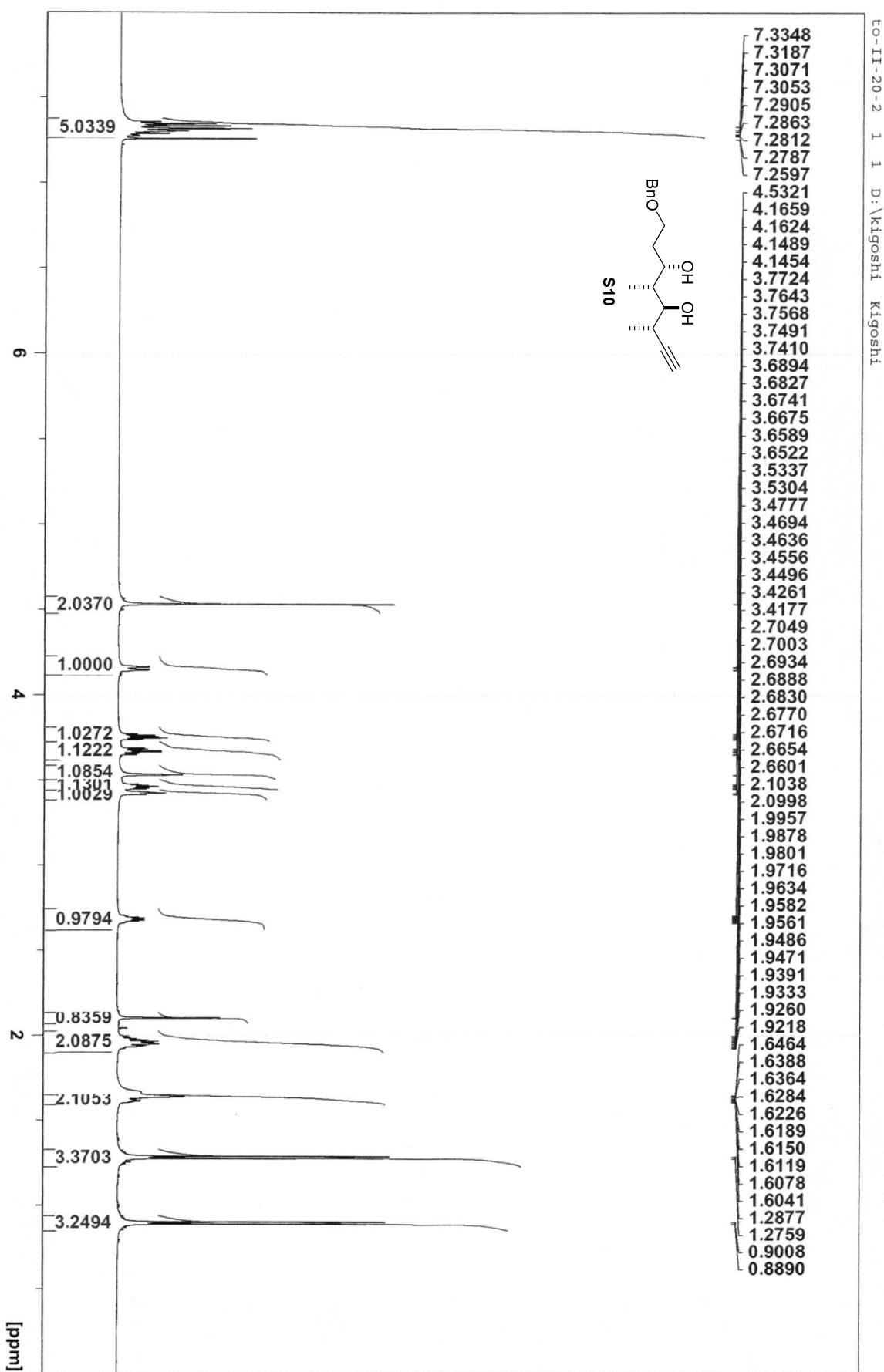

[rel]

