Supporting Information Available

Increasing Time on Target: Utilization of Inhibitors of Cysteine Cathepsins to Enhance the Tumor Retention of Receptor-Targeted Agents

Wei Fan, †ab, Wenting Zhang, †ab Sameer Alshehri, ab and Jered C. Garrison *abcd

a. Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States.

b. Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States.

c. Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, United States

d. Eppley Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198, United States.
Table of Contents

1. General Experimental Information
 1. Materials ... 1
 2. Instrumentation .. 1-2

2. Chemistry
 1. Synthesis of AOMKs with Linkers (CCTAs) ... 3-6
 2. Synthesis of Inactive Controls with Linkers .. 7-8
 3. Synthesis of CCTA-incorporated, NTSR1-Targeted Peptides ... 9-10
 4. Synthesis of Inactive Control, NTSR1-Targeted Peptides ... 11
 5. Synthesis of Cy5-labeled, NTSR1-Targeted Peptides ... 12
 6. Radiolabeling of NTSR1-Targeted Peptides with 177LuCl$_3$... 13

3. In Vitro Study Figures and Procedures
 1. Distribution Coefficient ($\text{LogD}_{7.4}$) .. 14
 2. Competitive Receptor Binding Studies ... 14
 3. Cathepsin B Inhibition (IC$_{50}$) Studies ... 14-15
 4. Determining the Cathepsin B Inhibition Constants ... 16-18
 5. Cellular Internalization Studies .. 19
 6. Experimental Procedures of Cellular Efflux Studies .. 19
 7. Confocal Microscopy ... 20-21
 8. Adduct Formation Investigated by SDS-PAGE and GPC ... 22-23
 9. Serum Stability Studies .. 24

4. In Vivo Studies
 1. Biodistribution Studies .. 25
 2. Evaluation of Tissue Adduct Formation of the Radioconjugates ... 26
 3. Investigation of Cysteine Proteases Trapping of the Cy5-labeled Conjugates .. 27

5. NMR and Mass Spectra .. 28-60
6. References ... 61
1 General Experimental Information

1.1 Materials

N,N-dimethylformamide (DMF), dichloromethane (DCM), petroleum ether (PE), methanol, ethyl acetate, acetonitrile, formic acid, acetone, diethyl ether, trifluoroacetic acid (TFA), pyridine, piperidine and N-methylpyrrolidone (NMP) were purchased from Fisher Scientific (Fair Lawn, NJ). Fluorenylmethyloxycarbononyl (Fmoc)-protected natural amino acids, N-(Carbobenzyloxy)-L-phenylalanine, H-Lys(Boc)-OH, Fmoc-Tle-OH, Fmoc-L-Gly(Propargyl)-OH and N,N-diisopropylethylamine (DIEA) were purchased from Chem-Impex International (Wood Dale, IL). Isobutyl chloroformate (IBCF), 4-methylmorpholine (NMM), hydrobromic acid (48 wt. % in H₂O), 2-azidoacetic acid, 1-butanol, ascorbic acid, triethylamine (TEA), Ethylenediaminetetraacetic acid (EDTA) Brij®35 and Diazald® were obtained from Sigma-Aldrich (St Louis, MO). The diazomethane was prepared from Diazald® according to the reported method¹. Potassium fluoride (KF), 2,4,6-Trimethylbenzoic acid, phenethylamine were purchased from Alfa Aesar (Haverhill, MA). Fmoc-D-Ser(t-Bu)-OH was purchased from NovaBiochem (Hoherbrunn, Germany). (1-Cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylamino-morpholino-carbenium hexafluorophosphate (COMU) was purchased from AK Scientific (Union City, CA). Fmoc-Leu-SASRIN™ resin (200-400 mesh), Fmoc-Gly-SASRIN™ resin (200-400 mesh), Z-Phe-Arg-AMC and N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) were obtained from Bachem (Bubendorf, Switzerland). Fmoc-N-Me-Arg(Pbf)-OH was produced from ChemPep. (Wellington, FL). Fmoc-2,6-dimethyl-L-tyrosine (Dmt) was purchased from Key Organics (Camelford, UK). Cyanine5 carboxylic acid (Cy 5) was obtained from Lumiprobe (Hunt Valley, MD). N3-PEG-COOH was purchased from PurePEG (San Diego, CA). DOTA-NHS ester was produced by Macrocycle (Plano, TX). Lutetium-177 chloride (¹⁷⁷LuCl₃) was obtained from Oak Ridge National Laboratory (Oak Ridge, TN). CA-074 was purchased from ApexBio (Houston, TX). McCoy's 5A medium (1×; Iwakura & Grace Modification) with L-glutamine was obtained from Mediatech, Inc. (Manassas, VA). Human serum was obtained from MP Biomedicals (Santa Ana, CA). TrypLE Express was obtained from Invitrogen (Grand Island, NY). Penicillin-streptomycin solution and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) were procured from HyClone Laboratories, Inc. (Logan, UT). Fetal Bovine Serum (FBS) was purchased from Gibco by Life Technologies Corporation (Grand Island, NY). BD Cytofix Fixation buffer was purchased from BD Biosciences (San Jose, CA). Novex™ Tris-Glycine SDS sample buffer, Pierce™ RIPA buffer, PageRuler™ Prestained protein ladder, Halt™ Protease inhibitor cocktail, LysoTracker Green DND-26, NucBlue® Live ReadyPro™, Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody (Alexa Fluor 488), Immobilon™-P PVDF transfer membranes, Pierce™ western blotting filter papers, NuPAGE® sample reducing reagent (10×), Tween™ 20, and transfer or electro blotting buffer (10X) were purchased from Thermo Fisher Scientific (Waltham, MA). Cathepsin B (D1C7Y) XP® Rabbit mAb and animal-free blocking solution (5X) were purchased from Cell Signaling Technology (Danvers, MA). Amicon Ultra-4 centrifugal filter (10 kDa) was purchased from Merck Millipore (Burlington, MA). Five weeks old female SCID mice were purchased from Charles River Laboratories. The human colon cancer cell line HT-29 was obtained from American Type Culture Collection and cultured under vendor-recommended conditions. All procedures utilizing animals conform to the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, and were approved by the Institutional Animal Care and Use Committee at the University of Nebraska Medical Center.

