Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2018

Supporting information

Bulky iodotriazolium tetrafluoroborates as highly active halogen-bonding-donor catalysts

Ryosuke Haraguchi*, Shun Hoshino, Munenori Sakai, Sho-go Tanazawa, Yoshitugu Morita, Teruyuki Komatsu and Shin-ichi Fukuzawa*

Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, 112-8551 Tokyo, Japan

Contents

Instrumentation and Chemicals	S2
Experimental Procedure	83
Table S1	S17
Characterization Data of Products	S18
Theoretical Study	S22
NMR Spectra Data	\$37
References	S101

Instrumentation and Chemicals

All manipulations of oxygen- and moisture-sensitive materials were conducted under argon or nitrogen atmosphere in a flame dried Schlenk flask. Nuclear magnetic resonance spectra were taken on a JEOL ECA spectrometer using tetramethylsilane for ¹H NMR as an internal standard ($\delta = 0$ ppm) when CDCl₃ was used as a solvent, using CD_2Cl_2 for ¹H NMR as an internal standard ($\delta = 5.32$ ppm) when CD_2Cl_2 was used as a solvent, using CDCl₃ for ¹³C NMR as an internal standard ($\delta = 77.16$ ppm) when CDCl₃ was used as a solvent, using CD_2Cl_2 for ¹³C NMR as an internal standard ($\delta = 53.84$ ppm) when CD₂Cl₂ was used as a solvent, and using hexafluorobenzene for ¹⁹F NMR as an internal standard ($\delta = 0$ ppm) when CDCl₃ and CD₂Cl₂ was used as a solvent. ¹H NMR, ¹³C NMR, and ¹⁹F NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = septet, br = broad, m = multiplet), coupling constants (Hz), and integration. Highresolution mass spectra (HRMS) were measured by a JEOL JMS-T100LC AccuTOF. Infrared (IR) spectra were measured by an FT/IR-4100ST spectrometer. Melting points were determined using a YANAKO MP-500D. Flash column chromatography was carried out using silica gel (Fuji Silysia PSQ 100B). n-Butyllithium in n-hexane 1.6 mol/L was purchased from Kanto Chemical Co., Inc. (04937-05, 1.5-1.7 mol/L). 2-Ethynylpyridine was purchased from Tokyo Chemical Industry Co., Ltd. (E0340, >97%). Copper chloride (I) was purchased from Kanto Chemical Co., Inc. (07524-30, >95%). Carbon tetrabromide was purchased from Tokyo Chemical Industry Co., Ltd. (T0038, >99%). Copper (II) sulfate pentahydrate was purchased from Kanto Chemical Co., Inc. (07516-01, >99%). L(+)-Ascorbic acid sodium salt was purchased from Wako Pure Chemical Industries, Ltd. (196-01252, >98%). tert-Butyl alcohol was purchased from Tokyo Chemical Industry Co., Ltd. (B0706, >99%). Iodine was purchased from nacalai tesque (19220-95, >99.8%). Hexachloroethane was purchased from Tokyo Chemical Industry Co., Ltd. (H0060, >99%). Trimethyloxonium tetrafluoroborate was purchased from Tokyo Chemical Industry Co., Ltd. (T1507, >95%). Dichloromethane was purchased from Kanto Chemical Co., Inc., distilled from calcium hydride and stored under nitrogen. Unless otherwise noted, commercially available reagents were used without purification.

2-Ethynyl-1,3,5-trimethylbenzene,^[1] 2-ethynyl-1,3-diisopropylbenzene,^[1] 2-azide-1,3,5-trimethylbenzene,^[2] 2-azide-1,3-diisopropylbenzene,^[2] *N*-(4-

methoxybenzylidene)aniline,^[3] N-(4-methylbenzylidene)aniline,^[3] N-

benzylideneaniline,^[3] N-(4-trifluoromethylbenzylidene)aniline,^[3] N-(4-

bromobenzylidene)aniline,^[3] N-(2,2-dimethylpropylidene)aniline,^[3] 2-(tert-

butyldimethylsilyloxy)-1,3-butadiene,^[4] 2-(*tert*-butyldimethylsilyloxy)-1-phenyl-1,3butadiene,^[5] and trimethyl[(1-phenylvinyl)oxy)silane^[6] were prepared according to the literature.

Experimental Procedure General procedure for preparation of 1,2,3-triazoles 1: Type A

Following the reported procedure,^[7] the reaction was performed in a 50-mL Schlenk flask equipped with a magnetic stirring bar and a septum. Aryl acetylene (4.8 mmol), aryl azide (4.8 mmol), copper (II) sulfate pentahydrate (0.48 g, 1.9 mmol), L-sodium ascorbate (0.77 g, 3.9 mmol), 2-methyl-2-propanol (4.8 mL), and water (4.8 mL) were added, and the mixture was stirred at 25 °C for 16 h. The resulting mixture was extracted with ethyl acetate three times. The combined organic layers were washed with aqueous ammonia, water, and brine, dried over sodium sulfate, and concentrated *in vacuo*. Purification by flash silica gel column chromatography gave 1,2,3-triazole **1a** and **1c**.

General procedure for preparation of 1,2,3-triazoles 1: Type B

Following the reported procedure,^[8] the reaction was performed in a 50-mL Schlenk flask equipped with a magnetic stirring bar and a septum. Aryl acetylene (4.8 mmol), aryl azide (4.8 mmol), copper(I) chloride (0.48 g, 4.8 mmol), and 2-ethynylpyridine (0.49 g, 4.8 mmol) were dissolved in tetrahydrofuran (12 mL) and water (12 mL), and the mixture was stirred at 100 °C for 24 h. The resulting mixture was filtered through a pad of Celite and rinsed with the additional ethyl acetate. The organic layers were washed with aqueous ammonia, water, and brine, dried over sodium sulfate, and concentrated *in vacuo*. Purification by flash silica gel column chromatography gave 1,2,3-triazole **1b**, **1d**, and **1e**.

General procedure for preparation of 5-iodo-1,2,3-triazoles 2

The reaction was performed in a 50-mL Schlenk flask equipped with a magnetic stirring bar and a septum. 1,2,3-Triazole 1 (1.0 mmol) was dissolved in tetrahydrofuran (10 mL) under a nitrogen atmosphere, and the mixture was cooled to -78 °C. To a stirred solution *n*-butyllithium (1.6 M in hexane, 1.1 mL, 1.8 mmol) was added dropwise at -78 °C, and the mixture was stirred at -78 °C for 20 min. And then, to the reaction mixture iodine (1.0 M in tetrahydrofuran, 2.0 mL, 2.0 mmol) was added at -78 °C. After the resulting mixture was stirred at -78 °C for 1 h, the mixture was warmed to room temperature and stirred for 15 h. The reaction was quenched with saturated aqueous solution of ammonium chloride (3.0 mL) and saturated aqueous solution of sodium thiosulfate (3.0 mL). The resulting mixture was extracted with ethyl acetate. The combined organic layers were washed with water and brine, dried over sodium sulfate, and concentrated *in vacuo*. Purification by flash silica gel column chromatography gave the corresponding 5-iodo-1,2,3-triazole **2**.

General procedure for preparation of 5-halo-1,2,3-triazolium tetrafluoroborates 3

The reaction was performed in a 20-mL Schlenk flask equipped with a magnetic stirring bar and a septum. 5-Halo-1,2,3-triazole **2** (1.0 mmol) and trimethyloxonium tetrafluoroborate (0.20 g, 1.3 mmol) was dissolved in dichloromethane (7.5 mL) at a nitrogen atmosphere, and the mixture was stirred at room temperature for 16 h. And then, the solvent was removed under reduced pressure, affording an yellowish solid. The crude product was washed with diethyl ether and dried to give the corresponding 5-halo-3-methyl-1,2,3-triazolium tetrafluoroborate **3**.

Procedure for preparation of 5-bromo-1,2,3-triazole 2f

The reaction was performed in a 50-mL Schlenk flask equipped with a magnetic stirring bar and a septum. **1c** (0.31 g, 1.0 mmol) was dissolved in tetrahydrofuran (10 mL) under a nitrogen atmosphere, and the mixture was cooled to -78 °C. To a stirred solution *n*-butyllithium (1.6 M in hexane, 1.1 mL, 1.8 mmol) was added dropwise at -78 °C, and the mixture was stirred at -78 °C for 20 min. And then, to the reaction mixture carbon tetrabromide (1.0 M in tetrahydrofuran, 2.0 mL, 2.0 mmol) was added at -78 °C. After the resulting mixture was stirred at -78 °C for 1 h, the mixture was warmed to room temperature and stirred for 15 h. The reaction was quenched with saturated aqueous solution of ammonium chloride (3.0 mL) and saturated aqueous solution of sodium thiosulfate (3.0 mL). The resulting mixture was extracted with ethyl acetate. The combined organic layers were washed with water and brine, dried over sodium sulfate, and concentrated *in vacuo*. Purification by flash silica gel column chromatography gave the corresponding 5-bromo-1,2,3-triazole **2f** in 13% yield.