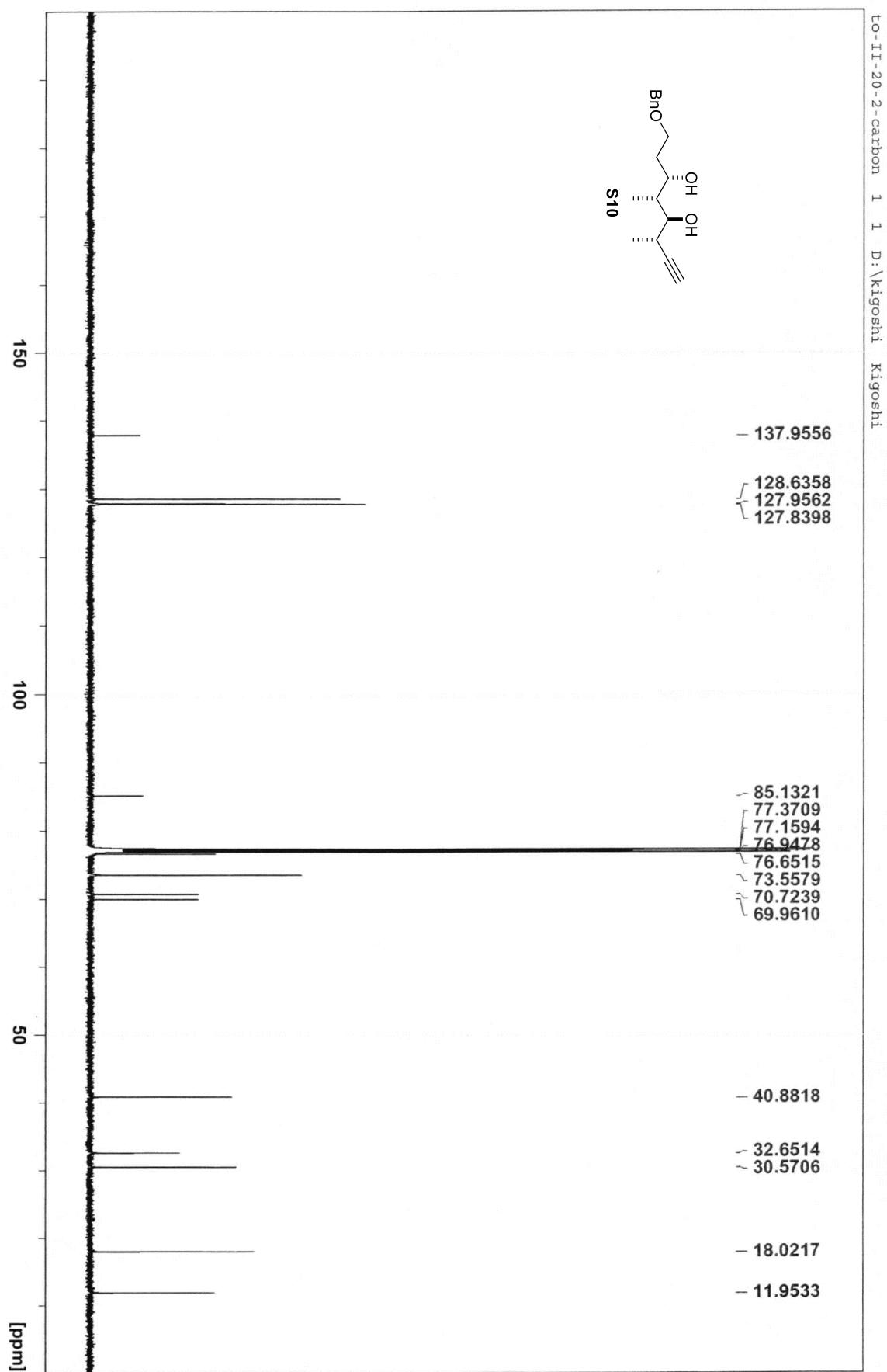


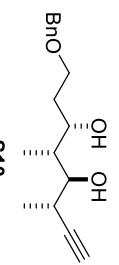

MN-I-192-1 2 1 d: kigoshi




VMT-MN-1-118-2 1 1 d: kigoshi




YMI-MN-I-118-2-carbon 1 1 d: kigoshi

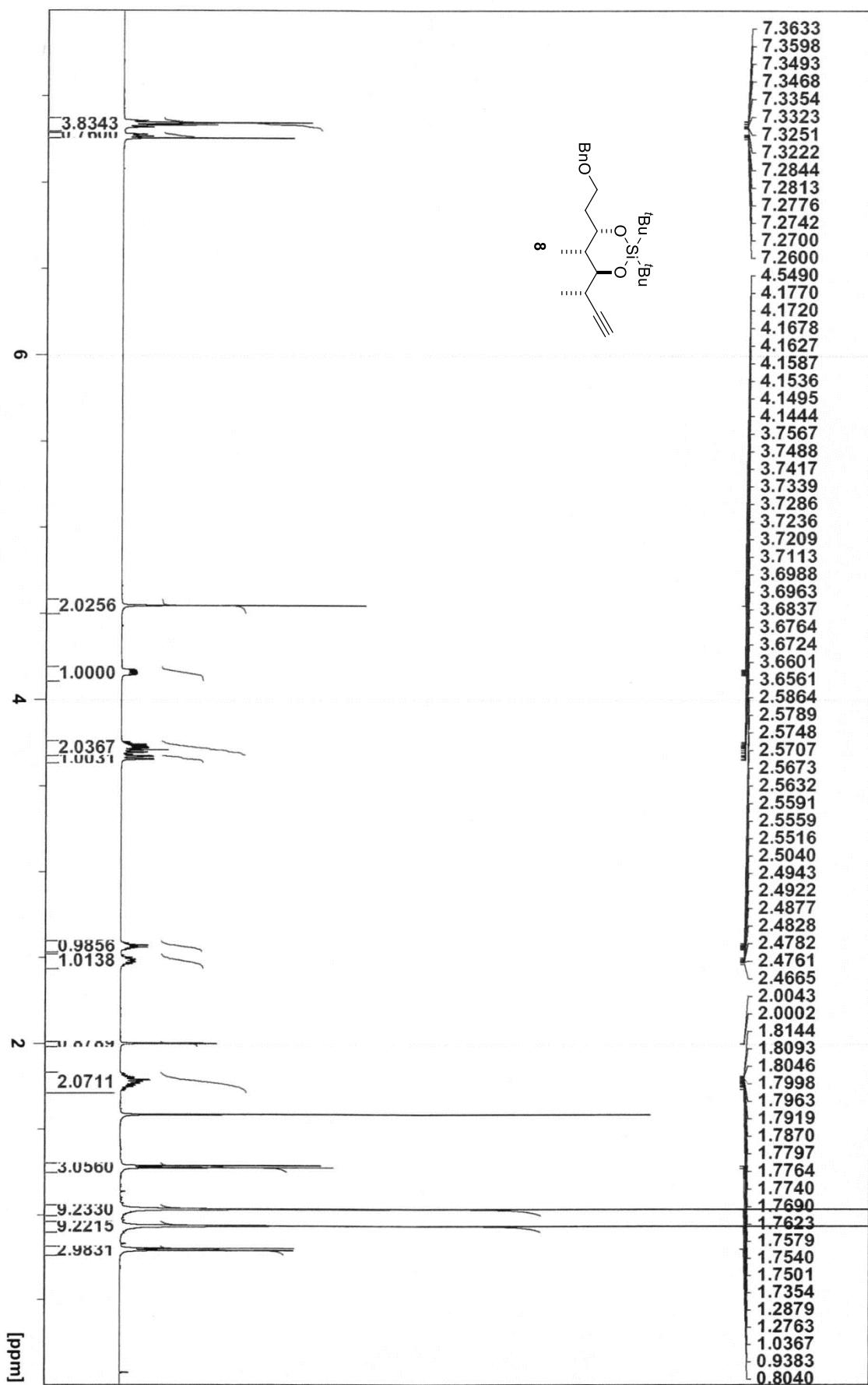