1.2 Instrumentation:

Peptides were synthesized by solid phase peptide synthesis (SPPS) on a Liberty microwave peptide synthesizer from CEM. A Waters e2695 system equipped with a Waters 2489 absorption detector and a Waters Qtof Micro electrospray ionization mass spectrometer was used to perform high performance liquid chromatography/mass spectrometry analyses. ¹H-NMR and ¹³C-NMR spectrums were recorded on a Bruker Avance-III HD 600 MHz instrument using deuterium oxide as the solvent. A Phenomenex
Jupiter C12 Proteo 250 × 10 mm semi-prep column was used for the purification of bulk amounts of peptides. Evaluation and purification of radiolabeled conjugates were performed on a Waters 1515 binary pump equipped with a Waters 2489 absorption detector and a Bioscan Flow Count radiometric detector system. The Gel Permeation Chromatography (GPC) analysis was carried out in an Agilent PL aquagel-OH MIXED-H Gel column equipped with Radiomatic™ 150TR flow scintillation analyzer. The radioactivity of the cell samples and tissue homogenates was quantified by Multi-Wiper™ multi-well wipe test counter. Gamma decay detection of 177Lu-labeled conjugates for biodistribution studies was accomplished using a NaI (Tl) well detector constructed by AlphaSpectra Inc. Fluorescence intensities were measured by a SpectraMax® M5 multimode plate reader. Lab-Tek chambered #1.0 borosilicate coverglass disks (4 well) were used for confocal cell imaging. Confocal microscopy images were taken on a Leica LSM510 META Microscope equipped with an argon laser. The fluorescent images were acquired and quantified on the IVIS® Spectrum in vivo imaging system. Autoradiography was recorded via BAS storage phosphor screens and scanned by GE Lifesciences Typhoon FLA 9500 variable mode imager.
2 Chemistry

2.1 Synthesis of AOMK electrophiles with different linkers

![Chemical structure diagrams]

Scheme S1. Synthesis of compounds 9a-9e

Compound 5 was synthesized according to the reported method\(^2\)

Compound 6: This compound was prepared by published procedure\(^3\) with slight modification. Compound 5 (1.1 g, 2 mmol) and NMM (330 μL, 3 mmol) were dissolved in anhydrous THF (50 mL) and stirred under nitrogen at 0 °C. Isobutylchloroformate (IBCF) (400 μL, 3 mmol) in THF (5 mL) was added and the solution was stirred for another 30 min. To this mixture at -15 °C, a freshly prepared solution of diazomethane (150 mmol) in 200 ml ether was carefully dropped in during 30 min and stirred for 2 h at room temperature. A solution of 47 wt. % HBr and acetic acid (6 ml, v/v =1:2) was added to the yellowish mixture in 5 min and stirred for additional 20 min at 0 °C. Brine (200 ml) was poured into the flask and the organic phase was separated and washed twice with saturated NaHCO\(_3\) (100 mL), water (100 mL) and dried over Na\(_2\)SO\(_4\). The organic layer was evaporated to dryness and was purified by flash column chromatography (silica gel, PE/acetone = 10:3) to afford as a yellow powder (1.05 g, 83%). \(^1\)H-NMR (400 MHz, CDCl\(_3\)): δ 7.34-7.18 (m, 10H), 6.47 (m, 1H), 5.37 (s, 1H), 5.09 (s, 2H), 4.73 (br s, 1H), 4.65 (br s, 1H), 4.44 (br s, 1H), 3.87 (s, 2H), 3.08 (m, 4H), 1.51-1.42 (m, 1H), 1.55-1.42 (m, 11H), 1.25-1.20 (m, 2H). \(^1^3\)C-NMR (125 MHz; CDCl\(_3\)): δ 199.9, 171.1, 156.1, 136.0, 129.3, 128.8, 128.6, 128.3, 128.1, 127.3, 79.3, 67.2, 56.2, 56.1, 39.8, 38.1, 31.8, 30.8, 29.4, 28.4, 22.1. LRMS-ESI (m/z): [M+H]\(^+\) calcd. for C\(_{29}\)H\(_{38}\)BrN\(_6\)O\(_6\)H\(^+\) 604.2, found 604.2.
Compound 7: Compound 6 (750 mg, 1.24 mmol), 2,4,6-trimethylbenzoic acid (225 mg, 1.36 mmol) and KF (215 mg, 3.72 mmol) were suspended in anhydrous DMF (7 ml) under nitrogen at room temperature. The mixture was kept stirring for overnight before adding in water (50 ml). The product was extracted with ethyl acetate (70 ml). The organic layer was washed twice with brine (50 ml) and dried over Na₂SO₄. The solvent was removed by rotary evaporation and the product was purified by flash column chromatography (silica gel, PE/acetone = 4:1) to give the product as a white powder (744 mg, 87%). ¹H-NMR (400 MHz, CDCl₃): δ 7.32-7.18 (m, 10H), 6.87 (s, 2H), 6.55 (br s, 1H), 5.40 (br s, 1H), 5.06 (s, 2H), 4.90-4.72 (dd, J = 47.2, 12.8 Hz, 2H), 4.72 (br s, 1H), 4.63 (m, 1H), 4.46 (m, 1H), 3.09 (d, J = 5.2 Hz, 2H), 3.06 (br s, 2H), 2.36 (s, 6H), 2.29 (s, 3H), 1.89 (s, 1H), 1.65-1.60 (m, 2H), 1.42 (s, 10H), 1.25 (m, 2H). ¹³C-NMR (125 MHz; CDCl₃): δ 171.3, 171.0, 170.6, 170.0, 167.2, 74.8, 74.7, 74.2, 61.2, 61.1, 54.6, 53.7, 53.1, 52.5, 41.5, 27.5, 27.4, 27.3. LRMS-ESI (m/z): [M+H]⁺ calcd. for C₃₉H₄₅N₆O₈H⁺ 688.4, found 688.3.

Compound 1a: To a solution of compound 7 (500 mg, 0.73 mmol) in DCM (15 mL), TFA (5 mL) was added dropwise at 0 °C. The solution was stirred at room temperature for 2 h. The mixture was concentrated by rotary evaporation to a volume of about 5 ml and precipitated in ice cold ether (45 ml). The solid was collected by filtration, washed three times with cold ether (30 mL) and dried under vacuum for overnight to yield a white powder (407 mg, 95%). ¹H-NMR (400 MHz, CDCl₃): δ 6.76 (s, J = 6.4 Hz, 1H), 7.35-7.18 (m, 10H), 4.97 (s, 2H), 4.91-4.77 (dd, J = 45.2, 13.6 Hz, 2H), 4.37-4.31 (m, 2H), 3.06 (br s, 2H), 2.86-2.81 (m, 1H), 2.74 (d, J = 5.6 Hz, 1H), 2.27 (s, 6H), 2.25 (s, 3H), 1.82 (m, 1H), 1.57-1.52 (m, 3H), 1.35-1.31 (m, 2H). ¹³C-NMR (125 MHz; CDCl₃): δ 520.2, 172.0, 168.3, 163.0, 155.9, 139.1, 137.7, 136.9, 134.9, 130.0, 129.3, 128.3, 128.2, 128.1, 127.7, 127.6, 127.5, 126.4, 66.5, 65.3, 56.1, 55.6, 38.6, 37.2, 28.8, 26.5, 21.8, 20.7, 19.4, 19.3. LRMS-ESI (m/z): [M+H]⁺ calcd. for C₃₄H₄₀N₄O₈H⁺ 588.3, found 588.3.