Procedure for preparation of 5-chloro-1,2,3-triazole 2g

The reaction was performed in a 50-mL Schlenk flask equipped with a magnetic stirring bar and a septum. **1c** (0.31 g, 1.0 mmol) was dissolved in tetrahydrofuran (10 mL) under

a nitrogen atmosphere, and the mixture was cooled to -78 °C. To a stirred solution *n*butyllithium (1.6 M in hexane, 1.1 mL, 1.8 mmol) was added dropwise at -78 °C, and the mixture was stirred at -78 °C for 20 min. And then, to the reaction mixture hexachloroethane (1.0 M in tetrahydrofuran, 2.0 mL, 2.0 mmol) was added at -78 °C. After the resulting mixture was stirred at -78 °C for 1 h, the mixture was warmed to room temperature and stirred for 15 h. The reaction was quenched with saturated aqueous solution of ammonium chloride (3.0 mL) and saturated aqueous solution of sodium thiosulfate (3.0 mL). The resulting mixture was extracted with ethyl acetate. The combined organic layers were washed with water and brine, dried over sodium sulfate, and concentrated *in vacuo*. Purification by flash silica gel column chromatography gave the corresponding 5-chloro-1,2,3-triazole **2g** in 59% yield.

4-Phenyl-1-(2,4,6-trimethylphenyl)-1*H*-1,2,3-triazole (1a, CAS Registry Number 1119516-47-0).

White solid (0.98 g, 77%); ¹H NMR (500 MHz, CDCl₃) δ: 7.99–7.90 (m, 2H), 7.83 (s, 1H), 7.46 (dd, *J* = 7.7, 7.5 Hz, 2H), 7.36 (tt, *J* = 7.5, 1.3 Hz, 1H), 7.01 (s, 2H), 2.36 (s, 3H), 2.02 (s, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ: 147.7, 140.2, 135.2, 133.6, 130.6, 129.2, 129.0, 128.4, 125.9, 121.6, 21.3, 17.4 ppm.

1-(2,6-Diisopropylphenyl)-4-phenyl-1*H*-1,2,3-triazole (1b, CAS Registry Number 1254815-47-8).

White solid (0.71 g, 48%); ¹H NMR (500 MHz, CDCl₃) δ : 7.95 (dd, *J* = 7.8, 1.2 Hz, 2H), 7.87 (s, 1H), 7.51 (t, *J* = 7.8 Hz, 1H), 7.48 (dd, *J* = 7.8, 7.4 Hz, 2H), 7.38 (tt, *J* = 7.4, 1.2 Hz, 1H), 7.31 (d, *J* = 7.8 Hz, 2H), 2.34 (sep, *J* = 6.8 Hz, 2H), 1.17 (d, *J* = 6.8 Hz, 6H), 1.15 (d, *J* = 6.8 Hz, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 147.6, 146.3, 133.4, 131.0, 130.5, 129.1, 128.5, 125.9, 124.0, 122.6, 28.5, 24.4, 24.2 ppm.

1b

1,4-Bis(2,4,6-trimethylphenyl)-1*H*-1,2,3-triazole (1c, CAS Registry Number 1251555-83-5).

White solid (0.56 g, 38%); ¹H NMR (500 MHz, CDCl₃) δ: 7.48 (s, 1H), 7.02 (s, 2H), 6.98 (s, 2H), 2.37 (s, 3H), 2.33 (s, 3H), 2.18 (s, 6H), 2.04 (s, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ: 145.5, 140.1, 138.4, 137.9, 135.2, 133.7, 129.2, 128.5, 127.2, 124.6, 21.3, 21.3, 20.8, 17.3 ppm.

1-(2,6-Diisopropylphenyl)-4-(2,4,6-trimethylphenyl)-1*H*-1,2,3-triazole (1d, CAS Registry Number 1263862-49-2).

White solid (0.92 g, 55%); ¹H NMR (500 MHz, CDCl₃) δ: 7.53 (s, 1H), 7.51 (t, *J* = 7.7 Hz, 1H), 7.32 (d, *J* = 7.7 Hz, 2H), 6.99 (s, 2H), 2.40 (sep, *J* = 6.8 Hz, 2H), 2.34 (s, 3H), 2.20 (s, 6H), 1.22 (d, *J* = 6.8 Hz, 6H), 1.14 (d, *J* = 6.8 Hz, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ: 146.3, 145.3, 138.4, 137.9, 133.5, 130.9, 128.6, 127.1, 126.0, 124.0, 28.7, 24.4, 23.9, 21.3, 20.8 ppm.

1d

1,4-Bis(2,6-diisopropylphenyl)-1*H*-1,2,3-triazole (1e, CAS Registry Number 1263862-50-5).

White solid (1.2 g, 61%); ¹H NMR (500 MHz, CDCl₃) δ : 7.56 (s, 1H), 7.52 (t, *J* = 7.8 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 1H), 7.32 (d, *J* = 7.8 Hz, 2H), 7.26 (d, *J* = 7.8 Hz, 2H), 2.82 (sep, *J* = 6.8 Hz, 2H), 2.43 (sep, *J* = 6.8 Hz, 2H), 1.24 (d, *J* = 6.8 Hz, 6H), 1.21–1.15 (m, 12H), 1.13 (d, *J* = 6.8 Hz, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 148.9, 146.2, 144.7, 133.5, 130.9, 129.5, 127.9, 126.5, 124.0, 122.7, 30.7, 28.7, 24.5, 24.1, 24.1, 23.8 ppm.

1e

5-Iodo-4-phenyl-1-(2,4,6-trimethylphenyl)-1*H*-1,2,3-triazole (2a, CAS Registry Number 1949755-98-9).

White solid (0.27 g, 70%); ¹H NMR (500 MHz, CDCl₃) δ : 8.12 (dd, J = 7.7, 1.2 Hz, 2H), 7.51 (dd, J = 7.7, 7.5 Hz, 2H), 7.43 (tt, J = 7.5, 1.2 Hz, 1H), 7.04 (s, 2H), 2.39 (s, 3H), 1.95 (s, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 149.5, 140.9, 136.0, 133.2, 130.3, 129.3, 128.8, 128.7, 127.4, 79.4, 21.4, 17.6 ppm.

1-(2,6-Diisopropylphenyl)-5-iodo-4-phenyl-1*H*-1,2,3-triazole (2b).

White solid (0.34 g, 78%); Mp. 138.5–139.0 °C; R_f 0.42 (hexane/ethyl acetate = 10/1); ¹H NMR (500 MHz, CDCl₃) δ : 8.16 (d, *J* = 7.5 Hz, 2H), 7.52 (t, *J* = 7.8 Hz, 1H), 7.48 (dd, *J* = 7.5, 7.4 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 1H), 7.31 (d, *J* = 7.8 Hz, 2H), 2.15 (sep, *J* = 6.8 Hz, 2H), 1.20 (d, *J* = 6.8 Hz, 6H), 1.12 (d, *J* = 6.8 Hz, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 148.9, 146.5, 132.8, 131.3, 130.1, 128.6, 128.6, 127.1, 124.0, 80.8, 28.7, 24.9, 23.0 ppm; IR (KBr): 3449.0, 3073.0, 2963.1, 2926.5, 2867.6, 2380.7, 1596.8, 1578.5, 1468.5, 1396.2, 1361.5, 1346.1,

1325.8, 1150.3, 1093.4, 1056.8, 1031.7, 997.0, 978.7, 937.3, 918.9, 698.3, 578.5, 493.7, 414.6 cm⁻¹; APCI-HRMS (*m/z*): [M+H]⁺ calcd for C₂₀H₂₃N₃I 432.0937, found 432.0950.

5-Iodo-1,4-bis(2,4,6-trimethylphenyl)-1*H*-1,2,3-triazole (2c).

White solid (0.28 g, 65%); Mp. 235.0–236.0 °C; R_f 0.45 (hexane/ethyl acetate = 3/1); ¹H NMR (500 MHz, CDCl₃) δ : 7.05 (s, 2H), 6.98 (s, 2H), 2.40 (s, 3H), 2.35 (s, 3H), 2.09 (s, 6H), 1.98 (s, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 151.6, 140.7, 139.0, 138.1, 135.8, 133.2, 129.3, 128.4, 126.6, 84.1, 21.4, 21.4, 20.2, 17.4 ppm; IR (KBr): 3449.1, 2956.3, 2919.7, 2853.2, 1654.6, 1606.4, 1563.0, 1542.8, 1458.9, 1383.7, 1212.0, 1129.1, 1083.8, 1033.7, 985.4, 855.3, 728.9, 471.5 cm⁻¹; ESI-HRMS (*m/z*): [M+H]⁺ calcd for C₂₀H₂₃N₃I 432.0937, found 432.0927.

1-(2,6-Diisopropylphenyl)-5-iodo-4-(2,4,6-trimethylphenyl)-1*H*-1,2,3-triazole (2d).