to-11-20-2-carbon 1 1 D:\kigoshi Kigoshi

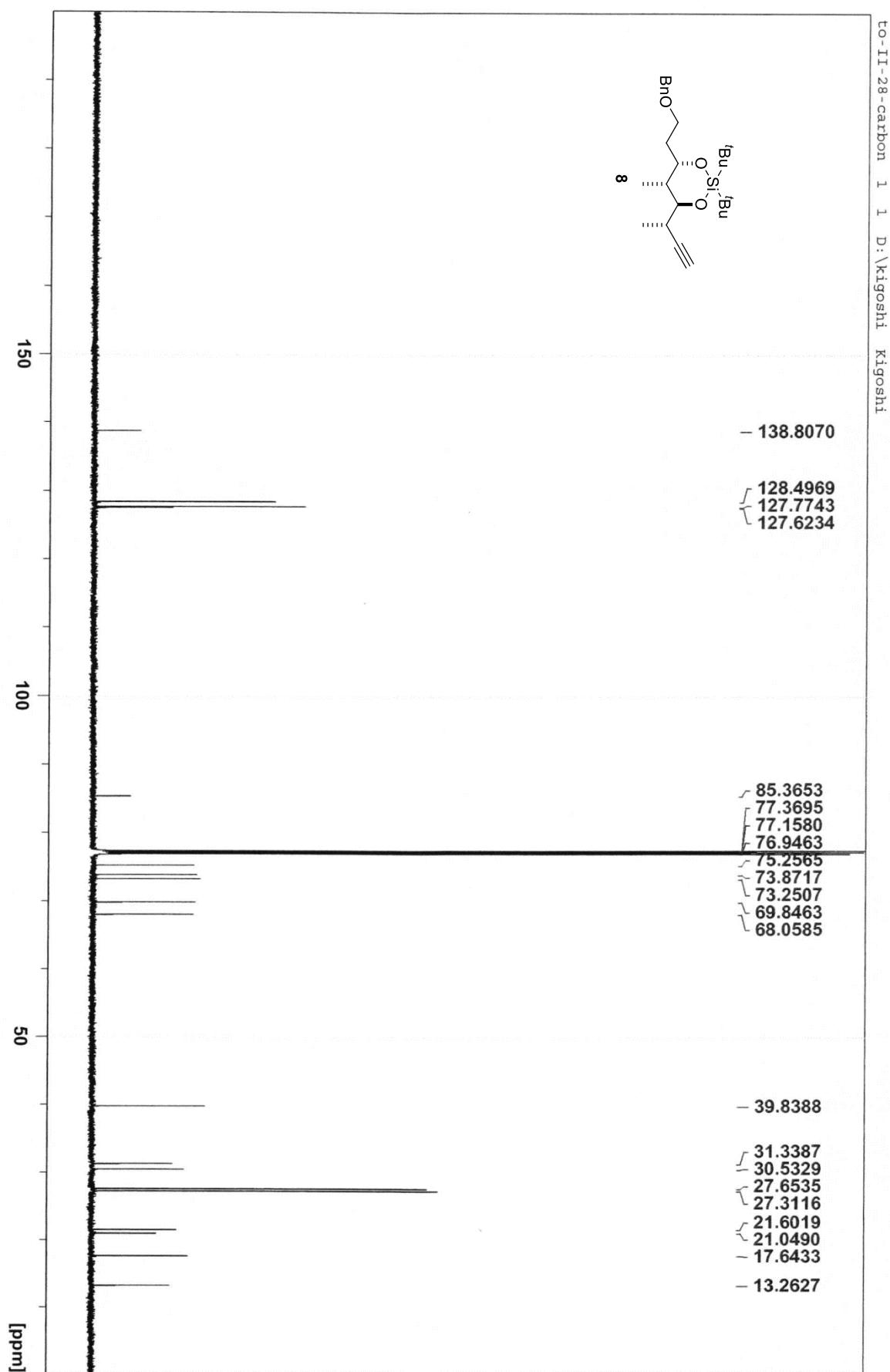
5
10

– 137.9556

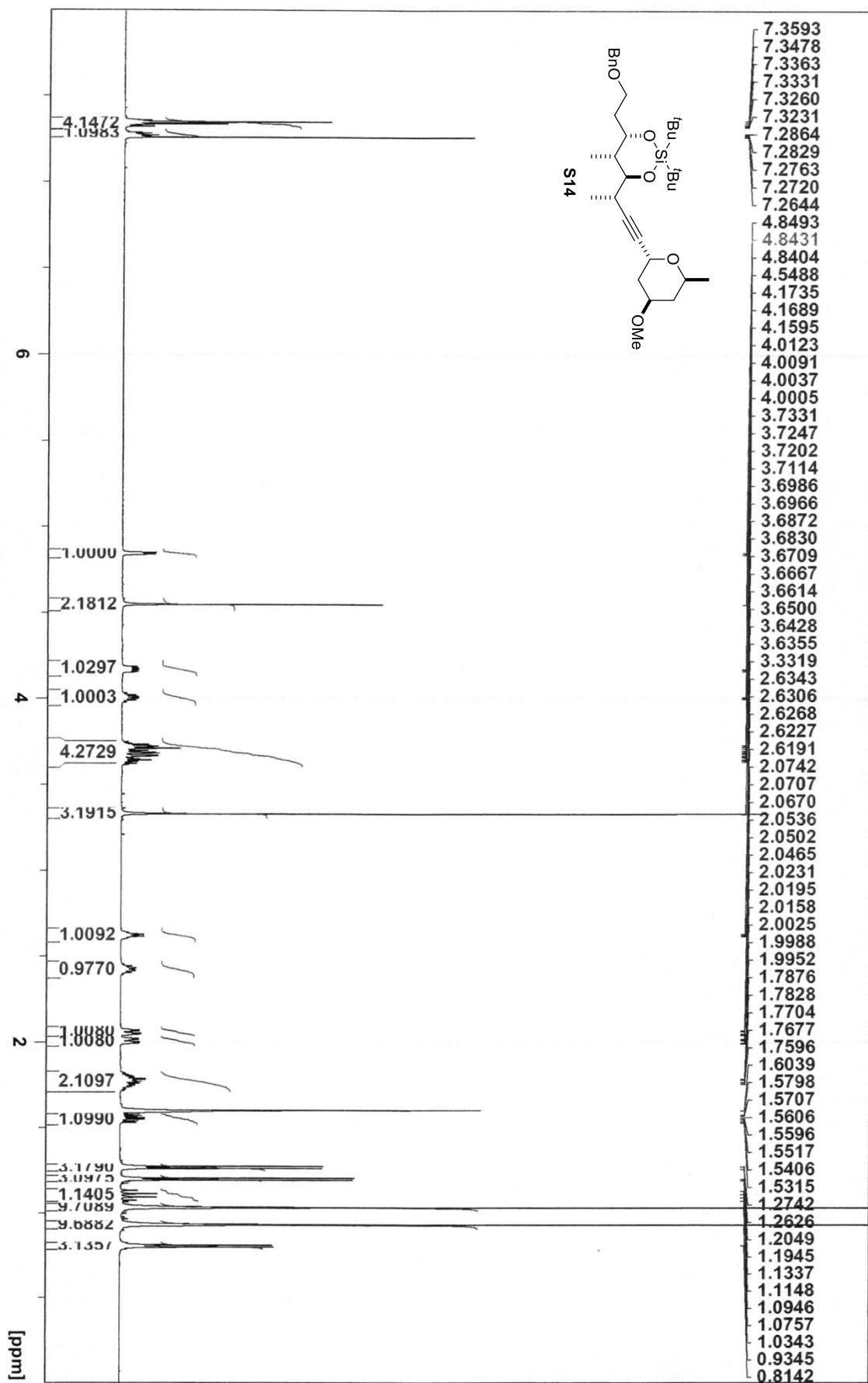
85.1321
77.3709
77.1594
~~76.9478~~
76.6515
73.5579
~~70.7239~~
69.9610