Compound 8: This compound was obtained by SPPS. Fmoc-Gly-SASRIN™ resin (250 mg, 0.2 mmol) was deprotected by 20% piperidine in DMF (7 ml) to expose the primary amine. Fmoc-D-Ser(t-Bu)-OH (384 mg, 1 mmol) was coupled to the resin in the presence of COMU (428 mg, 1 mmol) and DIEA (180 µl, 2.0 mmol) in DMF (5 ml). The process of deprotection and conjugation was repeated for the further conjugation of Fmoc-D-Ser(t-Bu)-OH (384 mg, 1 mmol) and 2-azidoacetic acid (76 µl, 1 mmol) until the desired peptide was synthesized. Cleavage of the peptide from resin was achieved by shaking the resin with 1% TFA in dry DCM (5 x 3 ml) for 2 min. The filtrates were immediately neutralized with 5% pyridine in methanol (1 ml) and evaporated to dryness which was redissolved in methanol (1 ml) and precipitated in cold water (50 ml) to yield the crude peptides. The peptide was purified by a semi-preparative Proteo C12 HPLC column with a 15 min gradient and a flow rate of 5.0 mL/min (40% - 90% ACN in water containing 0.1% formic acid) to give compound 5 as a white powder (85 mg, 71%). ¹H-NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 5.2 Hz, 1H), 7.39 (t, J = 4.4 Hz, 1H), 7.28 (m, 1H), 7.15 (d, J = 6.4 Hz, 1H), 4.56 (dt, J = 4.4, 2.0 Hz, 1H), 4.50 (q, J = 3.2 Hz, 1H), 4.42 (dt, J = 5.2, 3.2 Hz, 1H), 4.13 (m, 1H), 4.05-3.97 (m, 3H), 3.91-3.79 (m, 3H), 3.50-3.43 (m, 3H), 1.25 (s, 9H), 1.12 (s, 9H), 1.18 (s, 9H). ¹³C-NMR (125 MHz; CDCl₃): δ 171.3, 171.0, 170.6, 170.0, 167.2, 74.8, 74.7, 74.2, 61.2, 61.1, 54.6, 53.7, 53.1, 52.5, 41.5, 27.5, 27.4, 27.3. LRMS-ESI (m/z): [M+H]⁺ calcd. for C₂₅H₂₉N₄O₄H⁺ 588.3, found 588.2.

General procedure for synthesis of compounds 9b-9e: To a solution of the azido-linker (0.1 mmol) and NHS (17 mg, 0.15 mmol) in DMF (1 mL) was added EDCI (38 mg, 0.2 mmol) at 0 °C. The mixture was kept stirring for 2 h at room temperature after which a solution of compound 1a (50 mg, 85 µmol) and DIEA (54 µL, 0.3 mmol) in DMF (500 µL) and was added at 0°C. The mixture was allowed to warm up to room temperature and was stirred overnight. The crude product was partitioned in ethyl acetate (50 ml) and water (50 ml) and the organic layer was separated and dried over Na₂SO₄. The product was concentrated in vacuum and purified by silica gel chromatography.

Compounds 9b: Chromatography solvent system (silica gel, PE/acetone = 4:1), white powder (37 mg, 65%). ¹H-NMR (400 MHz, CDCl₃): δ 7.35-7.20 (m, 10H), 6.87 (s, 2H), 6.81 (d, J = 5.2 Hz, 1H), 6.49 (br s,
4.54-4.50 (m, 2H), 3.20 (t, CDCl₃)

Compounds 9c: Chromatography solvent system (silica gel, PE/acetone = 3:1), white powder (34 mg, 53%). ¹H-NMR (400 MHz, CDCl₃): δ 7.34-7.22 (m, 10H), 7.12 (br s, 1H), 7.05 (d, J = 5.2 Hz, 1H), 6.86 (s, 2H), 5.67 (d, J = 6.0 Hz, 1H), 5.07 (q, J = 4.0 Hz, 2H), 4.82 (s, 2H), 4.57 (d, J = 5.6 Hz, 1H), 4.48 (brs, 1H), 3.96 (q, J = 12.4 Hz, 1H), 3.66-3.61 (m, 12H), 3.87 (s, 2H), 3.37 (t, J = 3.6, 2H), 3.18-3.09 (m, 2H), 2.36 (s, 6H), 2.28 (s, 3H), 1.89 (m, 1H), 1.76-1.65 (m, 2H), 1.31 (brs, 2H). ¹³C-NMR (125 MHz; CDCl₃): δ 201.7, 171.7, 170.9, 169.1, 155.9, 139.7, 136.4, 136.3, 136.0, 129.6, 129.4, 128.7, 128.5, 128.2, 128.0, 127.1, 71.0, 70.7, 71.5, 70.3, 70.0, 67.0, 66.5, 56.0, 55.9, 50.7, 38.6, 37.2, 29.4, 29.3, 21.5, 21.2, 20.0. LRMS-ESI (m/z): [M+H]+ calcd. for C₆H₂N₆O₈H+ 671.3, found 671.2.

Compounds 9g: Chromatography solvent system (silica gel, DCM/methanol = 10:1), white powder (55 mg, 56%). ¹H-NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 4.4 Hz, 1H), 7.46 (brs, 1H), 7.33-6.98 (m, 12H), 6.98 (d, J = 5.2 Hz, 1H), 6.86 (s, 2H), 5.98 (d, J = 6.4 Hz, 1H), 5.05 (s, 2H), 4.80 (s, 2H), 4.62-4.57 (m, 2H), 4.56 (brs, 1H), 4.42 (brs, 1H), 4.36 (m, 1H), 3.96 (s, 2H), 3.94-3.77 (m, 6H), 3.51-3.34 (m, 2H), 3.27 (m, 1H), 3.19-3.16 (m, 2H), 3.05 (m, 1H), 1.87 (m, 1H), 1.65 (m, 1H), 1.55-1.49 (m, 2H), 1.31 (m, 2H), 1.24 (s, 9H), 1.21 (s, 9H), 1.13 (s, 9H). ¹³C-NMR (125 MHz; CDCl₃): δ 201.7, 171.9, 171.0,170.9, 169.1, 167.3, 156.2, 139.7, 136.3, 153.9, 129.6, 129.4, 128.6, 128.5, 128.1, 128.0, 126.9, 74.8, 74.0, 67.0, 66.6, 61.1, 60.9, 56.1, 56.0, 55.0, 54.7, 53.2, 52.4, 43.3, 38.4, 38.3, 29.8, 27.5, 27.4, 21.4, 21.1, 20.0. LRMS-ESI (m/z): [M+H]+ calcd. for C₅₅H₄₆N₈O₁₄H+ 1157.6, found 1157.3.