White solid (0.38 g, 81%); Mp. 182.0–182.8 °C; R_f 0.51 (hexane/ethyl acetate = 10/1); ¹H NMR (500 MHz, CDCl₃) 7.55 (t, J = 7.8 Hz, 1H), 7.34 (d, J = 7.8 Hz, 2H), 6.99 (s, 2H), 2.36 (s, 3H), 2.24 (sep, J = 6.8 Hz, 2H), 2.10 (s, 6H), 1.23 (d, J = 6.8 Hz, 6H), 1.18 (d, J = 6.8 Hz, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 151.4, 146.6, 139.0, 138.1, 133.1, 131.4, 128.4, 126.6, 124.2, 85.7, 29.0, 24.8, 23.2, 21.4, 20.2 ppm; IR (KBr): 2961.2, 2925.5, 2869.6, 1638.2, 1473.4, 1466.6, 1458.9, 1451.2,

2d 1400.1, 1384.6, 1213.9, 1108.9, 981.6, 854.3, 802.2, 760.8, 746.3, 736.7, 597.8, 553.5, 466.7 cm⁻¹; ESI-HRMS (m/z): [M+H]⁺ calcd for C₂₃H₂₉N₃I 474.1406, found 474.1390.

1,4-Bis(2,6-diisopropylphenyl)-5-iodo-1*H*-1,2,3-triazole (2e).

White solid (0.48 g, 93%); Mp. 172.0–172.8 °C; R_f 0.55 (hexane/ethyl acetate = 10/1); ¹H NMR (500 MHz, CDCl₃) δ : 7.55 (t, *J* = 7.8 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 1H), 7.35 (d, *J* = 7.8 Hz, 2H), 7.28 (d, *J* = 7.8 Hz, 2H), 2.63 (sep, *J* = 6.8 Hz, 2H), 2.26 (sep, *J* = 6.8 Hz, 2H), 1.28–1.11 (m, 24H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 150.8, 149.0, 146.5, 133.2, 131.4, 130.0, 127.6, 124.2, 122.9, 87.4, 31.1, 29.0, 24.7, 24.3, 23.9, 23.2 ppm; IR (KBr): 3855.0, 3650.6, 3630.3, 3449.1, 2963.1, 2867.6, 2382.6, 1596.8, 1473.4, 1381.8, 1361.5, 1321.9, 1215.9,

1151.3, 1059.7, 987.4, 801.3, 754.0 cm⁻¹; APCI-HRMS (m/z): [M+H]⁺ calcd for C₂₆H₃₅N₃I 516.1876, found 516.1867.

5-Bromo-1,4-bis(2,4,6-trimethylphenyl)-1H-1,2,3-triazole (2f).

White solid (0.050 g, 13%); Mp. 173.5–174.2 °C; R_f 0.33 (hexane/ethyl acetate = 10/1); ¹H NMR (500 MHz, CDCl₃) δ : 7.05 (s, 2H), 6.98 (s, 2H), 2.39 (s, 3H), 2.35 (s, 3H), 2.12 (s, 6H), 2.01 (s, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 145.6, 140.8, 139.1, 138.2, 135.9, 131.9, 129.4, 128.5, 125.6, 113.2, 21.4, 21.4, 20.1, 17.3 ppm; IR (KBr): 2960.2, 2920.7, 2854.1, 2732.6, 1735.6, 1613.2, 1560.1, 1535.1, 1470.5, 1438.6, 1400.1, 1375.0, 1322.9, 1289.2, 1218.8, 1198.5, 1158.0, 1132.9, 1082.8, 1033.7, 980.6, 946.9, 728.9, 853.4, 756.9, 728.9, 574.7, 500.4, 484.1, 473.4 cm⁻¹; APCI-HRMS (*m/z*): [M+H]⁺ calcd for C₂₀H₂₃N₃Br 384.1075, found 384.1093.

5-Chloro-1,4-bis(2,4,6-trimethylphenyl)-1*H*-1,2,3-triazole (2g).

White solid (0.20 g, 59%); Mp. 194.2–195.0 °C; R_f 0.37 (hexane/ethyl acetate = 10/1); ¹H NMR (500 MHz, CDCl₃) δ : 7.05 (s, 2H), 6.98 (s, 2H), 2.38 (s, 3H), 2.35 (s, 3H), 2.14 (s, 6H), 2.03 (s, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 142.3, 140.9, 139.1, 138.3, 135.9, 131.0, 129.3, 128.5, 125.6, 125.1, 21.4, 21.4, 20.1, 17.3 ppm; IR (KBr): 2920.7, 2380.7, 2346.0, 2284.3, 1735.6, 1612.2, 1474.3, 1225.5, 1199.5, 1162.9, 1086.7, 1034.6, 981.6, 946.9, 900.6, 853.3, 730.9, 578.5, 490.8 cm⁻¹; APCI-HRMS (*m/z*): [M+H]⁺ calcd for C₂₀H₂₃N₃Cl 340.1581, found 340.1577.

5-Iodo-3-methyl-1-(2,4,6-trimethylphenyl)-4-phenyl-1*H*-1,2,3-triazolium tetrafluoroborate (3a).

White solid (0.46 g, 93%); ¹H NMR (500 MHz, CD₂Cl₂) δ : 7.78–7.64 (m, 5H), 7.16 (s, 2H), 4.41 (s, 3H), 2.43 (s, 3H), 2.07 (s, 6H) ppm; ¹³C NMR (125 MHz, CD₂Cl₂) δ : 148.4, 143.9, 135.6, 132.9, 131.6, 130.6, 130.4, 130.3, 122.2, 90.5, 40.6, 21.5, 17.6 ppm; ¹⁹F NMR (470 MHz, CD₂Cl₂) δ : 9.7 ppm; IR (KBr): 3639.9, 3568.6, 3040.2, 2924.5, 2379.7, 1609.3, 1557.2, 1483.9, 1450.2, 1382.7, 1324.9, 1290.1, 1221.7, 1186.0, 1062.6, 853.3, 784.9, 749.2, 731.9, 718.4, 697.1, 545.8, 520.7 cm⁻¹; ESI-HRMS (*m/z*): [M–BF₄]⁺ calcd for C₁₈H₁₉N₃I 404.0618,

found 404.0605.

1-(2,6-Diisopropylphenyl)-5-iodo-3-methyl-4-phenyl-1*H*-1,2,3-triazolium tetrafluoroborate (3b).

White solid (0.48 g, 90%); ¹H NMR (500 MHz, CD_2Cl_2) δ : 7.81– 7.77 (m, 2H), 7.75–7.69 (m, 4H), 7.47 (d, J = 7.8 Hz, 2H), 4.44 (s, 3H), 2.20 (sep, J = 6.8 Hz, 2H), 1.30 (d, J = 6.8 Hz, 6H), 1.19 (d, J = 6.8 Hz, 6H) ppm; ¹³C NMR (125 MHz, CD_2Cl_2) δ : 148.2, 146.4, 133.8, 133.0, 131.2, 130.7, 130.3, 125.5, 122.1, 91.7, 40.6, 29.5, 25.2, 23.1 ppm; ¹⁹F NMR (470 MHz, CD_2Cl_2) δ : 9.5 ppm; IR (KBr): 3064.3, 2972.7, 2932.2, 2871.5, 2379.7, 2346.9, 1993.1, 1910.2, 1828.2, 1607.4, 1580.4, 1556.3, 1487.8, 1452.2, 1386.6, 1366.3,

1331.6, 1293.0, 1222.7, 1187.9, 935.3, 812.9, 764.5, 757.9, 697.1, 678.8, 612.3, 520.7, 473.5, 424.3 cm⁻¹; ESI-HRMS (*m/z*): $[M-BF_4]^+$ calcd for $C_{21}H_{25}N_3I$ 446.1088, found 446.1115.

5-Iodo-3-methyl-1,4-bis(2,4,6-trimethylphenyl)-1*H*-1,2,3-triazolium tetrafluoroborate (3c).

White solid (0.39 g, 74%); ¹H NMR (500 MHz, CDCl₃) δ : 7.10 (s, 2H), 7.08 (s, 2H), 4.25 (s, 3H), 2.42 (s, 3H), 2.39 (s, 3H), 2.09 (s, 6H), 2.04 (s, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 148.4, 143.4, 143.3, 138.3, 135.0, 131.1, 130.1, 129.7, 117.4, 91.8, 39.6, 21.5, 21.5, 19.6, 17.3 ppm; ¹⁹F NMR (470 MHz, CDCl₃) δ : 8.7 ppm; IR (KBr): 2923.6, 2383.6, 1611.2, 1544.7, 1458.9, 1282.7, 1323.9, 1288.2, 1219.8, 1060.7, 852.4, 774.3, 732.8, 563.1, 517.8 cm⁻¹; ESI-HRMS (*m/z*): [M–BF₄]⁺ calcd for C₂₁H₂₅N₃I 446.1088, found 446.1113.

1-(2,6-Diisopropylphenyl)-5-iodo-3-methyl-4-(2,4,6-

trimethylphenyl)-1*H*-1,2,3-triazolium tetrafluoroborate (3d).