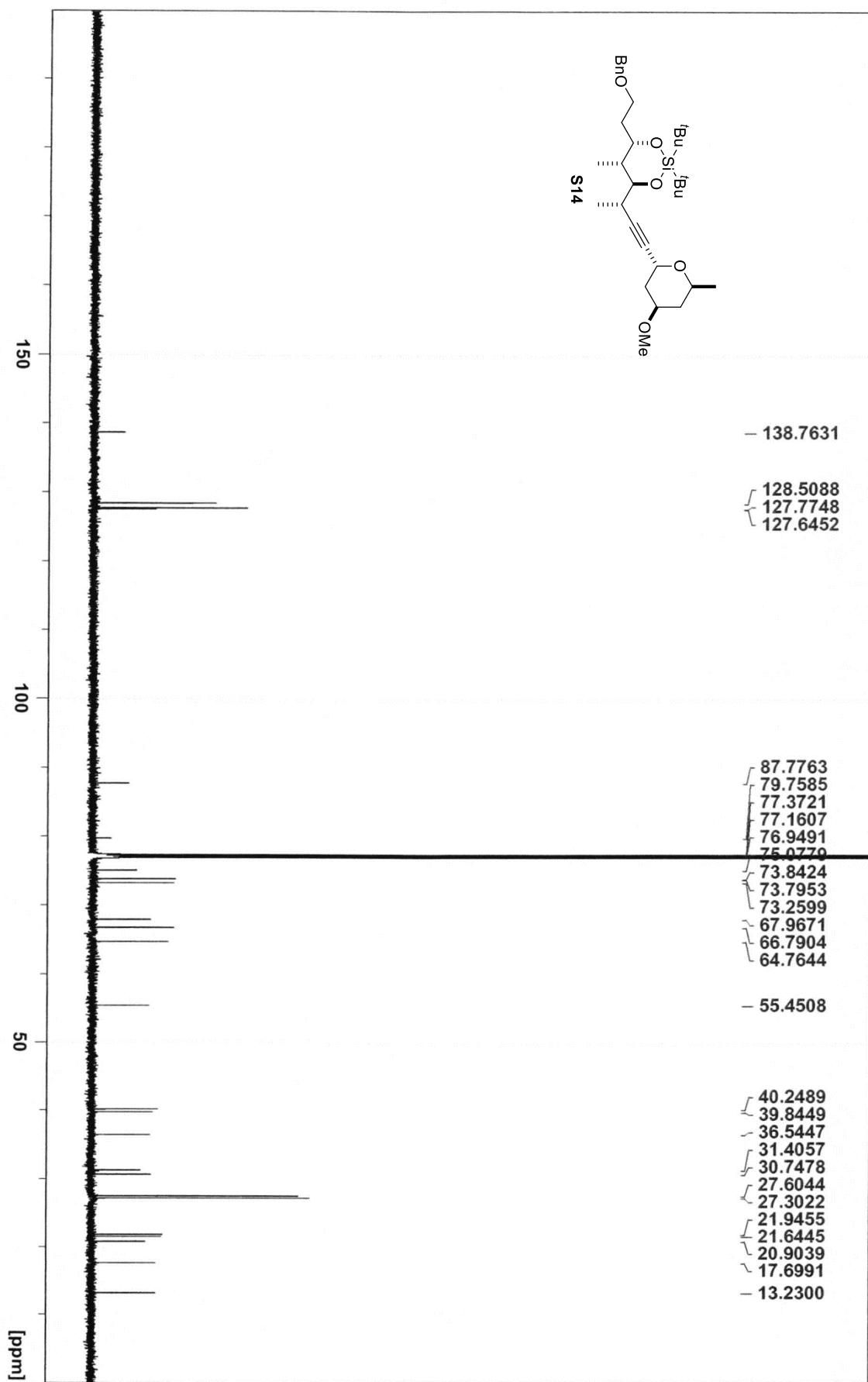

- 40.8818
- 32.6514
- 30.5706

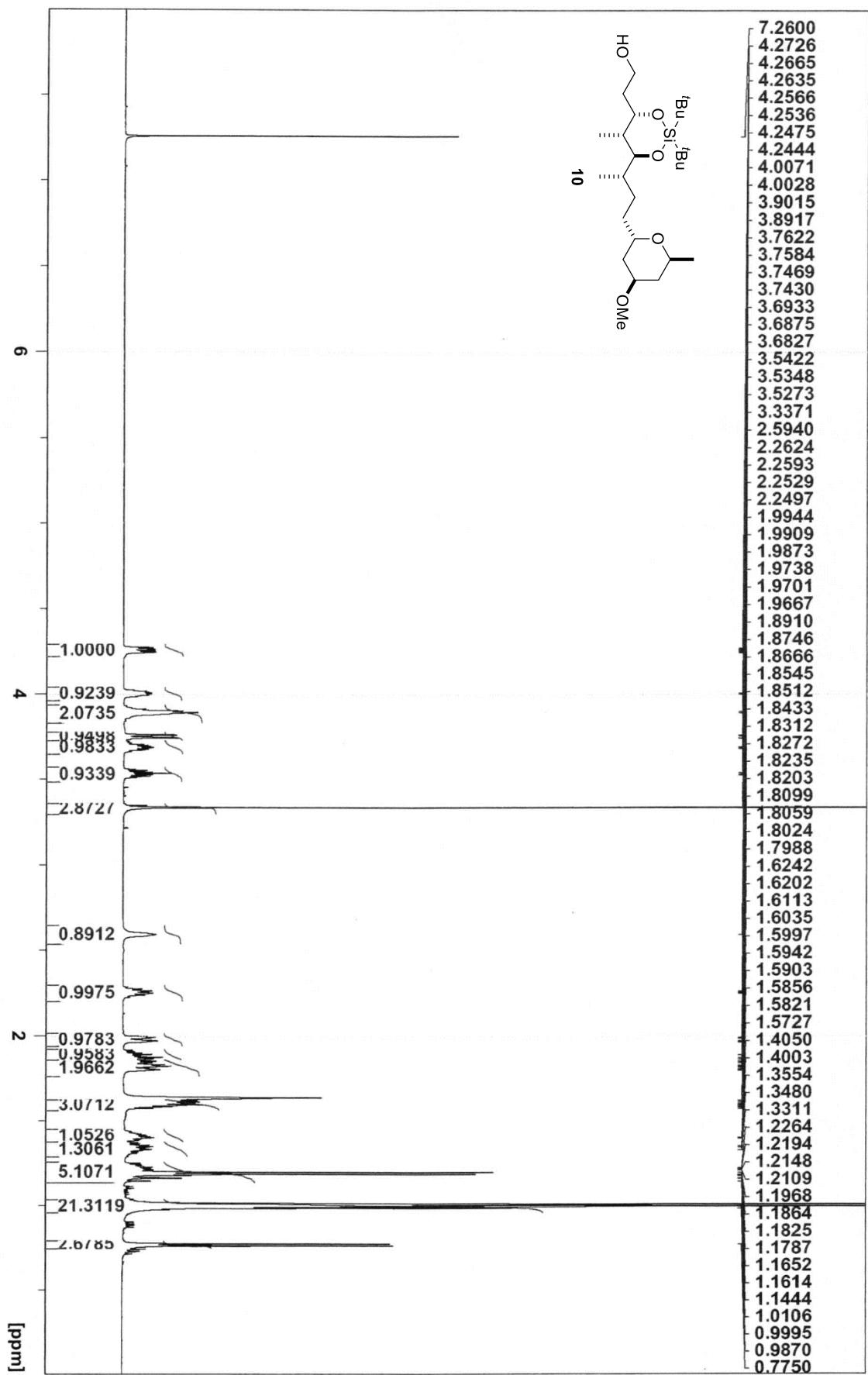
– 18.0217
– 11.9533

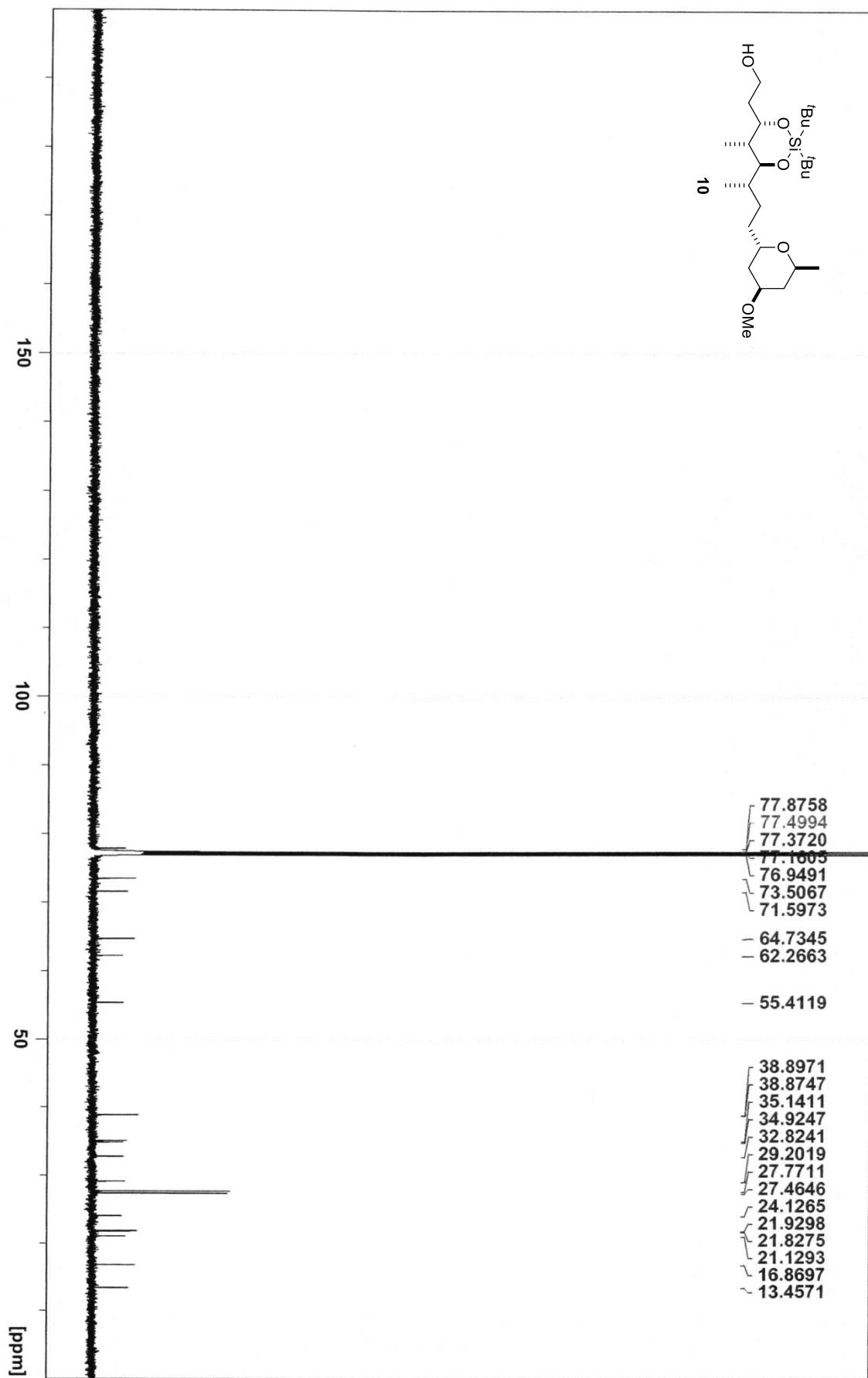

[ppm]