Compound 9d: To a solution of compound 6e (25 mg, 22 μmol) was deprotected with 50% TFA in DCM (200 μL) for 3 h. The solvent was removed under nitrogen flow. The residue was purified by a semi-preparative Proteo C₁₂ HPLC column with a 15 min gradient and a flow rate of 5.0 mL/min (50%-80% ACN in water containing 0.1% formic acid) to give compound 6d as a white powder (15 mg, 69%). ¹H-NMR (400 MHz, CDCl₃): δ 8.50-8.49 (m, 1H), 8.22 (d, J = 6.4 Hz, 1H), 8.18 (d, J = 6.0 Hz, 1H), 8.08 (m, 1H), 7.98 (d, J = 6.0 Hz, 1H), 7.67-7.63 (m, 2H), 7.33-7.26 (m, 10H), 7.19 (m, 1H), 6.92 (s, 2H), 5.10-5.05 (m, 3H), 4.97 (s, 2H), 4.88-4.81 (dd, J = 42.4, 13.2 Hz, 2H), 4.44 (q, J = 6.4 Hz, 1H), 4.38-4.33 (m, 3H), 4.25 (q, J = 6.4 Hz, 1H), 3.89 (s, 2H), 3.67-3.64 (m, 4H), 3.61-3.58 (m, 4H), 3.04-2.95 (m, 3H), 2.87-2.75 (m, 1H), 2.27 (s, 6H), 2.25 (s, 3H), 1.79 (m, 1H), 1.55 (m, 1H), 1.39 (m, 2H), 1.23 (m, 2H). ¹³C-NMR (125 MHz; CDCl₃): δ 202.8, 172.2, 170.3, 170.1, 168.5, 168.4, 167.6, 156.0, 139.3, 137.9, 137.1, 135.1, 130.1, 129.4, 128.5, 128.4, 127.9, 127.7, 126.5, 66.8, 65.5, 62.0, 61.6, 56.2, 56.0, 55.6, 54.9, 50.7, 42.3, 38.5, 29.2, 28.7, 22.5, 20.8, 19.5. LRMS-ESI (m/z): [M+H]+ calcd. for C₅₇H₄₆N₁₂O₁₄+ 989.4, found 989.3.

Compound 10: To a solution of compound 5 (1.1 g, 2 mmol) in DCM (30 mL), TFA (10 mL) was added dropwise at 0 °C. The solution was stirred at room temperature for 2 h. The mixture was concentrated by rotary evaporation to a volume of about 5 mL and precipitated in ice cold ether (100 mL). The solid was collected by filtration, washed 3 times with cold ether (30 mL), and dried under vacuum. To the deprotected product in methanol (50 mL) was dropped in the solution of CuSO₄ (7 mg, 44 μmol) at 0 °C. NaHCO₃ (672 mg, 8 mmol) and imidazole-1-sulfonyl azide hydrochloride (627 mg, 3 mmol) were added to the mixture, and the pH was adjusted to 9 with 0.1N NaOH. The mixture was stirred for overnight at room temperature before the pH was acidified at 1 using 1N HCl. The product was extracted with ethyl acetate (200 mL), washed twice with brine (100 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuum. Purification of the crude product by flash column chromatography (silica gel, DCM/methanol = 10:1) gave compound 7 as a white powder (707 mg, 78%). ¹H-NMR (400 MHz, CDCl₃): δ 7.30-7.16 (m, 10H), 6.62 (br s, 1H), 5.59 (d, J = 5.2 Hz, 1H), 5.06 (dd, J = 11.2, 10.0 Hz, 2H), 4.54-4.50 (m, 2H), 3.20 (t, J = 5.6 Hz, 2H), 3.06 (s, 2H), 1.85 (m, 1H), 1.66 (m, 1H), 1.53 (m, 2H), 1.26
Compound 11: This compound was synthesized by the method for compound 6. The product was purified by flash column chromatography (silica gel, PE/acetone = 6:1) to afford as a yellow powder (519 mg, 89%). \(^1\)H-NMR (400 MHz, CDCl\(_3\)): δ 7.38-7.17 (m, 10H), 6.32 (d, \(J = 5.6\) Hz, 1H), 5.25 (br s, 1H), 5.10 (d, \(J = 2.0\) Hz, 2H), 4.76-4.72 (dt, \(J = 10.4, 6.4\) Hz, 1H), 4.41 (dt, \(J = 10.8, 5.2\) Hz, 1H), 3.85 (d, \(J = 2.0\), 2H), 3.22 (t, \(J = 5.2\) Hz, 2H), 3.15-3.02 (m, 2H), 1.86 (m, 1H), 1.60-1.48 (m, 3H), 1.26 (m, 2H). \(^{13}\)C-NMR (125 MHz; CDCl\(_3\)): δ 199.7, 171.0, 135.9, 129.3, 128.9, 128.6, 128.4, 128.2, 127.4, 67.3, 56.4, 56.0, 51.0, 38.0, 31.7, 30.9, 28.3, 22.4. LRMS-ESI (m/z): [M+H]^+ calcd. for C\(_{24}\)H\(_{28}\)N\(_6\)O\(_4\) Br\(^-\) 530.1, found 530.0.

Compound 9a: This compound was synthesized by the method for compound 7. The product was purified by flash column chromatography (silica gel, PE/acetone = 3:1) to afford as a yellow powder (375 mg, 81%). \(^1\)H-NMR (400 MHz, CDCl\(_3\)): δ 7.35-7.18 (m, 10H), 6.87 (s, 2H), 6.38 (d, \(J = 4.4\) Hz, 1H), 5.25 (br s, 1H), 5.10 (s, 2H), 4.89-4.74 (dd, \(J = 47.2, 13.2\) Hz, 2H), 4.54 (m, 1H), 4.43 (d, \(J = 4.8\) Hz, 1H), 3.21 (t, \(J = 5.6\) Hz, 2H), 3.15-3.04 (m, 2H), 2.36 (s, 6H), 2.29 (s, 3H), 1.92 (m, 1H), 1.58-1.32 (m, 3H), 1.30 (m, 2H). \(^{13}\)C-NMR (125 MHz; CDCl\(_3\)): δ 201.2, 171.0, 169.0, 139.9, 136.0, 129.3, 128.9, 128.6, 128.3, 128.1, 127.3, 67.3, 66.3, 56.3, 55.3, 51.0, 38.1, 30.6, 28.4, 22.1, 21.2, 20.0. LRMS-ESI (m/z): [M+H]^+ calcd. for C\(_{34}\)H\(_{39}\)N\(_5\)O\(_6\)Br\(^-\) 614.3, found 614.2.
2.2 Synthesis of inactive controls with different linkers

Scheme S2. Synthesis of compounds 13a and 13b

Compound 12: To a solution of compound 1 (0.6 g, 1.1 mmol) and NHS (138 mg, 1.2 mmol) in DMF (5 mL) was added EDCI (276 mg, 1.4 mmol) at 0 °C. The mixture was kept stirring for 2 h at room temperature. The solution of phenethylamine (151 µL, 1.2 mmol) and DIEA (522 µL, 3 mmol) in DMF (2 mL) and was added at 0°C. The mixture was allowed to warm up to room temperature and was stirred overnight. Water (50 mL) was poured into the mixture and the crude product was extracted twice with in ethyl acetate (50 mL). The combined organic layer was separated, washed twice with brine (50 mL), and dried over Na2SO4. The product was concentrated and purified by flash column chromatography (silica gel, PE/acetone = 5:1) to give the product as a white powder (596 mg, 86%).

