ExciTides: NTP-derived probes for monitoring pyrophosphatase activity based on excimer-to-monomer transitions

Przemysław Wanat, a Renata Kasprzyk,b,c Michal Kopcial,b,c Paweł J. Sikorski,b Dominika Strzelecka,a Jacek Jemielity,b Joanna Kowalskaa

a. Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.

b. Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland

c. College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097 Warsaw

Supporting Information (SI2)

Supporting Information (SI2)

1a (cpADP-Im)

<table>
<thead>
<tr>
<th>Structure</th>
<th>HPLC of purified product (method A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018
1H NMR (500 MHz, D$_2$O)

31P NMR (202 MHz, D$_2$O)
1b cpGDP-Im

Structure

![Structure Diagram](image)

- $2 \text{ Li}^+ + 2'$-O isomer

Reaction HPLC

![HPLC Chart](image)

Purified HPLC

![HPLC Chart](image)
2'-O isomer:

3'-O isomer:
1H NMR

31P NMR (202 MHz)
1c cpCDP-Im

Structure

HPLC of purified product (Method A)

1H NMR (500 MHz, D$_2$O)

3P NMR (202.5 MHz, D$_2$O)

2a cpATPC$_2$H

Structure of purified product (method B)

+ 2'-O isomer

HPLC of purified product (method B)
^{1}H NMR (400 MHz, D$_2$O)
31P NMR (162 MHz, D2O)

2b cpATPC$_3$H$_3$

Structure

HPLC of purified product (Method B)
HR MS

^1H NMR (400 MHz, D_2O)
31P NMR (162 MHz, D$_2$O)

2c cpATPOC$_3$H$_3$

Structure

HPLC of purified product (Method B)
HR MS

1H NMR (400 MHz, D$_2$O)

HDO
3a cpGTPC$_2$H

3 HNEt$_3^+$ + 2'-O isomer

HPLC of purified product (method B)

DAD1 A, S=50,4 Refr=360,100 (KOPCIAL/GTPCPC2000288 D)
H NMR (400 MHz, D₂O)
3b cpGTP$_3$H$_3$

Structure

HPLC of purified product (method A)
1H NMR (500 MHz, D$_2$O)
^{31}P NMR (202 MHz, D$_2$O)

$3c$ cpGTPOC$_3$H$_3$

Structure

HPLC of purified product (method A)

VWD1 A, Wavelength=254 nm (KOPCIAL/GTPCPOC3-2017-06-30-10-29-20-1496.D)
1H NMR (500 MHz, D$_2$O)
3P NMR (202 MHz, D$_2$O)

$4a \text{2'}-\text{O-cp}^{m7}\text{GTPC}_2\text{H}$ (R1)

Structure

3NH_4^+
HPLC of purified product (method A)

HR MS

1H NMR (400 MHz, D$_2$O)
3P NMR (162 MHz, D$_2$O)

4b 3'-O-cepm7GTPC$_2$H (R2)

Structure

HPLC of purified product
(method A)
3P NMR (162 MHz, D$_2$O)

4c 2'-O-cpm7GTPC$_3$H$_3$ (R1)

HPLC of purified product (method A)
$^3\text{P} NMR (162 MHz, D$_2$O)

$4d$ 3'-O-cpm7GTPC$_3$H$_3$ (R2)

Structure

HPLC of purified product (method A)
HR MS

$\text{H NMR (400 MHz, D}_2\text{O)}$
31P NMR (162 MHz, D2O)

4-e 2'-O-cp^m7GTPOC3H3 (R1)

Structure

HPLC of purified product (method A)

VWD1 A, Wavelength=254 nm (K0FCIAL/M7/GTPCPOC3_R1-2017-09-29-15-22-19-1489.D)
3P NMR (162 MHz, D$_2$O)

$4f\ 3'$-O-cpm7GTPOC$_3$H$_3$ (R2)

Structure
HPLC of purified product

(method A)

HR MS

1H NMR (400 MHz, D$_2$O)
3P NMR (162 MHz, D$_2$O)

Structure

$3 \text{NH}_4^+ \quad + 2'$-O isomer

5 cpCTPOC$_3$H$_3$
HPLC of purified product (Method A)