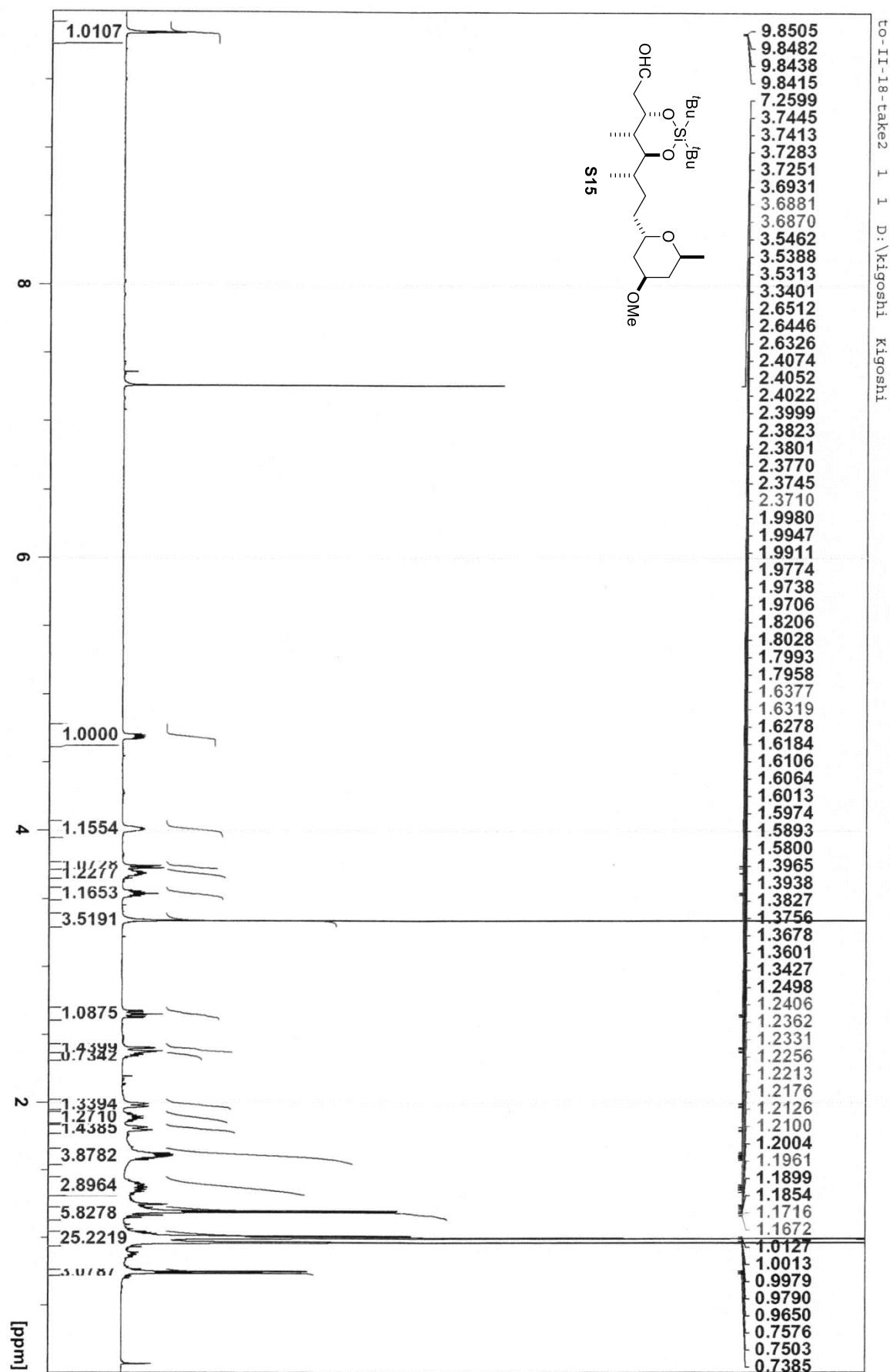
97

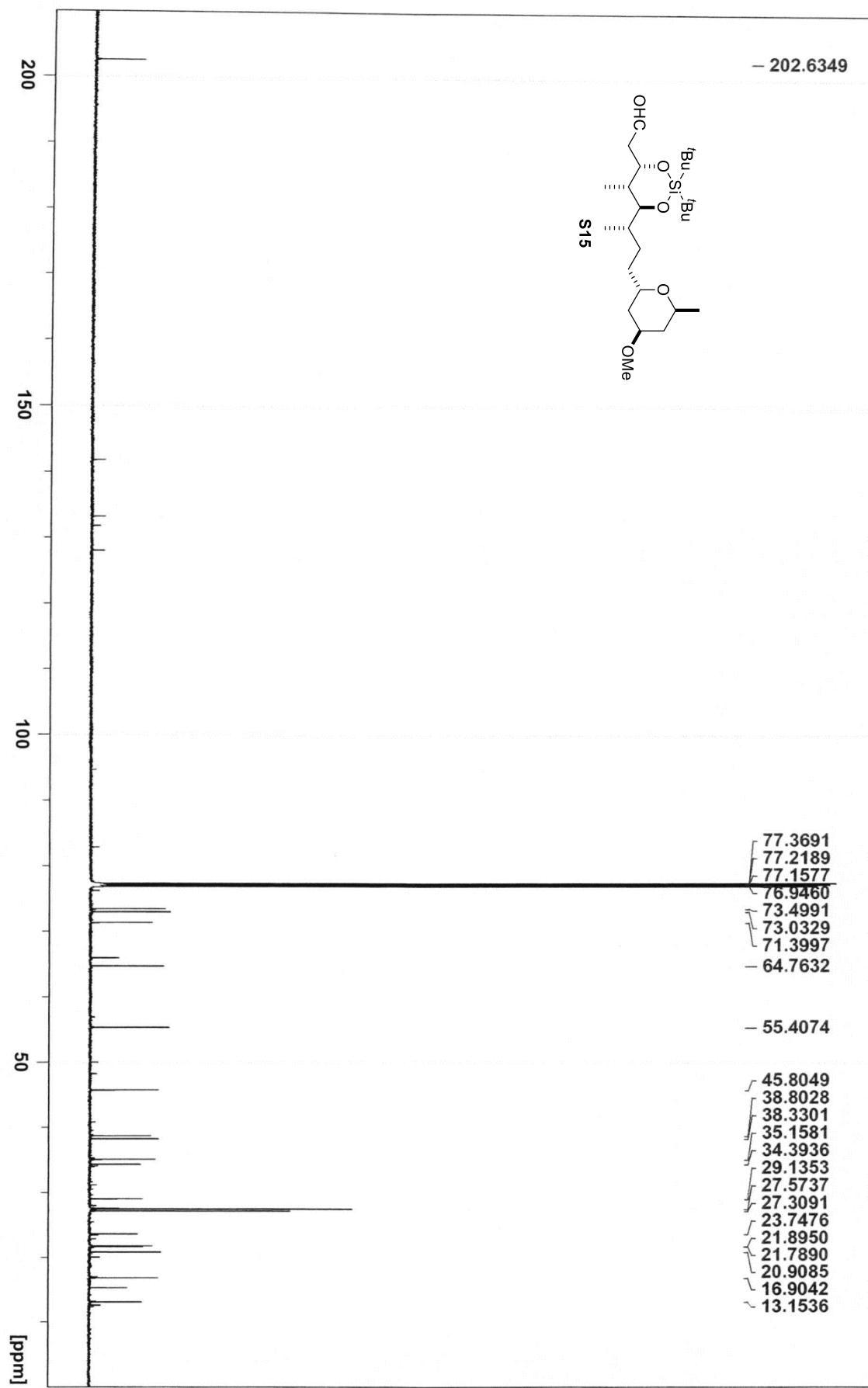

to-III-28 1 1 D:\kigoshi Kigoshi