1H-NMR (400 MHz, CDCl3): δ 7.36-6.14 (m, 15H), 6.34 (d, J = 6.0 Hz, 1H), 6.05 (br s, 1H), 5.31 (br s, 1H), 5.07 (s, 2H), 4.62 (br s, 1H), 4.39 (d, J = 5.2 Hz, 1H), 4.26 (d, J = 4.8 Hz, 1H), 3.50-3.39 (m, 2H), 3.06-3.03 (m, 4H), 2.78 (d, J = 5.6 Hz, 2H), 1.78 (m, 1H), 1.49 (m, 1H), 1.52-1.34 (m, 11H), 1.01 (br s, 2H).

13C-NMR (125 MHz; CDCl3): δ 170.9, 170.7, 171.3, 171.0, 156.0, 155.8, 139.3, 139.2, 138.0, 137.7, 137.0, 136.9, 129.3, 128.7, 128.6, 128.3, 128.1, 128.0, 127.2, 126.6, 67.3, 56.4, 53.1, 40.7, 35.5, 35.1, 29.4, 28.5, 22.5. LRMS-ESI (m/z): [M+H]+ calcd. for C36H48N2O2H+ 631.3, found 631.3.

Compound 13a: The deprotection of compound 12 was carried out according to the same method for compound 1a. The product was recovered in cold ether and obtained as a white solid (314 mg, 93%).

1H-NMR (400 MHz, CDCl3): δ 8.11-7.94 (dd, J = 64.4, 6.4 Hz, 1H), 7.95 (s, 1H), 7.67-7.52 (dd, J = 54.4, 6.0 Hz, 1H), 7.33-7.20 (m, 15H), 5.95 (d, J = 10.4 Hz, 2H), 4.29 (br s, 1H), 4.20-4.11 (dd, J = 32.8, 4.4 Hz, 1H), 3.31-3.27 (m, 2H), 3.01-2.91 (m, 1H), 2.81-2.66 (m, 5H), 1.57-1.41 (m, 3H), 1.23 (s, 1H), 1.02 (br s, 2H).

13C-NMR (125 MHz; CDCl3): δ 171.1, 171.1, 171.0, 156.0, 155.8, 139.3, 139.2, 138.0, 137.7, 137.0, 136.9, 129.3, 128.7, 128.6, 128.3, 127.7, 127.4, 127.3, 126.3, 126.1, 65.3, 65.2, 56.3, 56.1, 52.4, 52.2, 48.6, 38.8, 38.7, 37.5, 35.0, 31.7, 31.2, 27.0, 26.9, 22.1, 22.0. LRMS-ESI (m/z): [M+H]+ calcd. for C36H48N2O2H+ 631.3, found 631.3.

Compound 13b: This compound was synthesized according to the method for compound 9a-9c. The product was purified by flash column chromatography (silica gel, PE/acetone = 4:1), white powder (45 mg, 34%).

1H-NMR (400 MHz, CDCl3): δ 7.34-7.11 (m, 15H), 7.10 (t, J = 4.8 Hz, 1H), 6.82 (d, J = 5.6 Hz, 1H), 6.18 (br s, 1H), 5.63 (d, J = 2.8 Hz, 1H), 5.05 (q, J = 6.0 Hz, 2H), 4.49 (d, J = 5.6 Hz, 1H), 4.21 (br s, 1H), 3.95 (q, J = 6.4 Hz, 2H), 3.66-3.61 (m, 12H), 3.42 (m, 2H), 3.37 (t, J = 4.0 Hz, 2H), 3.15-3.06 (m, 2H), 3.04-2.74 (dt, J = 118, 4.8 Hz, 2H), 1.82 (m, 1H), 1.70 (m, 1H), 1.51-1.45 (m, 2H), 1.23-1.19 (m, 2H). 13C-NMR (125 MHz; CDCl3): δ 170.3, 170.2, 170.1, 156.3, 155.3, 139.3, 139.2, 138.0, 137.7, 137.0, 136.9, 129.3, 128.3, 128.1, 128.0, 127.7, 127.6, 127.3, 126.3, 126.1, 65.3, 65.2, 56.3, 56.1, 52.4, 52.2, 48.6, 38.8, 38.7, 37.5, 35.0, 31.7, 31.2, 27.0, 26.9, 22.1, 22.0. LRMS-ESI (m/z): [M+H]+ calcd. for C36H48N2O2H+ 631.3, found 631.3.
NMR (125 MHz; CDCl₃): δ 171.6, 171.0, 170.8, 156.1, 138.9, 136.4, 136.2, 129.3, 128.8, 128.7, 128.6, 128.5, 128.3, 128.2, 128.0, 127.1, 126.5, 71.0, 70.7, 70.5, 70.4, 70.3, 70.2, 70.1, 67.0, 56.2, 53.4, 50.7, 40.8, 38.4, 37.3, 35.6, 30.2, 29.3, 29.2, 22.1, 21.9. LRMS-ESI (m/z): [M+H]⁺ calcd. for C₃₉H₅₁N₇O₈H⁺ 746.4, found 746.2.

Compound 13b: This compound was synthesized according to the method for compound 9a-9c. The product was purified by flash column chromatography (silica gel, DCM/methanol = 10:1), white powder (79 mg, 30%). ¹H-NMR (400 MHz, CDCl₃): δ 8.21 (d, J = 6.4 Hz, 1H), 8.01-7.97 (m, 2H), 7.91 (br s, 1H), 7.86 (d, J = 6.0 Hz, 1H), 7.62 (m, 1H), 7.48 (d, J = 6.8 Hz, 1H), 7.32-7.19 (m, 15H), 4.94 (s, 2H), 4.44 (q, J = 6.0 Hz, 1H), 4.39 (q, J = 6.4 Hz, 1H), 4.34-4.25 (m, 2H), 4.17 (m, 1H), 3.87 (s, 1H), 3.68 (d, J = 4.0 Hz, 1H), 3.52-3.43 (m, 6H), 3.25 (m, 2H), 3.01-2.92 (m, 3H), 2.75 (m, 1H), 2.70 (t, J = 6.4 Hz, 2H), 1.62-1.42 (m, 2H), 1.36 (m, 2H), 1.19 (m, 2H), 1.11-1.05 (m, 27H). ¹³C-NMR (125 MHz; CDCl₃): δ 171.2, 169.5, 169.3, 168.0, 167.4, 155.8, 139.3, 137.0, 129.2, 128.6, 128.3, 128.0, 127.4, 126.2, 126.0, 73.1, 73.0, 65.2, 61.7, 61.6, 53.5, 53.1, 52.5, 50.6, 42.1, 38.5, 37.4, 35.0, 28.9, 27.1, 22.6. LRMS-ESI (m/z): [M+H]⁺ calcd. for C₅₆H₈₁N₁₁O₁₂H⁺ 1100.6, found 1100.6.
2.3 Synthesis of AOMK-nerotensin peptide conjugates

