Support Information

Bismuth Germanate (Bi₄Ge₃O₁₂), a Promising High-Capacity Lithium-ion Battery Anode

Jassiel R. Rodriguez,¹ Carlos Belman-Rodriguez,²,³ Sergio A. Aguila,³ Yanning Zhang,⁴ Hongxian Liu,⁴ and Vilas G. Pol⁵,∗

Section 1. Materials and method
Section 2. Raman spectroscopy

Section 3. FT-IR spectroscopy

Section 4. Ex-situ XRD

Section 5. DFT calculations
Materials Synthesis

Bi₄Ge₃O₁₂ (BGO) micropowders were prepared through a sol-gel method using GeO₂ (germanium oxide, 99.99%) and Bi₂O₃ (bismuth oxide, 99.99%) and C₄H₆O₆ (L (+)-tartaric acid, 99.5%) as received from Sigma Aldrich. Stoichiometric amounts of germanium and bismuth oxides were dissolved in 50 mL of concentrated nitric acid (70% HNO₃) and stirred at room temperature overnight. Followed by that, 15 mL of a L (+)-tartaric acid solution (0.0171 moles of tartaric acid per BGO gram) was added to the acid mixture and stirred constantly during 3 h. The resultant mixture was heated at 80 °C for another 2 h followed by heated to 100 °C until forming an xerogel. Finally, the resultant powder was annealed at 850 °C for 4h.

![Flowchart](image)

Figure S11. Flowchart of the synthesis of Bi₄Ge₃O₁₂ through a sol-gel precursor method with tartaric acid assistance.

Structure characterization

Bi₄Ge₃O₁₂ (BGO) micropowder was analysed by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Infrared and Raman spectroscopies, and N₂ physisorption. using a Philips X'pert diffractometer with a Cu Kα radiation (λ = 1.57 Å), a JEOL JSM 5300 in secondary electron mode, a JEOL JEM-2010 in bright mode, a Nexus-760 FTIR spectrometer with in situ Harrick cell, a Thermo-Scientific DXR Raman Microscope with a 633 nm laser and a Quantachrome Nova 2200e surface analyzer at 77K, respectively.

Electrochemical testing

A slurry mixture of 70 wt% BGO, 10 wt% graphene (Sigma Aldrich), 10 wt% carbon Super P (TiMCAL), and 10 wt% CMC (MTI) along with required amount of water were homogeneously mixed. The resultant thick slurry was coated uniformly on a copper foil using a doctor blade method. The coated BGO laminate was dried at 80 °C overnight under vacuum, and then punched into diameter of 12 mm disk electrodes. Then, CR2032 coin cells were assembled, using the prepared electrode as a working electrode, Li metal foil as a counter electrode, and polypropylene film (Celgard 2500) as a separator, in an inert argon-filled glovebox. The electrolyte used was 1 M LiPF₆ in EC: DEC with 1: 1 volume ratio. Cyclic voltammetry (CV) analysis were performed between a voltage window of 0.01−3 V vs Li/Li⁺ at a scan rate of 0.2 mV s⁻¹ using Electrochemistry test station Gamry Reference 600. Ccharge-discharge Galvanostatic cycling data were collected from an Arbin BT-2000 Potentiostat.

DFT calculations

DFT (Density functional theory) calculations were achieved using the planewave-based VASP (Vienna ab-initio simulation package). GGA (generalized gradient approximation) method within PBE (Perdew-Burke-Ernzerh) of exchange-correlation functional and PAW (projector augmented wave) potentials were adopted through the work. The kinetic energy cut-off for the plane-wave expansion was established to 520 eV, and the Brillouin-zone integrations for the geometry optimizations were sampled by a (3×3×3) Monkhorst-Pack mesh. The convergence threshold for self-consistent energy error was set to 1x10⁻⁵ eV, and both atomic and lattice parameters coordinates were fully relaxed until the maximum force is smaller than 0.03 eV/Å for each atom.
Figure SI2. Raman information of BGO, with its characteristic Raman active modes.
Figure SI3. FT-IR spectra of BGO, with its characteristic FT-IR active modes.
After one charge-discharge cycle, the XRD pattern of BGO pristine material disappeared, indicating that BGO phase transformation through a lithiation reaction is not reversible. The X-ray peaks observed after first C-D cycle at 2θ of 27.2°, 46.0°, and 55.4° correspond to the (201), (222) and (421) planes of the tetragonal crystal system of β-Bi$_2$O$_3$, respectively, in agreement with JCPDS PDF 27-0050. Also, the X-ray peaks observed at 2θ of 26.4°, 38.0°, 39.7°, 48.8° and 56.1° correspond to the (101), (102), (111), (112) and (210) planes of the hexagonal crystal system of GeO$_2$, respectively, in agreement with JCPDS PDF 36-1463. No diffraction peaks of BGO is observed in the XRD pattern, indicating its transformation to other two phases.
Figure SI4. Ex-situ XRD pattern of BGO anode after first cycle of charge-discharge between 0.01 to 3.0 V vs Li/Li⁺.

When one Li atom was put in Bi₄Ge₃O₁₂, the structure in the left panel in Fig. SI4 is energetically preferred where Li is surrounded by O atoms. Our preliminary results on the structural stabilities of LiₓBi₄Ge₃O₁₂ with high Li compositions reveal the breaking of Bi-O bonds and the appearance of some Bi-Bi bonds with the increasing of Li, such as LiₓBi₄Ge₃O₁₂ in the middle panel. In contrast, the Ge-O bonds (i.e. the green tetrahedra) are hard to be broken in a large x range, as shown in the example of Li₁₀Bi₄Ge₃O₁₂.
Figure S15. Simulated insertion of 6 and 10 Li$^+$-ions inside Bi$_4$Ge$_3$O$_{12}$ crystal structure.