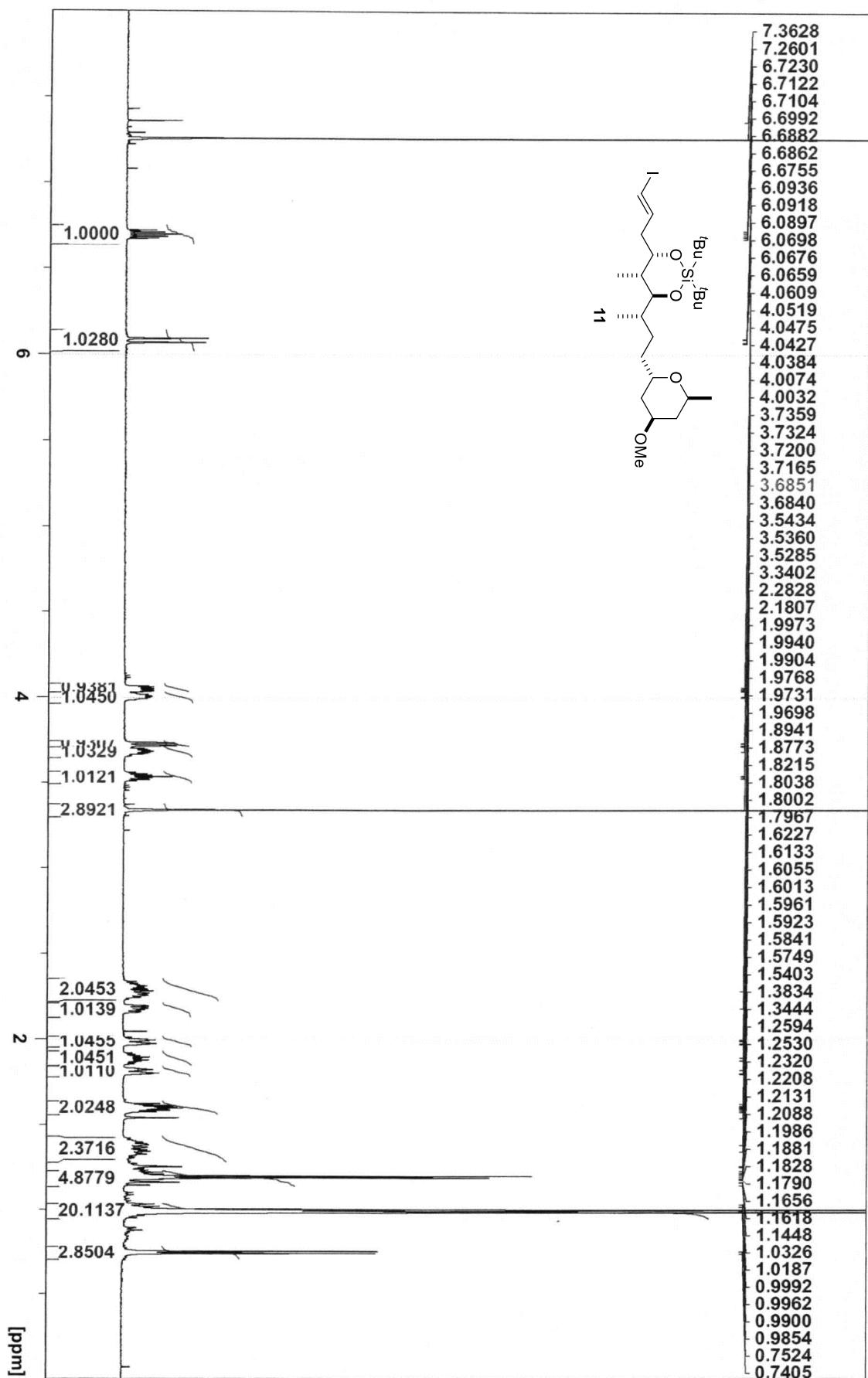


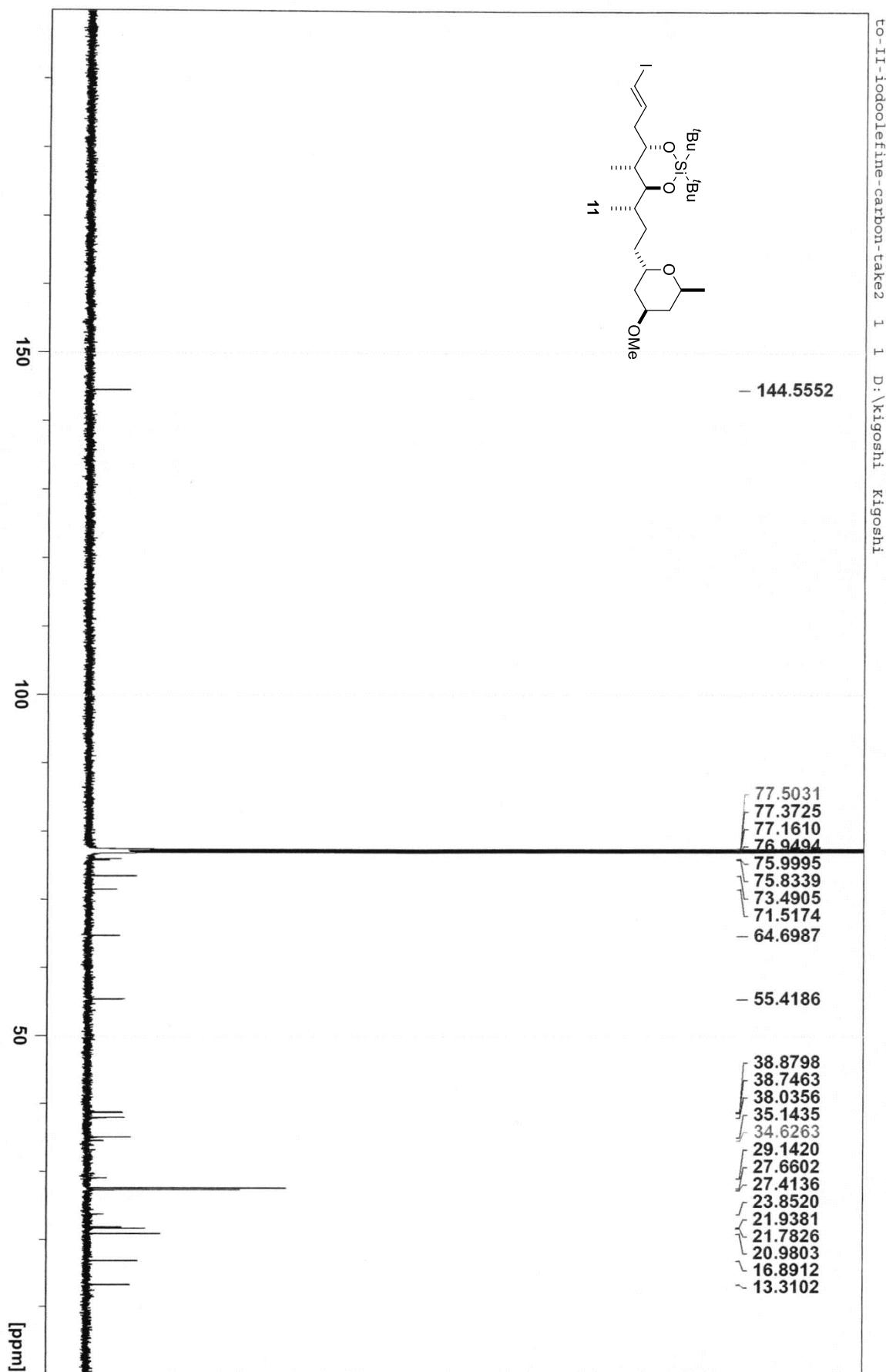

47

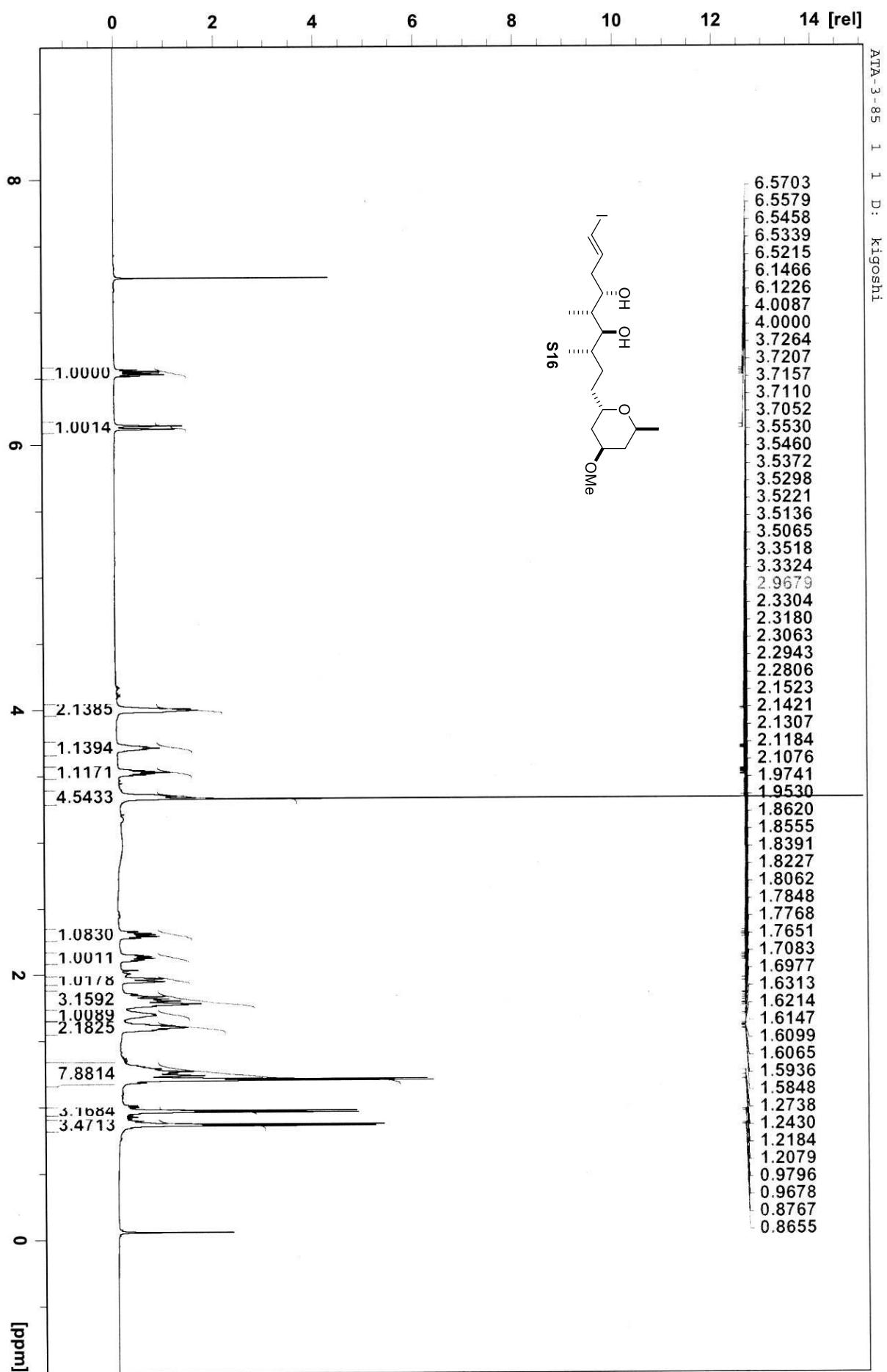