Scheme S3. Synthesis of compounds 2a – 2f

General procedure for synthesis of peptides 14a and 14b: The peptides were obtained by SPPS. Briefly, Fmoc-Leu-SASRIN™ resin (150 mg, 0.1 mmol) was deprotected by 20% piperidine in DMF (7 mL) to expose the primary amine. Fmoc-L-Tle-OH (177 mg, 0.5 mmol) was coupled to the resin in the presence of COMU (214 mg, 0.5 mmol) and DIEA (90 µL, 1 mmol) in DMF (5 mL). This process of deprotection and conjugation was repeated until the desired peptide was synthesized. Cleavage of the peptide from resin was achieved by shaking the resin with 1% TFA in dry DCM (5 × 3 mL) for 2 min. The filtrates were immediately neutralized with 5% pyridine in methanol (1 mL) and evaporated to dryness which was redissolved in methanol (1 mL) and precipitated in cold water (50 mL) to yield the crude peptides. The peptides were purified by a semi-preparative Proteo C12 HPLC column with a 15 min gradient and a flow rate of 5.0 mL/min to give the target peptides, see Table S1 for chromatography and characterization details.
General procedure for synthesis of compounds 15a-15f: To the mixture of compound 14 (2 μmol) and compound 9 (5 μmol) in water/n-butanol/DMF (200 μL, v/v/v=1:1:2) was added CuSO₄ (200 μg, 1.25 μmol) in water (50 μL). After stirring for 5 min, a solution of ascorbic acid (1 mg, 6 μmol) in water (50 μL) was added to the mixture. The reaction mixture was stirred for 1 h at room temperature under nitrogen. The product was obtained by the purification via a semi-preparative Proteo C12 HPLC column with a 15 min gradient and a flow rate of 5.0 mL/min to give the target compound, see Table S1 for chromatography and characterization details.

General procedure for synthesis of compounds 2a-2f: Compound 15 (1 μmol) and DOTA-NHS ester (2.3 mg, 3 μmol) were dissolved in DMF (5 mL). The solution was basified with DIEA (0.081 mL, 0.47 mmol) and stirred at room temperature for overnight. The completion of the conjugation reaction was confirmed by HPLC before the removal of the solvent under nitrogen flow. A 90% TFA in DCM (300 μL) solution was added and the mixture was stirred at room temperature for 5 h under nitrogen. The solvent was removed by nitrogen flow and the residue was redissolved in DMF (300 μL) for the purification via a semi-preparative Proteo C12 HPLC column with a 15 min gradient and a flow rate of 5.0 mL/min to give the target compound, see Table S1 for chromatography and characterization details.

Table S1. HPLC purification condition and mass information of compounds 14a-14b, 15a-15f, and 2a-2f.

<table>
<thead>
<tr>
<th>Entity</th>
<th>HPLC purification condition</th>
<th>Calculated Mass</th>
<th>Mass found</th>
<th>Yields (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14a</td>
<td>30%-70% ACN in water</td>
<td>928.0</td>
<td>927.8</td>
<td>16.2d</td>
</tr>
<tr>
<td>14b</td>
<td>40%-80% ACN in water</td>
<td>1107.1</td>
<td>1106.9</td>
<td>14.5d</td>
</tr>
<tr>
<td>15a</td>
<td>40%-90% ACN in water</td>
<td>1234.6</td>
<td>1234.6</td>
<td>38.1</td>
</tr>
<tr>
<td>15b</td>
<td>40%-80% ACN in water</td>
<td>1263.2</td>
<td>1263.1</td>
<td>49.1</td>
</tr>
<tr>
<td>15c</td>
<td>40%-90% ACN in water</td>
<td>1329.2</td>
<td>1329.2</td>
<td>41.1</td>
</tr>
<tr>
<td>15d</td>
<td>40%-80% ACN in water</td>
<td>1506.3</td>
<td>1506.5</td>
<td>31.9</td>
</tr>
<tr>
<td>15e</td>
<td>40%-90% ACN in water</td>
<td>1508.3</td>
<td>1508.3</td>
<td>31.9</td>
</tr>
<tr>
<td>15f</td>
<td>40%-90% ACN in water</td>
<td>1685.4</td>
<td>1685.4</td>
<td>28.1</td>
</tr>
<tr>
<td>2a</td>
<td>20%-50% ACN in water</td>
<td>1125.6</td>
<td>1125.6</td>
<td>67.9</td>
</tr>
<tr>
<td>2b</td>
<td>20%-50% ACN in water</td>
<td>1154.1</td>
<td>1153.9</td>
<td>55.7</td>
</tr>
<tr>
<td>2c</td>
<td>20%-50% ACN in water</td>
<td>1220.2</td>
<td>1220.0</td>
<td>51.6</td>
</tr>
<tr>
<td>2d</td>
<td>20%-50% ACN in water</td>
<td>1315.2</td>
<td>1315.2</td>
<td>49.5</td>
</tr>
<tr>
<td>2e</td>
<td>20%-50% ACN in water</td>
<td>1313.2</td>
<td>1313.4</td>
<td>46.6</td>
</tr>
<tr>
<td>2f</td>
<td>20%-50% ACN in water</td>
<td>1408.2249*</td>
<td>1408.2242e</td>
<td>63.4</td>
</tr>
</tbody>
</table>

a. The eluent contained 0.1% formic acid and was with 15 min gradient.
b. Mass calculated for [M+2H]²⁺
c. Mass spectrum peak found for [M+2H]²⁺
d. Total yields of the SPPS for compound 14

e. The mass were calculated and determined by high resolution mass spectrometry (HRMS)
2.4 Synthesis of control nerotensin peptide conjugates

Scheme S4. Synthesis of compounds 3a and 3b

General procedure for synthesis of compounds 16a and 16b: These compounds were obtained according to the procedure for synthesizing 15a-15f. The product was purified by the same HPLC system with a 15 min gradient and a flow rate of 5.0 mL/min to give the target compound, see Table S2 for chromatography and characterization details.

General procedure for synthesis of compounds 3a and 3b: These compounds were obtained according to the procedure for synthesizing 2a-2f. The product was purified by the same HPLC system with a 15 min gradient and a flow rate of 5.0 mL/min to give the target compound, see Table S2 for chromatography and characterization details.

Table S2. HPLC purification condition and mass information of compounds 16a, 16b, 3a, and 3b.