HR MS

1H NMR (500 MHz, D$_2$O) 1H NMR (500 MHz, D$_2$O)
Cyanovinylene Dye - OH

31P NMR (202 MHz, D$_2$O)
13C NMR (101 MHz, DMSO)

<table>
<thead>
<tr>
<th>Chemical Shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>165.17</td>
</tr>
<tr>
<td>153.66</td>
</tr>
<tr>
<td>152.98</td>
</tr>
<tr>
<td>148.08</td>
</tr>
<tr>
<td>96.30</td>
</tr>
<tr>
<td>58.71</td>
</tr>
<tr>
<td>54.32</td>
</tr>
</tbody>
</table>

1H NMR (400 MHz, DMSO)

<table>
<thead>
<tr>
<th>Chemical Shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.14</td>
</tr>
<tr>
<td>8.02</td>
</tr>
<tr>
<td>8.02</td>
</tr>
<tr>
<td>8.01</td>
</tr>
<tr>
<td>8.00</td>
</tr>
<tr>
<td>7.99</td>
</tr>
<tr>
<td>7.53</td>
</tr>
<tr>
<td>7.45</td>
</tr>
<tr>
<td>6.91</td>
</tr>
<tr>
<td>6.90</td>
</tr>
<tr>
<td>6.89</td>
</tr>
<tr>
<td>6.89</td>
</tr>
<tr>
<td>3.55</td>
</tr>
<tr>
<td>3.56</td>
</tr>
<tr>
<td>3.57</td>
</tr>
<tr>
<td>3.57</td>
</tr>
<tr>
<td>3.63</td>
</tr>
<tr>
<td>3.63</td>
</tr>
<tr>
<td>3.63</td>
</tr>
<tr>
<td>3.63</td>
</tr>
<tr>
<td>3.62</td>
</tr>
<tr>
<td>3.62</td>
</tr>
<tr>
<td>3.61</td>
</tr>
<tr>
<td>3.59</td>
</tr>
<tr>
<td>3.59</td>
</tr>
<tr>
<td>3.57</td>
</tr>
<tr>
<td>3.57</td>
</tr>
<tr>
<td>3.11</td>
</tr>
</tbody>
</table>

Note: The above table and diagram illustrate the chemical shifts for both 13C NMR and 1H NMR spectroscopy. The shifts are measured in parts per million (ppm) and are observed in deuterium dimethyl sulfoxide (DMSO) as the solvent medium.
Cyanovinylene Dye - Ms

Structure

1H NMR (400 MHz, DMSO)
1H NMR (400 MHz, DMSO)

Structure

6a Cyanovinylene Dye - N₃
13C NMR (101 MHz, DMSO)

Structure

7a
Reaction HPLC (Method C)

HPLC of purified product (method C)

HR MS
7b

Structure

HPLC of purified product (method C)

Reaction HPLC (method C)

\[3 \text{NH}_4^+ + 2'\text{-O-isomer} \rightarrow \text{purified product} \]
7c

Structure

3 NH4+

= 2’-O-isomer
Reaction HPLC (method C)

$t = 0$

Reaction HPLC (method C)

$t = 3$ h

HR MS

HPLC of purified product (method C)
Structure

HPLC of purified product (method C)

Reaction HPLC (method C)

HPLC of purified product (method C)
m/z = 1:

\[7e \]

Structure

\[3 \text{NH}_4^+ \] + 2'-O-isomer

m/z = 2:

\[7e \]
Reaction HPLC (method C)

$t = 0$

HPLC of purified product (method C)

HR MS
Structure

Reaction HPLC (method C)

$t = 0$

HPLC of purified product (method C)
m/z = 1:

Structure

7g

3 NH₄⁺ + 2'O-isomer
Reaction HPLC (Method C)

$t = 0$

HPLC of purified product (method C)

$t = 1$ h
7h

Structure

3 NH₄⁺ + 2'O-isomer
Reaction HPLC (method C)

$t = 0$

DAD1 A, Sig=254,4 Ref=360,100 (PW\SONDAOC3PY32025.D)

mAU

0 1000

200

400

600

800

1000

min

$t = 1\ h$

DAD1 A, Sig=254,4 Ref=360,100 (PW\SONDAOC3PY32026.D)