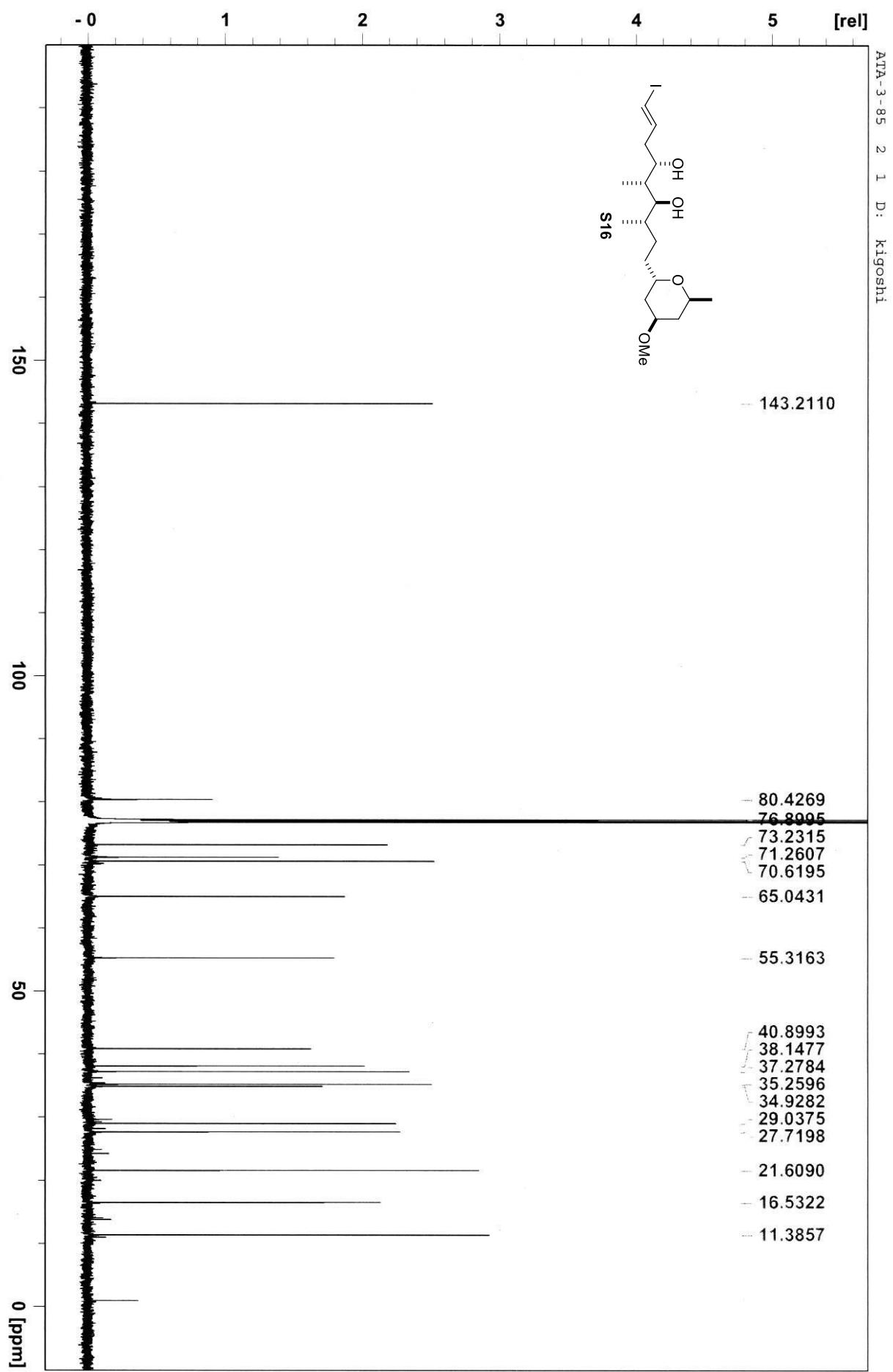

to-II-28-carbon 1 1 D:\kigoshi Kigoshi

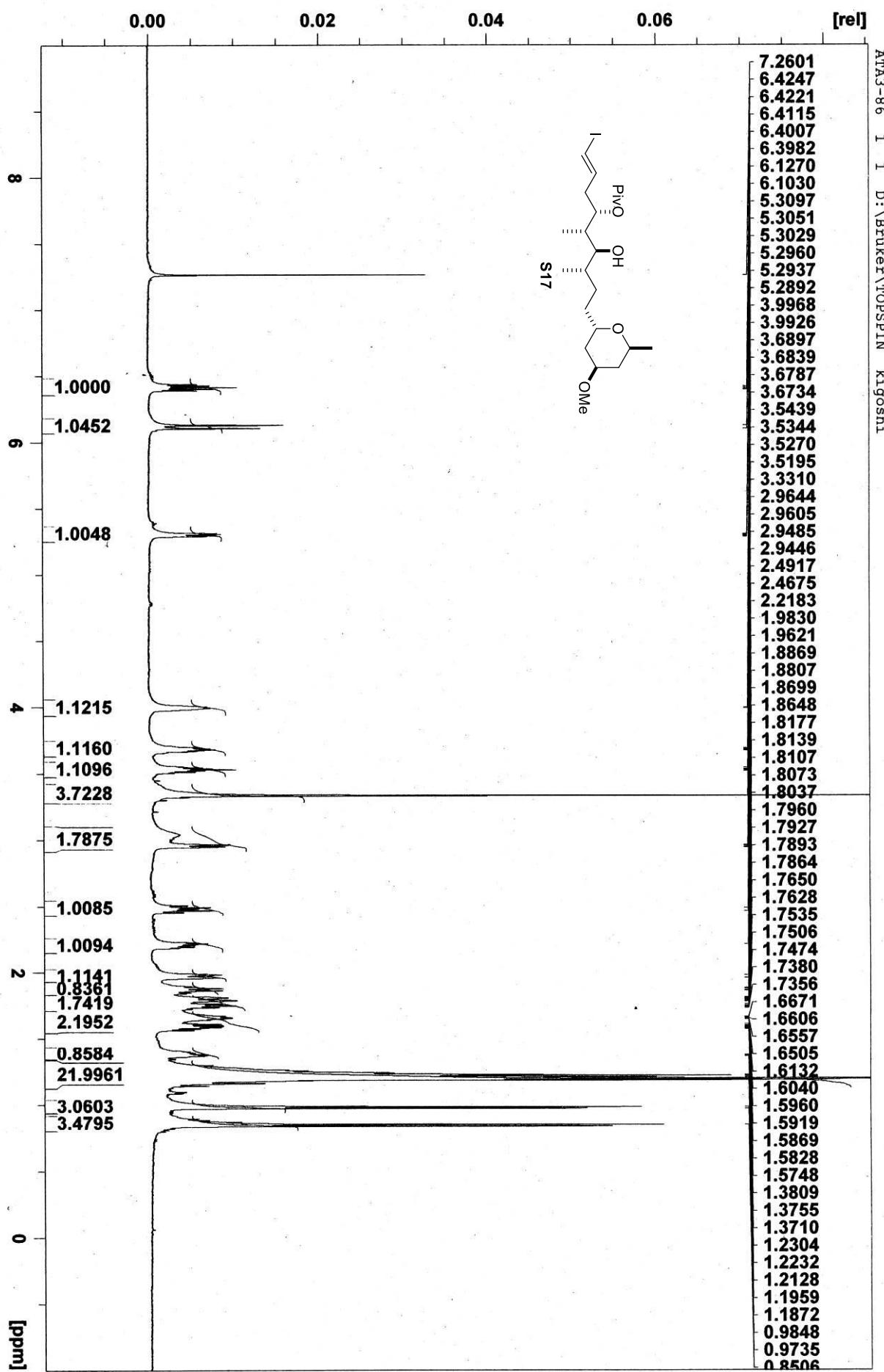