White solid (0.40 g, 69%); ¹H NMR (500 MHz, CDCl₃) δ : 7.69 (t, *J* = 7.8 Hz, 1H), 7.43 (d, *J* = 7.8 Hz, 2H), 7.11 (s, 2H), 4.31 (s, 3H), 2.40 (s, 3H), 2.19–2.06 (m, 8H), 1.28 (d, *J* = 6.8 Hz, 6H), 1.22 (d, *J* = 6.8 Hz, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 148.5, 145.8, 143.5, 138.3, 133.6, 130.8, 129.9, 125.2, 117.3, 93.4, 39.9, 29.5, 24.8, 23.1, 21.5, 19.6 ppm; ¹⁹F NMR (470 MHz, CDCl₃) δ : 8.3 ppm; IR (KBr): 2967.9, 2929.3, 2378.8, 1612.2, 1458.9, 1387.5, 1318.1, 1285.3, 1214.9, 1063.6, 860.1, 811.9, 763.7, 520.7 cm⁻¹; ESI-HRMS (*m/z*): [M–BF₄]⁺ calcd for C₂₄H₃₁N₃I 488.1557, found 488.1538.

1,4-Bis(2,6-diisopropylphenyl)-5-iodo-3-methyl-1*H*-1,2,3-triazolium tetrafluoroborate (3e).

White solid (0.53 g, 86%); ¹H NMR (500 MHz, CDCl₃) δ : 7.74– 7.65 (m, 2H), 7.44 (d, J = 7.7 Hz, 2H), 7.43 (d, J = 7.7 Hz, 2H), 4.35 (s, 3H), 2.26 (sep, J = 6.8 Hz, 2H), 2.16 (sep, J = 6.8 Hz, 2H), 1.32– 1.22 (m, 24H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 149.4, 148.1, 145.7, 133.9, 133.7, 130.8, 125.3, 124.9, 117.8, 95.0, 40.3, 32.4, 29.6, 24.9, 24.7, 24.1, 23.2 ppm; ¹⁹F NMR (470 MHz, CDCl₃) δ : 8.1 ppm; IR (KBr): 3423.0, 2965.0, 2383.6, 2228.3, 1465.6, 1389.5, 1368.3, 1283.4, 1066.4, 810.9, 790.7, 757.9, 630.6, 592.0, 571.8,

545.8, 513.9, 500.4, 479.2, 469.6, 460.9, 455.1, 445.5, 435.8, 410.8 cm⁻¹; ESI-HRMS (*m/z*): $[M-BF_4]^+$ calcd for C₂₇H₃₇N₃I 530.2027, found 530.2022.

5-Bromo-3-methyl-1,4-bis(2,4,6-trimethylphenyl)-1*H*-1,2,3-triazolium tetrafluoroborate (3f).

3f

White solid (0.050 g, 79%); ¹H NMR (500 MHz, CDCl₃) δ : 7.12 (s, 2H), 7.10 (s, 2H), 4.31 (s, 3H), 2.42 (s, 3H), 2.39 (s, 3H), 2.17 (s, 6H), 2.11 (s, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 143.6, 143.5, 143.3, 138.7, 135.3, 130.2, 129.8, 129.5, 119.3, 116.4, 40.5, 21.5, 21.5, 19.8, 17.4 ppm; ¹⁹F NMR (470 MHz, CDCl₃) δ : 8.6 ppm; IR (KBr): 3449.1, 2922.6, 2382.6, 1611.2, 1561.1, 1458.9, 1382.7, 1325.8, 849.5, 800.3, 563.1, 520.7 cm⁻¹; ESI-HRMS (*m/z*): [M–BF₄]⁺ calcd for C₂₁H₂₅N₃Br 398.1226, found 398.1250.

 Θ_{BF_4}

White solid (0.20 g, 78%); ¹H NMR (500 MHz, CDCl₃) δ : 7.12 (s, 2H), 7.10 (s, 2H), 4.31 (s, 3H), 2.42 (s, 3H), 2.40 (s, 3H), 2.19 (s, 6H), 2.14 (s, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 143.7, 143.6, 140.2, 138.9, 135.5, 131.4, 130.2, 129.8, 128.5, 115.8, 40.1, 21.5, 21.4, 19.6, 17.1 ppm; ¹⁹F NMR (470 MHz, CDCl₃) δ : 8.6 ppm; IR (KBr): 3423.0, 2923.6, 2384.6, 2346.9, 1611.2, 1576.5, 1293.0, 1229.4, 1057.8, 859.1, 755.0, 616.1, 565.0, 520.7 cm⁻¹; ESI-HRMS (*m*/*z*): [M–BF₄]⁺ calcd for C₂₁H₂₅N₃Cl 354.1732, found 354.1729.

3-Methyl-1,4-bis(2,4,6-trimethylphenyl)-1*H*-1,2,3-triazolium tetrafluoroborate (3h, CAS Registry Number 1263862-40-3)

White solid (0.11 g, 82%); ¹H NMR (500 MHz, CDCl₃) δ: 8.49 (s, 1H), 7.07 (s, 2H), 7.05 (s, 2H), 4.15 (s, 3H), 2.38 (s, 3H), 2.36 (s, 3H), 2.13 (s, 6H), 2.11 (s, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ: 143.0, 142.8, 142.8, 138.3, 134.5, 131.7, 131.4, 130.0, 129.6, 117.3, 38.2, 21.5, 21.4, 20.0, 17.2 ppm; ¹⁹F NMR (470 MHz, CDCl₃) δ: 8.6 ppm.

3h

General procedure for the reaction of 4a and 5

To a 1-mL vial were added sequentially 4a (55 mg, 0.30 mmol), 5 (0.20 mmol), XBdonor 3c (5.3 mg, 0.010 mmol), and dichloromethane (0.20 mL). The vial was purged with argon, and the reaction mixture was stirred at 30 °C for 14 h. And then, the solvent was removed under reduced pressure, affording an yellowish oil. Purification by flash silica gel column chromatography gave the corresponding product **6**.

Procedure for the reaction of 4b and 5a

To a 1-mL vial were added sequentially **4b** (78 mg, 0.30 mmol), **5a** (42 mg, 0.20 mmol), XB-donor **3c** (5.3 mg, 0.010 mmol), and dichloromethane (0.20 mL). The vial was purged with argon, and the reaction mixture was stirred at 30 °C for 14 h. And then, the solvent was removed under reduced pressure, affording an yellowish oil. Purification by flash silica gel column chromatography using hexane/ethyl acetate = 20/1 as an eluent gave **6ba** in 80% yield (0.075 g, dr = 3.3:1).

Procedure for the reaction of 7 and 5c

To a 1-mL vial were added sequentially 7 (57 mg, 0.30 mmol), 5c (36 mg, 0.20 mmol), XB-donor 3c (5.3 mg, 0.010 mmol), and dichloromethane (0.20 mL). The vial was

purged with argon, and the reaction mixture was stirred at 30 °C for 14 h. And then, the solvent was removed under reduced pressure, affording an yellowish oil. Purification by flash silica gel column chromatography using hexane/ethyl acetate = 10/1 as an eluent gave **8** in 39% yield (0.024 g).

	+	N ^{, Ph} II —	XB-donor 3 (5.	0 mol%)		Ph
TI	BSO A	An H	CH ₂ Cl ₂ , 30 °C	C, Time	TBSO	An
	4a (1.5 eq)	5a			6aa	
3 / <i>Time</i> (h)	0	0.5	1	2	10	18
3a	0%	13%	19%	25%	42%	48%
3b	19%	7%	13%	16%	29%	34%
3c	25%	29%	44%	53%	78%	85%
3d	42%	7%	18%	33%	51%	59%

Table S1. Reaction profile using various XB-donors 3.^{a,b}

^{*a*} Standard conditions: **4a** (0.30 mmol), **5a** (0.20 mmol), XB-donor **3** (10 μ mol) in CH₂Cl₂ (0.20 mL) at 30 °C. ^{*b*} Yields were determined by ¹H NMR.

Characterization Data of Products 4-(*tert*-Butyldimethylsilyloxy)-2-(4-methoxyphenyl)-1-phenyl-4,5-

didehydropiperidine (6aa).

Yellow solid (0.071 g, 90%); Mp. 64.0–65.0 °C; R_f 0.29 (hexane/ethyl acetate = 20/1); ¹H NMR (500 MHz, CDCl₃) δ : 7.22 (dd, J = 8.7, 7.5 Hz, 2H), 7.12 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 6.80–6.74 (m, 3H), 5.17–5.10 (m, 1H), 4.96 (dd, J = 5.9, 3.6 Hz, 1H), 3.92 (ddd, J = 16, 3.6, 3.6 Hz, 1H), 3.76 (s, 3H), 3.60 (ddd, J = 16, 3.9, 2.5 Hz, 1H), 2.94–

2.82 (m, 1H), 2.40 (d, J = 16 Hz, 1H), 0.92 (s, 9H), 0.12 (s, 3H), 0.09 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 158.5, 149.7, 148.0, 133.8, 129.2, 128.2, 118.2, 115.4, 113.6, 101.0, 56.4, 55.3, 43.9, 35.5, 25.8, 18.1, -4.3, -4.3 ppm; IR (KBr): 3036.4, 3003.6, 2953.5, 2932.2, 2887.9, 2857.0, 1719.2, 1676.8, 1595.8, 1510.0, 1460.8, 1377.9, 1307.5, 1250.6, 1217.8, 1198.5, 1180.2, 1113.7, 1034.6, 879.4, 833.1, 809.9, 797.4, 777.2, 753.1, 693.3, 564.1, 529.4 cm⁻¹; ESI-HRMS (*m/z*): [M+H]⁺ calcd for C₂₄H₃₄NO₂Si 396.2359, found 396.2378.