0 5 10 15

200

400

600

800

1000

min

HPLC of purified product (method C)

DAD1 A, Sig=254,4 Ref=360,100 (PW\SONDAOC3PYR3251.D)

0 5 10 15

200

400

600

800

1000

min
Structure

Reaction HPLC (method C + additional absorbance detection at 362 nm)

HPLC of purified product (method C + additional absorbance detection at 362 nm)
Structure

$t = 0$:

3NH_4^+

$t = 5.5 \text{h}$:

Reaction HPLC (method C)

HPLC of purified product (method C)
Z=1

Z=2

8b

Structure
Reaction HPLC (method C)

HPLC of purified product (method C)

$t = 0$

$t = 5 h$
Z=1

109966, M+Na=513.22, RT 0.04, 0.56 AV 56 NL 2.0956
T: 7788 p.ESI Mass [08/05/2005/00]

Z=2

109966, M+Na=513.22, RT 0.04, 0.56 AV 56 NL 3.0527
T: 7788 p.ESI Mass [08/05/2005/00]

Structure

![Structural Diagram]

3 NH₄⁺
Reaction HPLC (method C)

HPLC of purified product (method C)
HR MS

Z=1

8d

Structure

NH₄⁺
Reaction HPLC (method C)

HPLC of purified product (method C)

t = 0

t = 0.5 h
Structure

3NH_4^+

$t = 0$

Reaction HPLC (method C)

3NH_4^+

$t = 0.5$ h

HPLC of purified product (method C)
Reaction HPLC (method C)

$t = 0$

HPLC of purified product (method C)
Reaction HPLC (method D)

$t = 0$

HPLC of purified product (method D)

$t = 0.75\ h$
Z=1

8h

Structure
Reaction HPLC (method D)

$t = 0$

HPLC of purified product (method D)

$t = 4$ h
Structure

- Reaction HPLC (method D)
 - $t = 0$
 - $t = 2$ h

- HPLC of purified product (method D)
HR MS

Structure

3 NH₄⁺

Reaction HPLC (method D)

t = 0

DAD1 A, Sig=254,4 Ref=360,100 (KOPCIAL/SONDAGTPOC3PY01.D)

mAU

2.5 5 7.5 10 12.5 15 17.5

0 250 500 750 1000 1250 1500

0.262 7.003

t = 0.5 h

DAD1 A, Sig=254,4 Ref=360,100 (KOPCIAL/GTP_OC3_PYR2757.D)

mAU

2.5 5 7.5 10 12.5 15 17.5

0 50 100 150 200 250 300

1.188 7.309 10.370 16.966

1.188 7.309 10.370 16.966
HPLC of purified product
(method D)

HR MS
<table>
<thead>
<tr>
<th>Reaction HPLC (method C)</th>
<th>HPLC of purified product (method C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t = 0)</td>
<td></td>
</tr>
<tr>
<td>(t = 2 \text{~h})</td>
<td></td>
</tr>
</tbody>
</table>

- Structure

![Structure Image]

![HPLC Chart at t = 0]

![HPLC Chart at t = 2 h]
Structure

Reaction HPLC (method C)

HPLC of purified product (method C)
HR MS

11c

Structure

\[\text{Reaction HPLC (method C)} \]

\[t=0 \]

\[t=2h \]

VWD1 A, Wavelength=254 nm (PW\ATPCTBDA 2016-01-25 12-04-56.D)
HPLC of purified product (method C)

VWD1 A, Wavelength=254 nm (PW\ATPCTBDA2016-06-1512-46-00.D)

HR MS
HPLC of purified product (method D)

Reaction HPLC (method D)

t=0

DAD1 A, Sig=254.4 Ref=360,100 (KOPCIALLATPOC3_PY000176.D)

mAU

0 2 4 6 8 10 12 14 16 18 minute

3 NH4+

3 NH4+

HPLC of purified product (method D)

DAD1 A, Sig=254.4 Ref=360,100 (KOPCIALLATPOC3_PY000291.D)

mAU

0 2 4 6 8 10 12 14 16 minute

3 NH4+

3 NH4+

Structure