<table>
<thead>
<tr>
<th>Entity</th>
<th>HPLC purification condition</th>
<th>Calculated Mass</th>
<th>Mass found</th>
<th>Yields (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16a</td>
<td>40%-90% ACN in water</td>
<td>1300.7</td>
<td>1300.6</td>
<td>51.3</td>
</tr>
<tr>
<td>16b</td>
<td>20%-40% ACN in water</td>
<td>1656.9</td>
<td>1156.9</td>
<td>46.7</td>
</tr>
<tr>
<td>3a</td>
<td>40%-90% ACN in water</td>
<td>1191.7</td>
<td>1194.6</td>
<td>56.1</td>
</tr>
<tr>
<td>3b</td>
<td>20%-50% ACN in water</td>
<td>1379.7197d</td>
<td>1379.7188d</td>
<td>44.6</td>
</tr>
</tbody>
</table>

a. The eluent contained 0.1% formic acid and was with 15 min gradient.

b. Mass calculated for [M+2H]²⁺

c. Mass spectrum peak found for [M+2H]²⁺

d. The mass were calculated and determined by high resolution mass spectrometry (HRMS)
2.5 Synthesis of Cy5 labeled nerotensin peptide conjugates

Scheme S5. Synthesis of compounds 4a and 4b

General procedure for synthesis of compounds 4a and 4b: To the solution of Cyanine 5 carboxylic acid (1.6 mg, 3 µmol) and NHS (1 mg, 9 µmol) in 50 µL of DMF was added EDCI (2mg, 10 µmol). The mixture was stirred at room temperature for 2 h and was added to the solution of 15f or 16b (1 µmol) and DIEA (5 µL, 28 µmol) in DMF (100 µL) which was stirred for overnight in the dark at room temperature. The solvent was removed by nitrogen flow before adding in a 90% TFA in DCM (200 µL) solution. After 3 h of stirring, the mixture was concentrated to dryness and dissolved in DMF (300 µL) for the purification by a semi-preparative Proteo C12 HPLC column with a 15 min gradient and a flow rate of 5.0 mL/min to give the target compound, see Table S3 for chromatography and characterization details.

Table S3. HPLC purification condition and mass information of compounds 4a and 4b

<table>
<thead>
<tr>
<th>Entity</th>
<th>HPLC purification condition</th>
<th>Calculated Mass</th>
<th>Mass found</th>
<th>Yields (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>30%-70% ACN in water</td>
<td>724.1419</td>
<td>724.1420</td>
<td>37.4</td>
</tr>
<tr>
<td>4b</td>
<td>30%-70% ACN in water</td>
<td>709.8893</td>
<td>709.8894</td>
<td>42.8</td>
</tr>
</tbody>
</table>

a. The eluent contained 0.1% formic acid and was with 15 min gradient.

b. Mass calculated for [M+3H]⁺

c. The mass were calculated and determined by high resolution mass spectrometry (HRMS)
2.6 General procedure for the radiolabeling of the conjugates with 177LuCl$_3$

An aliquot of the conjugate (50 µg) in 0.5 M ammonium acetate buffer (pH 5.5, 100 µL) was mixed with a predetermined amount of 177LuCl$_3$ (37 MBq (1 mCi)) and incubated at 90 °C for 60 min. Subsequently, CoCl$_2$ (5 mg, 38.5 µmol) was added and incubated for 5 min at 90 °C in order to complex to the unlabeled conjugate and enhance separation. The mixture was purified by HPLC system and the radiolabeling efficiency (RE) was calculated based on the analysis of the chromatograms. To remove organic eluent, the radioactive conjugate was loaded onto an Empore (Eagan, MN) C18 high-performance extraction cartridge followed by washing with water (3 × 3 mL) and elution by ethanol/saline solution (v/v = 6:4, 200 µL) to obtain the 177Lu-labeled radioconjugate for further biological experiments. See Figure S1 and S2 for results.

![Figure S1](image1.png)

Figure S1. Radio-HPLC traces of the crude mixture after 177Lu-labeling of 2a-c and 3a. The purifications were carried by an analytical Proteo C12 HPLC column with a 15 min gradient (20%-40% ACN in water containing 0.1 formic acid) and a flow rate of 1.5 mL/min to give the target compound.

![Figure S2](image2.png)

Figure S2. Radio-HPLC traces of the crude mixture after 177Lu-labeling of 2d-f and 3b. The purifications were carried by an analytical Proteo C12 HPLC column with a 15 min gradient (20%-40% ACN in water containing 0.1 formic acid) and a flow rate of 1.5 mL/min to give the target compound.
3 In vitro study

3.1 Distribution coefficient (Log D\(_{7.4}\)) of the conjugates

The distribution coefficient was determined for each \(^{177}\text{Lu}\)-labeled conjugate. In a 1.5 mL centrifuge tube, 0.5 mL of 1-octanol was added to 0.5 mL of PBS (pH 7.4) containing the radiolabeled peptide (500,000 cpm). The solution was vigorously vortexed for 2 min at room temperature and subsequently centrifuged to yield two immiscible layers. The radioactivity of the aliquots (100 \(\mu\)L) taken from each layer were quantified by the gamma counter and the Log\(_{7.4}\) for each conjugates was calculated. See Table 1 and Table S4 for resulting values.

3.2 In vitro competitive neurotensin receptor binding studies

The IC\(_{50}\) for the unlabeled conjugates binding to the neurotensin receptors was determined using the HT-29 human colon cancer cell line. In these studies, \(^{177}\text{Lu–N1} \,(^{177}\text{Lu-DOTA-β-Ala-[N-α-Me\(^8\), Dmt\(^{11}\), Tle\(^{12}\]}\text{NT (6–13)})\), which was synthesized according to our previous publication\(^4\), served as the competitive radioligand for comparing the relative binding affinities of the conjugates. HT-29 cells (\(\sim 1 \times 10^6\)) were incubated with \(^{177}\text{Lu–N1} \,(100,000 \text{ cpm, } 100 \mu\text{L})\) at 37 °C for 45 min in the presence of the conjugates with predetermined concentrations (0.5 nM – 1 \(\mu\)M) in 100 \(\mu\)L of medium. At the end of the incubation, the cells were centrifuged, aspirated, and washed with fresh medium (5 \(\times\) 500 \(\mu\)L). The cell-associated radioactivity was measured using gamma counter and the IC\(_{50}\) values determined by nonlinear regression using GraphPad Prism 5. All measurements were in biological triplicate. See Table 1 and Table S4 for resulting values.