4-(*tert*-Butyldimethylsilyloxy)-2-(4-methylphenyl)-1-phenyl-4,5didehydropiperidine (6ab).

Yellow solid (0.061 g, 81%); Mp. 54.6–55.0 °C; R_f 0.51 (hexane/ethyl acetate = 10/1); ¹H NMR (500 MHz, CDCl₃) δ : 7.24 (dd, J = 8.5, 7.2 Hz, 2H), 7.11 (d, J = 8.2 Hz, 2H), 7.06 (d, J = 8.2 Hz, 2H), 6.89 (d, J = 8.5 Hz, 2H), 6.78 (t, J = 7.2 Hz, 1H), 5.19–5.12 (m,1H), 4.98 (dd, J = 5.7, 3.3 Hz, 1H), 3.96 (ddd, J = 16, 3.3, 3.3 Hz, 1H), 3.64 (ddd, J = 16, 4.7, 2.9 Hz,

1H), 2.94–2.85 (m, 1H), 2.44 (dd, J = 17, 1.4 Hz, 1H), 2.31 (s, 3H), 0.93 (s, 9H), 0.13 (s, 3H), 0.09 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 149.6, 147.9, 138.7, 136.4, 129.2, 129.0, 127.0, 118.1, 115.2, 101.0, 56.5, 44.1, 35.5, 25.8, 21.1, 18.1, -4.3, -4.3 ppm; IR (KBr): 2956.3, 2929.3, 2857.0, 2801.1, 1675.8, 1595.8, 1500.4, 1460.8, 1389.5, 1373.1, 1253.5, 1216.9, 1198.5, 1175.4, 1033.7, 992.2, 938.2, 879.4, 839.8, 821.5, 518.8, 449.3 cm⁻¹; ESI-HRMS (*m/z*): [M+H]⁺ calcd for C₂₄H₃₄NOSi 380.2410, found 380.2405.

4-(*tert*-Butyldimethylsilyloxy)-1,2-diphenyl-4,5-didehydropiperidine (6ac, CAS Registry Number 919080-26-5).

Yellow oil (0.045 g, 62%); ¹H NMR (500 MHz, CDCl₃) δ : 7.31– 7.16 (m, 7H), 6.88 (d, J = 8.1 Hz, 2H), 6.78 (t, J = 7.2 Hz, 1H), 5.24–5.15 (m, 1H), 4.99 (dd, J = 5.7, 3.4 Hz, 1H), 4.00 (ddd, J =16, 3.4, 3.4 Hz, 1H), 3.68 (ddd, J = 16, 5.0, 3.2, Hz, 1H), 3.00– 2.87 (m, 1H), 2.45 (dd, J = 17, 1.2 Hz, 1H), 0.93 (s, 9H), 0.12 (s, 3H), 0.07 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 149.5, 147.8, 141.9, 129.2, 128.3, 127.1, 126.9, 118.1, 115.1, 101.0, 56.8, 44.2, 35.6, 25.8,

18.1, -4.3, -4.4 ppm.

4-(*tert*-Butyldimethylsilyloxy)-2-(4-trifluoromethylphenyl)-1-phenyl-4,5didehydropiperidine (6ad).

Yellow oil (0.062 g, 71%); R_f 0.48 (hexane/ethyl acetate = 10/1); ¹H NMR (500 MHz, CDCl₃) δ : 7.51 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.3 Hz, 2H), 7.24 (dd, *J* = 8.7, 7.4 Hz, 2H), 6.85 (dd, *J* = 8.7, 0.8 Hz, 2H), 6.80 (tt, *J* = 7.4, 0.8 Hz, 1H), 5.22–5.17 (m, 1H), 4.99 (dd, *J* = 5.8, 3.5 Hz, 1H), 4.00 (ddd, *J* = 16, 3.5, 3.5 Hz, 1H), 3.66 (ddd, *J* = 16, 4.8, 3.2 Hz, 1H),

2.99–2.90 (m, 1H), 2.42 (dd, J = 16, 1.3 Hz, 1H), 0.91 (s, 9H), 0.12 (s, 3H), 0.06 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 149.2, 147.5, 146.2, 129.4, 129.2 (q, J = 32 Hz), 127.4, 125.3 (q, J = 3.8 Hz), 124.3 (q, J = 272 Hz), 118.6, 115.0, 100.8, 56.6, 44.3, 35.6, 25.7, 18.1, -4.3, -4.4 ppm; ¹⁹F NMR (470 MHz, CDCl₃) δ : 99.3 ppm; IR (KBr): 3063.4, 2956.3, 2931.3, 1895.6, 2858.0, 1686.4, 1617.9, 1597.7, 1504.2, 1473.4, 1414.5, 1377.9, 1325.8, 1258.3, 1220.7, 1165.8, 1126.2, 1068.4, 1038.5, 1165.8, 1126.2, 1068.4, 1038.5, 1017.3, 990.3, 781.0, 749.2, 689.4, 661.5, 608.4 cm⁻¹; ESI-HRMS (m/z): [M+H]⁺ calcd for C₂₄H₃₁F₃NOSi 434.2127, found 434.2133.

2-(4-Bromophenyl)-4-(*tert*-butyldimethylsilyloxy)-1-phenyl-4,5didehydropiperidine (6ae).

Yellow solid (0.062 g, 70%); Mp. 40.0–40.2 °C; R_f 0.43 (hexane/ethyl acetate = 20/1); ¹H NMR (500 MHz, CDCl₃) δ : 7.35 (d, J = 8.6 Hz, 2H), 7.21 (dd, J = 8.8, 7.3 Hz, 2H), 7.06 (d, J = 8.6 Hz, 2H), 6.83 (dd, J = 8.8, 0.9 Hz, 2H), 6.77 (tt, J = 7.3, 0.9 Hz, 1H), 5.13–5.07 (m, 1H), 4.95 (dd, J = 5.7, 3.4 Hz, 1H), 3.93 (ddd, J = 16, 3.4, 3.4 Hz, 1H), 3.60 (ddd, J = 16, 4.9, 3.1

Hz, 1H), 2.94–2.84 (m,1H), 2.36 (dd, J = 17, 1.2 Hz, 1H), 0.90 (s, 9H), 0.11 (s, 3H), 0.06 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 149.3, 147.6, 140.9, 131.4, 129.3, 128.9, 120.8, 118.5, 115.3, 100.9, 56.5, 44.2, 35.5, 25.8, 18.1, -4.3, -4.3 ppm; IR (KBr): 3064.3, 3036.4, 3021.9, 2956.3, 2929.3, 2886.0, 2857.0, 2811.7, 1673.0, 1595.8, 1576.5, 1560.1, 1498.4, 1488.8, 1473.4, 1390.4, 1374.0, 1348.0, 1294.0, 1259.3, 1217.8, 1197.6, 1177.3, 1151.3, 1074.2, 1031.7, 1010.5, 991.2, 938.2, 924.7, 876.5, 824.4, 795.5, 750.2, 710.6, 693.3, 659.5, 552.5, 535.2 cm⁻¹; ESI-HRMS (*m/z*): [M+H]⁺ calcd for C₂₃H₃₁NOSiBr 444.1358, found 444.1374.

2-(*tert*-Butyl)-4-(*tert*-butyldimethylsilyloxy)-1-phenyl-4,5-didehydropiperidine (6ag).

6aq

Yellow oil (0.024 g, 35%); $R_f 0.51$ (hexane/ethyl acetate = 10/1); ¹H NMR (500 MHz, CDCl₃) δ : 7.19 (dd, J = 8.6, 7.2 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 6.66 (t, J = 7.2 Hz, 1H), 4.82 (dd, J = 5.6, 3.2 Hz, 1H), 3.98 (d, J = 7.5 Hz, 1H), 3.88–3.82 (m, 2H), 2.50–2.41 (m, 1H), 2.07 (d, J = 17 Hz, 1H), 0.93 (s, 9H), 0.91 (s, 9H), 0.16 (s,

3H), 0.14 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 151.8, 148.8, 129.1, 116.7, 114.4, 100.2, 59.8, 44.4, 39.3, 29.9, 28.9, 25.9, 18.2, -4.1, -4.3 ppm; IR (KBr): 3059.5, 2957.3, 2896.6, 2858.0, 2801.1, 1691.3, 1596.8, 1502.3, 1472.4, 1403.0, 1369.2, 1320.0, 1254.5, 1227.5, 1197.6, 1033.7, 990.3, 940.1, 877.5, 838.9, 792.6, 778.1, 748.2, 720.3, 690.4, 408.8 cm⁻¹; ESI-HRMS (*m*/*z*): [M+H]⁺ calcd for C₂₁H₃₆NOSi 346.2566, found 346.2554.