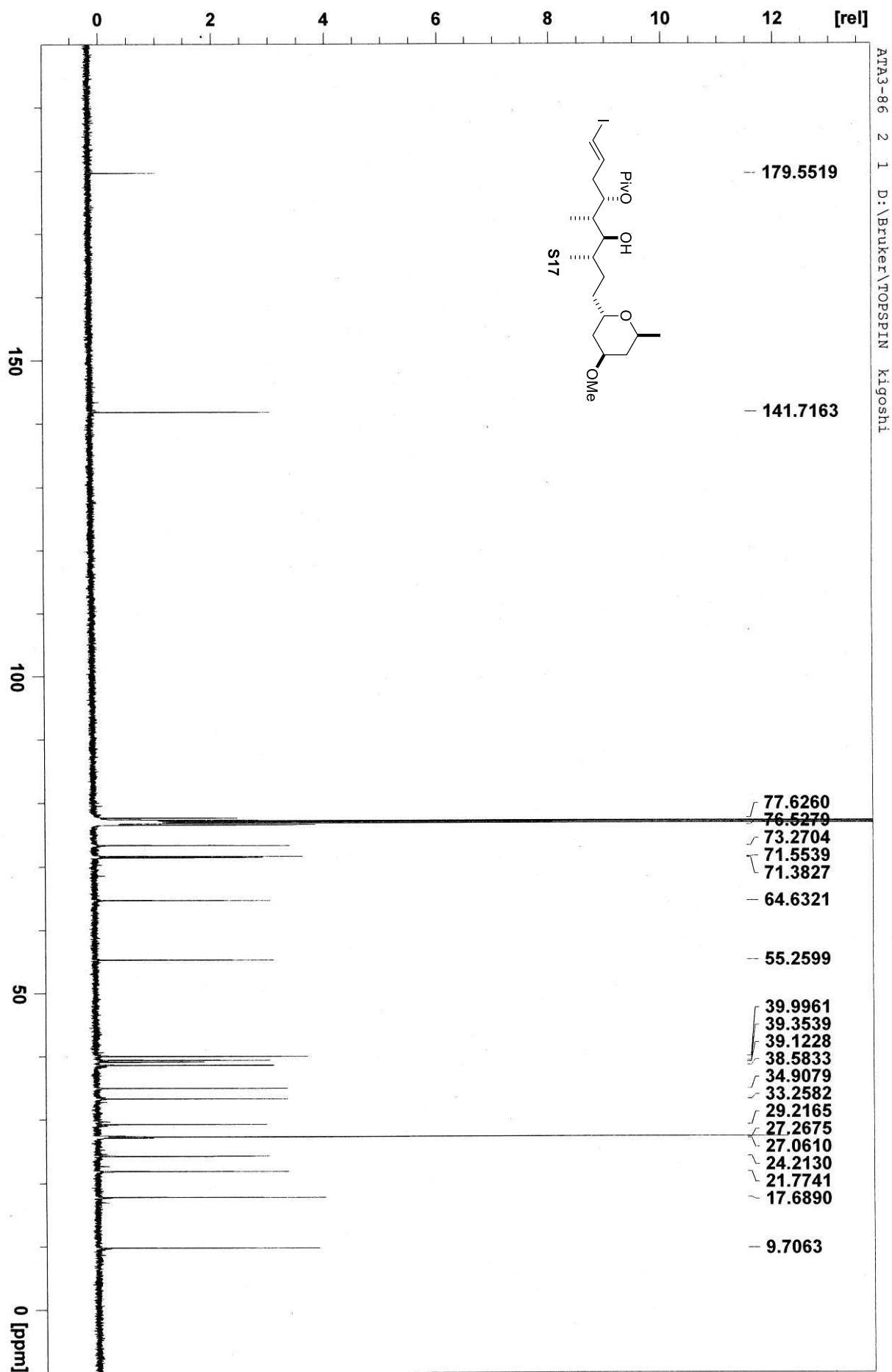


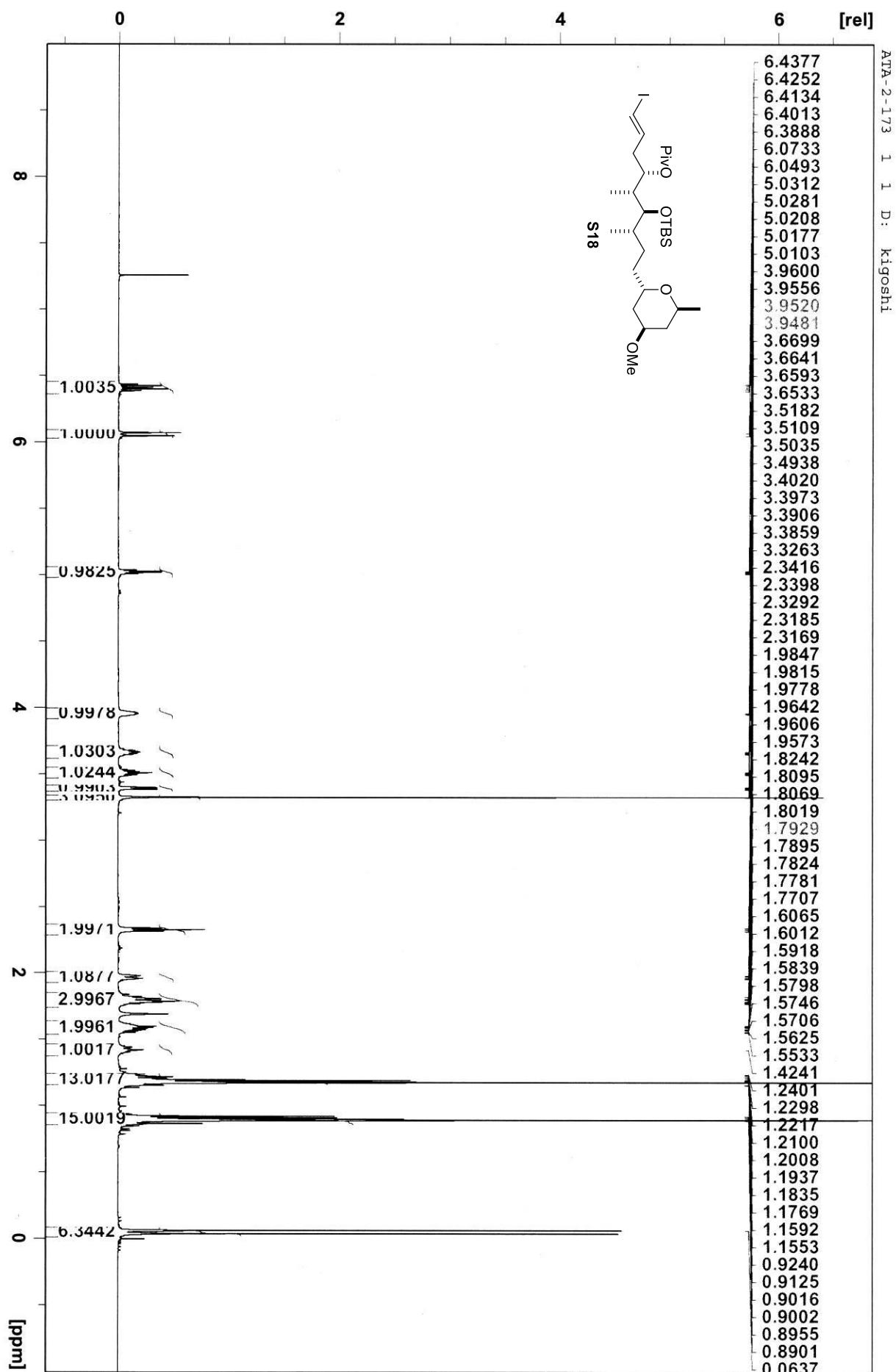









to-II-iodoolefine-carbon-take2 1 1 D:\kigoshi Kigoshi


45