4-(*tert*-Butyldimethylsilyloxy)-2-(4-methoxyphenyl)-1,6-diphenyl-4,5didehydropiperidine (6ba, CAS Registry Number 919080-14-1).

Colorless oil (0.075 g, 80%, dr = 3.3:1); major diastereomer; ¹H NMR (500 MHz, CDCl₃) δ : 7.31 (d, J = 8.7 Hz, 2H), 7.28–7.23 (m, 3H), 7.07 (d, J = 8.7 Hz, 2H), 7.00 (dd, J = 8.7, 8.7 Hz, 2H), 6.78–6.72 (m, 3H), 6.79–6.59 (m, 2H), 5.20– 5.14 (m, 2H), 5.14–5.10 (m, 1H), 3.74 (s, 3H), 2.98 (dd, J = 16, 5.7 Hz, 1H), 2.42 (dd, J = 16, 4.0 Hz, 1H), 0.82 (s, 9H), –0.01 (s, 3H), –0.07 (s, 3H) ppm; minor diastereomer; ¹H

NMR (500 MHz, CDCl₃) δ : 7.22–7.11 (m, 7H), 6.91 (dd, J = 7.8, 7.8 Hz, 2H), 6.79–6.59 (m, 5H), 4.99–4.95 (m, 1H), 4.71 (dd, J = 4.5, 2.5 Hz, 1H), 4.60 (dd, J = 9.8, 4.1 Hz, 1H), 3.68 (s, 3H), 2.68 (dddd, J = 17, 9.8, 2.5, 2.5 Hz, 1H), 2.36 (ddd, J = 17, 4.1, 1.9, Hz, 1H), 0.91 (s, 9H), 0.15 (s, 6H) ppm.

1,3-Diphenyl-3-(N-phenylamino)propan-1-one (8, CAS Registry Number 742-43-8).

White solid (0.024 g, 39%); ¹H NMR (500 MHz, CDCl₃) δ : 7.90 (dd, J = 8.2, 1.2 Hz, 2H), 7.55 (tt, J = 7.5, 1.2 Hz, 1H), 7.48–7.39 (m, 4H), 7.32 (dd, J = 7.5, 7.5 Hz, 2H), 7.23 (tt, J = 7.5, 1.2 Hz, 1H), 7.08 (dd, J = 8.5, 7.4 Hz, 2H), 6.66 (tt, J = 7.4, 0.9 Hz, 1H), 6.58–6.52 (dd, J = 8.5, 7.4 Hz, 2H), 6.66 (tt, J = 7.4, 0.9 Hz, 1H), 6.58–6.52 (dd, J = 8.5, 7.4 Hz, 2H), 6.66 (tt, J = 7.4, 0.9 Hz, 1H), 6.58–6.52 (dd, J = 8.5, 7.4 Hz, 2H), 6.66 (tt, J = 7.4, 0.9 Hz, 1H), 6.58–6.52 (dd, J = 8.5, 7.4 Hz, 2H), 6.66 (tt, J = 7.4, 0.9 Hz, 1H), 6.58–6.52 (dd, J = 8.5, 7.4 Hz, 2H), 6.66 (tt, J = 7.4, 0.9 Hz, 1H), 6.58–6.52 (dd, J = 8.5, 7.4 Hz, 2H), 6.66 (tt, J = 7.4, 0.9 Hz, 1H), 6.58–6.52 (dd, J = 8.5, 7.4 Hz, 2H), 6.66 (tt, J = 7.4, 0.9 Hz, 1H), 6.58–6.52 (dd, J = 8.5, 7.4 Hz, 2H), 6.66 (tt, J = 7.4, 0.9 Hz, 1H), 6.58–6.52 (dd, J = 8.5, 7.4 Hz, 2H), 6.66 (tt, J = 7.4, 0.9 Hz, 1H), 6.58–6.52 (dd, J = 8.5, 7.4 Hz, 2H), 6.66 (tt, J = 7.4, 0.9 Hz, 1H), 6.58–6.52 (dd, J = 8.5, 7.4 Hz, 2H), 6.66 (tt, J = 7.4, 0.9 Hz, 1H), 6.58–6.52 (dd, J = 8.5, 7.4 Hz, 2H), 7.48–7.50 (dd, J = 8.5, 7.4 Hz, 2H), 7.48–7.50 (dd, J = 7.5, 7.5 Hz, 2H), 7.50 (dd, J = 7.5, 7.5 Hz, 2H), 7.50 (dd, J = 8.5, 7.4 Hz, 2H), 7.50 (dd, J = 8.5, 7.4 Hz, 2H), 7.50 (dd, J = 7.5, 7.5 Hz, 2H), 7.50 (dd

0.9 Hz, 2H), 5.00 (dd, *J* = 7.7, 5.2 Hz, 1H), 4.55 (br, 1H), 3.51 (dd, *J* = 16, 5.2 Hz, 1H), 3.42 (dd, *J* = 16, 7.7 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ: 198.4, 147.1, 143.1, 136.8, 133.6, 129.2, 129.0, 128.8, 128.4, 127.5, 126.5, 117.9, 113.9, 54.9, 46.4 ppm.

Theoretical Study

The geometries of the isolated cation of **3a-3e** were optimized by using density functional theory (DFT) at the M06-2X/LANL2DZ for I and 6-31+G(d,p) for the other atoms. The optimized structures, HOMO, and LUMO of the isolated cation of **3a-3e** are shown in Figure S1, S2, and S3, respectively. All DFT calculations were carried out with *Gaussian 09* package.⁹

Fig. S1 DFT-optimized structure of cationic parts in 3a-3e.

Fig. S2 LUMO of cationic parts in 3a-3e.

Fig. S3 HOMO of cationic parts in 3a-3e.

Moreover, we optimized the structures of imine **5a** and the halogen-bonding complex **3c-5a** by the DFT calculation analysis. According to the previous report by Huber,^[10] we used the M06-2X/def2-TZVPP and corresponding pseudopotential for iodine which included the D3 dispersion correction by Grimme^[11] and the SMD solvation model^[12] with the predefined parameters for dichloromethane.

Fig. S4 The optimized structures of Imine 5a and the calculated halogen-bonding complex 3c-5a.

Cartesian coordinates of the reported structures

3a			
С	-0.41551900	0.08153000	0.02857500
С	-1.57406800	0.83167800	0.10146300
Ν	0.60729700	0.97532100	0.12400500
Ν	0.17625300	2.20587400	0.24847000
Ν	-1.12738000	2.11536600	0.23750600
С	-1.92742200	3.33549700	0.38462600
Н	-2.80476500	3.09766800	0.98518000
Н	-1.30230700	4.07498300	0.88172200
Н	-2.23033100	3.69492900	-0.59910600
С	-2.99178300	0.44547800	0.06139000
С	-3.83990900	0.97499300	-0.91791800
С	-3.48171100	-0.46736900	1.00186500
С	-5.17765300	0.59336900	-0.95058200
С	-4.82079700	-0.84419300	0.96249200
С	-5.66674900	-0.31442500	-0.01118100
Н	-5.83557500	0.99666900	-1.71275700
Н	-5.20399200	-1.54924500	1.69217300
С	2.02827600	0.70341900	0.08203800
С	2.67536400	0.41532600	1.28451000
С	2.65427100	0.72478700	-1.16585700
С	4.04042200	0.14301900	1.20706600
С	4.01880700	0.44489400	-1.18349600
С	4.72571000	0.15707900	-0.01121700
Н	4.58199100	-0.08480300	2.12137700
Н	4.54378100	0.45154400	-2.13527700
Ι	-0.15073800	-1.94734000	-0.22253100
Н	-2.81950700	-0.87170800	1.76228200
Н	-3.45178300	1.66267300	-1.66459000
Н	-6.70981600	-0.61175200	-0.04014600
С	1.92878400	0.39717500	2.59234300
Н	1.42980300	1.35356900	2.77845200
Н	1.16624800	-0.39049000	2.60452100
Н	2.61323300	0.20843500	3.42018800
С	1.88249200	1.03002100	-2.42264100

Н	1.08690500	0.29451400	-2.58889400
Н	1.42099700	2.02159800	-2.37316500
Н	2.54139900	1.00896800	-3.29131900
С	6.20693600	-0.10675400	-0.05983500
Н	6.75992100	0.83769100	-0.02748800
Н	6.53019500	-0.71166800	0.78968100
Н	6.48682300	-0.62366200	-0.98040600

3b

С	-0.51584300	-0.01070800	-0.03285700
С	-1.62816300	0.16664300	0.76812700
Ν	0.55725000	0.17382000	0.78376300
Ν	0.20160400	0.44755000	2.01293100
Ν	-1.10573800	0.43983300	2.00087500
С	-1.82768200	0.68972000	3.25236000
Н	-2.72288800	0.06902900	3.26007700
Н	-1.16101800	0.42192900	4.07006100
Н	-2.09862900	1.74401200	3.31445100
С	-3.06654500	0.09161700	0.47579500
С	-3.90065300	1.18026400	0.75647700
С	-3.59355400	-1.07209600	-0.09452600
С	-5.26036100	1.09859300	0.47331000
С	-4.95447500	-1.14561000	-0.37608700
С	-5.78631800	-0.06326900	-0.09122700
Н	-5.90653900	1.94363500	0.68536000
Н	-5.36545800	-2.04888400	-0.81384700
С	1.96041000	0.09569800	0.42833600
С	2.57982400	-1.15571800	0.52451100
С	2.58172500	1.27066500	-0.01001700
С	3.92950500	-1.20253000	0.17031900
С	3.93184000	1.16196800	-0.34910800
С	4.59551100	-0.05776500	-0.25722400
Н	4.46629600	-2.14349200	0.22986300
Н	4.47068000	2.04021000	-0.68903600
Ι	-0.35739100	-0.42516300	-2.04486600

Η	-2.94391600	-1.91654000	-0.30732100
Н	-3.48593900	2.09519400	1.17118100
Н	-6.84673200	-0.12366500	-0.31268500
С	1.85272500	-2.38687800	1.03655000
Н	0.77241700	-2.22336400	0.92698700
С	1.85404200	2.60211400	-0.07000700
Н	0.77396000	2.40617400	-0.09847000
С	2.15162400	3.41627500	1.19839700
Н	1.60731900	4.36494000	1.17840800
Н	1.86907300	2.86827600	2.10249300
Н	3.22129800	3.63992600	1.26242500
С	2.19776100	3.39990300	-1.33147200
Н	3.23565100	3.74479400	-1.31729400
Н	2.04644700	2.80428100	-2.23641100
Н	1.56263500	4.28767600	-1.39161700
С	2.14918300	-2.58345400	2.53112200
Н	1.86689100	-1.70300300	3.11642900
Н	1.60435200	-3.45027700	2.91637000
Н	3.21878900	-2.75890100	2.68446600
С	2.19811600	-3.64751700	0.23760000
Н	2.04951100	-3.49726300	-0.83559000
Н	3.23551000	-3.95329200	0.40075300
Н	1.56288100	-4.47622900	0.56153900
Н	5.64530000	-0.11743600	-0.52593800
3c			
С	-0.0579200	0.0685310	0.0003090
С	1.0939970	0.8255450	0.0005990
Ν	-1.0884480	0.9588290	0.0008900
Ν	-0.6642580	2.1998330	0.0015080
Ν	0.6388210	2.1123220	0.0013330
С	1.4542600	3.3283710	0.0017660
Н	2.0814220	3.3339680	-0.8903250
Н	0.7721300	4.1763280	0.0020770
Н	2.0814530	3.3333600	0.8938380
С	-2.5058480	0.6726120	0.0005780

С	-3.1413100	0.5328350	-1.2344140
С	-3.1412620	0.5293140	1.2352120
С	-4.5038390	0.2413590	-1.2048180
С	-4.5037780	0.2379240	1.2048300
С	-5.1989150	0.0949830	-0.0001930
Н	-5.0352370	0.1249750	-2.1458110
Н	-5.0351440	0.1188740	2.1455090
Ι	-0.2719420	-1.9791850	-0.0009850
С	2.5211140	0.4632980	0.0002050
С	3.1811790	0.2907610	-1.2277790
С	3.1818700	0.2908980	1.2278660
С	4.5335340	-0.0435480	-1.2030920
С	4.5341940	-0.0433770	1.2024720
С	5.2264380	-0.2103410	-0.0005040
Н	5.0591940	-0.1834580	-2.1444570
Н	5.0603870	-0.1831900	2.1435580
С	-2.3825620	0.6800000	2.5275960
Н	-1.5692390	-0.0518570	2.6006850
Н	-1.9448020	1.6795290	2.6165960
Н	-3.0453800	0.5260250	3.3799670
С	-2.3826870	0.6872450	-2.5264040
Н	-3.0451400	0.5338630	-3.3791640
Н	-1.9465250	1.6876530	-2.6133800
Н	-1.5681660	-0.0431390	-2.6007930
С	-6.6775850	-0.1870710	-0.0004900
Н	-7.2413360	0.7515080	0.0021950
Н	-6.9731800	-0.7501940	-0.8881940
Н	-6.9725910	-0.7548500	0.8844460
С	2.4408030	0.4361010	2.5339600
Н	1.9277180	1.4017010	2.6112220
Н	1.6813810	-0.3467060	2.6442090
Н	3.1253420	0.3567170	3.3797700
С	2.4394510	0.4358290	-2.5335140
Н	1.6811090	-0.3479910	-2.6440450
Н	1.9249650	1.4007460	-2.6098990
Н	3.1237900	0.3579770	-3.3796280

С	6.6947240	-0.5419190	-0.0008080
Н	6.9709980	-1.1156600	-0.8879970
Н	7.2911700	0.3763090	0.0009170
Н	6.9706330	-1.1186760	0.8845500
3d			
С	0.07667900	0.00895900	-0.05387100
С	1.19028600	0.04911100	0.75705300
Ν	-0.99493100	0.02889900	0.78585400
Ν	-0.63241300	0.07942300	2.04427500
Ν	0.67363300	0.09212600	2.01938000
С	1.42958100	0.14377700	3.27203200
Н	2.05535400	1.03678800	3.27073800
Н	0.70725300	0.17677400	4.08546600
Н	2.05628100	-0.74602900	3.34346700
С	2.63335300	0.03614400	0.46601400
С	3.29939600	-1.19778000	0.39735900
С	3.30320700	1.25423200	0.25880700
С	4.66803700	-1.18990400	0.13165800
С	4.66976600	1.21204000	-0.00534400
С	5.36877300	0.00193800	-0.06809700
Н	5.19938100	-2.13648600	0.07258600
Н	5.20424000	2.14434600	-0.17159900
С	-2.39721500	0.00366900	0.42626500
С	-3.03669700	1.23338300	0.23691000
С	-2.99601700	-1.25066100	0.25848800
С	-4.38641200	1.17622500	-0.11692300
С	-4.34573200	-1.24489700	-0.09665900
С	-5.03125300	-0.04643600	-0.27783500
Н	-4.93815300	2.09807400	-0.26988400
Н	-4.86649100	-2.18647000	-0.23510300
Ι	-0.04796600	-0.07220800	-2.10611500
С	-2.23930700	-2.54622400	0.49398000
Н	-1.16420500	-2.34112900	0.39698900
С	-2.32795500	2.56041500	0.44405800
Н	-1.24403100	2.38238400	0.42892700

С	-2.49481500	-3.04852700	1.92308700
Н	-2.20824000	-2.30072000	2.66903000
Н	-3.55803400	-3.26937000	2.06175100
Н	-1.92990100	-3.96614700	2.11227300
С	-2.58285500	-3.62368000	-0.53875800
Н	-3.60739800	-3.98653500	-0.41578800
Н	-2.47118700	-3.24976000	-1.56054700
Н	-1.91899800	-4.48291900	-0.41071500
С	-2.68922300	3.13761900	1.82069300
Н	-3.76380000	3.33901500	1.87731600
Н	-2.43548900	2.44187700	2.62623800
Н	-2.15887600	4.07915000	1.99096100
С	-2.63253300	3.56329500	-0.67343500
Н	-2.42468500	3.13948000	-1.66020500
Н	-3.67869100	3.88194500	-0.65217500
Н	-2.01855300	4.45895800	-0.54504900
Н	-6.08080600	-0.06613800	-0.55326100
С	2.55624700	2.56452600	0.29923300
Н	1.80172100	2.61351400	-0.49454100
Н	2.03694900	2.71140600	1.25353100
Н	3.23913300	3.40433000	0.16232900
С	2.55019100	-2.49493100	0.57790900
Н	1.99084200	-2.52044300	1.52052000
Н	1.82896400	-2.64843300	-0.23340300
Н	3.23634300	-3.34313200	0.57762100
С	6.85096000	-0.00688700	-0.33118000
Н	7.11736300	0.72189700	-1.10070200
Н	7.40121200	0.25706700	0.57771800
Н	7.19192700	-0.99182000	-0.65563800
3e			
С	-0.05932200	-0.07795300	-0.09664100
С	1.08390700	-0.01582800	0.67135000
Ν	-1.09763700	0.06243100	0.77249000
Ν	-0.68902100	0.19085100	2.01059700
Ν	0.61481200	0.13242800	1.94423500

С	1.41304800	0.26702600	3.16376800
Н	1.90202500	1.24332600	3.16416700
Н	0.73339700	0.17629700	4.00892400
Н	2.16395900	-0.52281500	3.17631900
С	2.51850200	-0.02131000	0.33043500
С	3.16129200	-1.23753300	0.03648800
С	3.19725400	1.21773400	0.32219700
С	4.52780200	-1.19379900	-0.25452000
С	4.55885700	1.20671100	0.02431200
С	5.21784800	0.01171700	-0.25757600
Н	5.05770100	-2.11460300	-0.47856700
Н	5.11559500	2.13732900	0.00530700
С	-2.50949300	0.12389900	0.45669600
С	-3.01731600	1.36642200	0.05372700
С	-3.24916900	-1.05858300	0.54735500
С	-4.37868800	1.40335400	-0.24861500
С	-4.60783200	-0.95866400	0.23752400
С	-5.16305500	0.25597700	-0.15108600
Н	-4.83256300	2.33605200	-0.56580300
Н	-5.23654000	-1.84104500	0.29599100
Ι	-0.26401400	-0.36261300	-2.12449100
С	-2.62983600	-2.37018900	0.99602100
Н	-1.54065700	-2.29742700	0.87143700
С	-2.14559600	2.61061700	-0.00079000
Н	-1.11225200	2.29876000	-0.20644100
С	2.43530900	-2.57265900	0.05717000
Н	1.35865700	-2.38264400	0.15155500
С	2.45884700	2.53230500	0.53934800
Н	1.58183400	2.34468400	1.17437300
С	1.93351300	3.06547700	-0.80301500
Н	1.36876900	3.99098100	-0.65143900
Н	2.76835700	3.27960300	-1.47789500
Н	1.28116200	2.34011200	-1.30108700
С	3.30518100	3.59482800	1.24613300
Н	3.75564300	3.21068900	2.16656600
Н	4.11045200	3.96016700	0.60223200

Η	2.68240800	4.45640400	1.50120300
С	2.86666600	-3.40598800	1.27209400
Н	3.93685500	-3.63105300	1.22642800
Н	2.67736200	-2.87815400	2.21258000
Н	2.32262700	-4.35449100	1.29784800
С	2.64695200	-3.35528600	-1.24434000
Н	2.38399100	-2.75345700	-2.11880000
Н	3.68844400	-3.67270200	-1.35219900
Н	2.02734100	-4.25644000	-1.24527300
С	-2.91991600	-2.60456700	2.48610000
Н	-2.55289400	-1.77754900	3.10118700
Н	-3.99833400	-2.69422900	2.65219500
Н	-2.44686300	-3.53070600	2.82556200
С	-3.09984800	-3.55722700	0.14938600
Н	-4.16011000	-3.77081900	0.31242900
Н	-2.94693000	-3.37495600	-0.91811700
Н	-2.54238500	-4.45488100	0.43015100
С	-2.15861600	3.32308600	1.36081300
Н	-3.17058200	3.66781200	1.59660600
Н	-1.83533600	2.65958300	2.16903500
Н	-1.49855000	4.19578000	1.33936600
С	-2.54839700	3.57058700	-1.12270500
Н	-2.61731700	3.05780600	-2.08649400
Н	-3.51064600	4.04897100	-0.91720400
Н	-1.80462400	4.36727200	-1.21041400
Н	6.27890700	0.02450200	-0.48578700
Н	-6.22059900	0.30943400	-0.38892600
5a			
C	0.536193	-0.360577	0.13977
Н	0.846883	-1.355478	0.482433
Ν	1.388184	0.534923	-0.142888
С	5.496815	-0.285071	0.073688
С	4.643693	-1.220364	-0.494091
С	3.281102	-0.971767	-0.570197
С	2.757395	0.22381	-0.076768

С	3.622953	1.174381	0.463832
С	4.979694	0.913524	0.551045
Н	6.558777	-0.480942	0.130361
Н	5.040545	-2.14653	-0.888826
Н	2.620322	-1.688183	-1.040914
Н	3.207908	2.108038	0.818774
Н	5.640531	1.652405	0.984675
С	-3.669501	0.24096	-0.080859
С	-2.796314	1.270647	-0.451709
С	-1.436678	1.082368	-0.384644
С	-0.90838	-0.138018	0.054424
С	-1.78347	-1.15178	0.417218
С	-3.16082	-0.977598	0.354982
Н	-3.221934	2.20581	-0.788849
Н	-0.753194	1.871357	-0.667855
Н	-1.38636	-2.100216	0.759649
Н	-3.814581	-1.785792	0.644963
0	-4.987464	0.524347	-0.179995
С	-5.908633	-0.475824	0.194098
Н	-6.896397	-0.048077	0.050623
Н	-5.802311	-1.364682	-0.432425
Н	-5.782056	-0.755091	1.242832
3c-5a			
С	0.517621	2.811099	0.278736
С	1.04295	1.573826	-0.013824
Ι	0.128637	-0.268721	-0.170872
Ν	2.720336	3.020824	0.089265
Ν	2.386074	1.772853	-0.114101
Ν	1.598658	3.635283	0.323837
С	-3.445093	4.20717	0.920964
С	-2.865646	4.270701	-0.341376
С	-1.576714	3.809692	-0.575636
С	-0.859408	3.277908	0.499719
С	-1.418866	3.183232	1.77968
С	-2.709847	3.653536	1.966203

Н	-3.432977	4.685345	-1.165899
Н	-3.157444	3.584593	2.95072
С	5.357895	-0.964645	-1.252251
С	4.895518	0.006849	-2.141129
С	3.917269	0.916027	-1.780159
С	3.403438	0.817019	-0.484704
С	3.807245	-0.143353	0.433
С	4.805178	-1.02219	0.017602
Н	5.310656	0.054338	-3.140797
Н	5.149548	-1.773973	0.717572
С	-1.614677	-3.63753	0.50504
Н	-1.576241	-4.50681	1.169823
Ν	-0.545206	-3.015778	0.204049
С	1.593464	5.064079	0.615563
Н	2.623187	5.404417	0.600835
Н	1.004456	5.5792	-0.139236
Н	1.147502	5.2214	1.59452
С	3.148498	-4.168582	1.835012
С	2.039926	-4.058263	2.663025
С	0.807762	-3.691484	2.139808
С	0.677693	-3.432399	0.776258
С	1.799206	-3.511668	-0.048026
С	3.021821	-3.895027	0.47812
Н	4.104283	-4.466146	2.244607
Н	2.132477	-4.257696	3.722181
Н	-0.05229	-3.584518	2.788417
Н	1.691229	-3.288178	-1.101465
Н	3.879503	-3.979772	-0.176372
С	-5.502726	-2.651932	-0.896711
С	-5.328368	-3.600906	0.113857
С	-4.060213	-3.912367	0.549311
С	-2.936834	-3.280422	0.006177
С	-3.122913	-2.341896	-1.006022
С	-4.389398	-2.024242	-1.4619
Н	-6.204438	-4.079013	0.528381
Н	-3.929933	-4.656341	1.325889

Н	-2.2592	-1.874964	-1.460202
Н	-4.504981	-1.302704	-2.256118
0	-6.77259	-2.413781	-1.266656
С	-7.010025	-1.482277	-2.303339
Н	-8.086138	-1.452486	-2.440759
Н	-6.64989	-0.488968	-2.027035
Н	-6.532782	-1.800175	-3.23267
С	3.426666	1.961083	-2.742686
Н	3.806281	2.948501	-2.476766
Н	3.760242	1.731627	-3.751475
Н	2.335753	2.0156	-2.752191
С	3.212447	-0.290125	1.804129
Н	3.999658	-0.436828	2.542105
Н	2.620552	0.573569	2.104787
Н	2.565822	-1.171934	1.83011
С	6.434413	-1.922425	-1.674808
Н	6.169783	-2.414621	-2.610722
Н	7.374622	-1.394725	-1.839489
Н	6.604249	-2.686895	-0.919324
С	-0.642154	2.571189	2.913085
Н	-1.212916	2.604457	3.837815
Н	-0.402565	1.526821	2.699678
Н	0.302409	3.092924	3.083643
С	-0.980847	3.850158	-1.956823
Н	-0.770864	2.840697	-2.317328
Н	-1.66204	4.323665	-2.659619
Н	-0.039085	4.403208	-1.981917
С	-4.829933	4.734447	1.163427
Н	-5.35907	4.903906	0.228145
Н	-5.411321	4.042055	1.771098
Н	-4.786209	5.682915	1.701274

S41

S49

S61

3b

3e

6ac

6ag

References

[1] B. Zhou, H. Chen and C. Wang, J. Am. Chem. Soc., 2013, 135, 1264.

[2] S. W. Kwok, J. R. Fotsing, R. J. Fraser, V. O. Rodionov and V. V. Fokin, *Org. Lett.*, 2010, **12**, 4217.

[3] S. Perrone, A. Salomone, A. Caroli, A. Falcicchio, C. Citti, G. Cannazza and L. Troisi, *Eur. J. Org. Chem.*, 2014, 5932.

[4] D. Shu, W. Song, X. Li and W. Tang, Angew. Chem., Int. Ed., 2013, 52, 3237.

[5] T. Aono, H. Sasagawa, K. Fuchibe and J. Ichikawa, Org. Lett., 2015, 17, 5736.

[6] D. M. Connors and N. S. Goroff, Org. Lett., 2016, 18, 4262.

[7] A. Poulain, D. Canseco-Gonzalez, R. Hynes-Roche, H. Müller-Bunz, O. Schuster, H.

Stoeckli-Evans, A. Neels and M. Albrecht, Organometallics, 2011, 30, 1021.

[8] H. Hiroki, K. Ogata and S.-i. Fukuzawa, Synlett, 2013, 843.

[9] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

[10] S. H. Jungbauer, S. M. Walter, S. Schindler, L. Rout, F. Kniep and S. M. Huber, *Chem. Commun.*, 2014, **50**, 6281.

[11] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.

[12] A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378