3.3 The inhibition of cathepsin B activity by the conjugates

The phosphate buffer (0.1 M, pH = 5.8) containing EDTA (1 mM), DTT (2.7 mM), and Brij\(^*\)35 (0.03%) was prepared before the assay. The solution of Z-Arg-Arg-AMC in the assay buffer (50 \(\mu\)L, 1.3 mM) was mixed with the conjugate dissolved in assay buffer at predetermined concentrations (100 \(\mu\)L, 0.2 nM – 40 \(\mu\)M). The solution of cathepsin B (human Liver) in assay buffer (50 \(\mu\)L, 0.544 nM) was added to the mixture which was further incubated at 37 °C for 20 min. The fluorescence of the liberated aminomethylcoumarin at 460 nM using 355 nM excitation was measured and the IC\(_{50}\) of the cathepsin B inhibition versus the samples without the inhibitor was determined by nonlinear regression using GraphPad Prism 5. All measurements were in biological triplicate. See Table 1 and Table S5 for resulting values.

Table S4. The log D\(_{7.4}\), CatB inhibition constant and competitive binding (IC\(_{50}\)) to NTR1 of N\(_1\) and 9a-d

<table>
<thead>
<tr>
<th>entry</th>
<th>Log D(_{7.4})</th>
<th>CatB Ki (nM)</th>
<th>NTR1 IC(_{50}) (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(_1)[a]</td>
<td>-3.20 ± 0.02[b]</td>
<td>-</td>
<td>31 ± 5</td>
</tr>
<tr>
<td>9a</td>
<td>2.56 ± 0.08[c]</td>
<td>54000 ± 2300</td>
<td>-</td>
</tr>
<tr>
<td>9b</td>
<td>1.85 ± 0.01</td>
<td>15000 ± 34000</td>
<td>-</td>
</tr>
<tr>
<td>9c</td>
<td>1.74 ± 0.02</td>
<td>6020 ± 780</td>
<td>-</td>
</tr>
<tr>
<td>9d</td>
<td>1.45 ± 0.03</td>
<td>5020 ± 160</td>
<td>-</td>
</tr>
</tbody>
</table>

[a] The neurotensin peptide N\(_1\) (DOTA-β-Ala-[N-α-Me\(^8\), Dmt\(^{11}\), Tle\(^{12}\]}\text{NT (6–13)}) was synthesized as reported\(^4\).

[b] The Log D values were obtained as for the \(^{177}\text{Lu}-\text{labelled forms of N}\(_1\).

[c] The Log D was determined by HPLC for 9a-d.
Table S5. The inhibition (IC\textsubscript{50}) of cathepsin B (human Liver) activity by the conjugates

<table>
<thead>
<tr>
<th>Entity</th>
<th>Cathepsin B inhibition IC\textsubscript{50} (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N\textsubscript{1}[a]</td>
<td>>200000[b]</td>
</tr>
<tr>
<td>1a</td>
<td>11±2</td>
</tr>
<tr>
<td>1b</td>
<td>>200000[b]</td>
</tr>
<tr>
<td>9a</td>
<td>2600±500</td>
</tr>
<tr>
<td>9b</td>
<td>2200±700</td>
</tr>
<tr>
<td>9d</td>
<td>290±30</td>
</tr>
<tr>
<td>9f</td>
<td>3500±700</td>
</tr>
<tr>
<td>2a</td>
<td>15±1</td>
</tr>
<tr>
<td>2b</td>
<td>16±1</td>
</tr>
<tr>
<td>2c</td>
<td>46±1</td>
</tr>
<tr>
<td>2d</td>
<td>55±5</td>
</tr>
<tr>
<td>2e</td>
<td>40±3</td>
</tr>
<tr>
<td>2f</td>
<td>38±7</td>
</tr>
<tr>
<td>3a</td>
<td>>200000[b]</td>
</tr>
<tr>
<td>3b</td>
<td>>200000[b]</td>
</tr>
</tbody>
</table>

[a] The nerotensin peptide N\textsubscript{1} (DOTA-β-Ala-[N-α-Me\textsubscript{8}, Dmt11, Tle12] NT (6–13)) was synthesized as reported4

[b] No inhibition was observed in the test range
3.4 Determination of cathepsin B binding constants of the compounds

3.4.1 Determination of the K_m and V_{max} of cathepsin B for Z-Arg-Arg-AMC

The solution of cathepsin B (human Liver) (50 µL, 2 nM) in assay buffer used in section 3.3 was mixed with 50 µL of solution of substrate Z-Arg-Arg-AMC in the assay buffer at different concentrations ([S]) (25 µM, 50 µM, 100 µM, 500 µM and 1mM). The mixture was incubated at 37 °C and the fluorescence of the liberated aminomethylcoumarin at 460 nM using 355 nM excitation was measured at predetermined time points (0, 2, 4, 6, 8, and 10 min). The fluorescence intensity was plotted versus time and the reaction rates (v_0) were calculated as the slope of the trend lines obtained by liner regression. K_m and maximum reaction rate (V_{max}-obs) was determined from the equation $v_0 = V_{\text{max}}[S]/(K_m + [S])$ and solved by nonlinear regression using GraphPad Prism 5. All measurements were in biological triplicate. See Figure S3 for data.

![Figure S3](image)

Figure S3. Determination of the K_m of cathepsin B (human Liver) to the substrate Z-Arg-Arg-AMC. (A) Time course of substrate hydrolysis. (B) The nonlinear regression of reaction rate ($t = 0 - 10$ min) versus the concentration of Z-Arg-Arg-AMC.

3.4.2 Determination of the inhibition constant (K_i) of the compounds to cathepsin B

The cathepsin B (human Liver) in assay buffer (25 µL) was mixed with the conjugate (25 µL) in 96-well plate. After the solution was mixed, the Z-Arg-Arg-AMC in assay buffer (50 µL) was added to the well, yielding a final cathepsin B concentration of 1 nM, conjugate concentration ([C]) of 15 nM or 5 µM, and substrate concentration ([S]) of 25 µM, 50 µM, 100 µM, 500 µM and 1mM. The mixture was incubated at 37 °C and the fluorescence of the liberated aminomethylcoumarin at 460 nM using 355 nM excitation was measured at predetermined time points (0, 2, 4, 6, 8, and 10 min). The fluorescence intensity was plotted versus time with observed reaction rates ($v_{0-\text{obs}}$) calculated as the slope of the trend lines obtained by liner regression. The observed rate constant (K_{obs}) and observed maximum reaction rate ($V_{\text{max-obs}}$) was determined from the equation $v_{0-\text{obs}} = V_{\text{max-obs}}[S]/(K_{\text{obs}} + [S])$ and solved by nonlinear regression using GraphPad Prism 5. The K_i was calculated from the equation $K_{\text{obs}} = K_m (1 + [C]/K_i)$. All measurements were in biological triplicate. See Figure S4, S5 and S6 for results.
Figure S4. Representative example for determination of the K_i of 2f to cathepsin B. (A) Time course of substrate hydrolysis by cathepsin B in the presence of conjugate 2f. (B) The nonlinear regression of reaction rate ($t = 0 - 10$ min) versus the concentration of Z-Arg-Arg-AMC. The K_i was calculated from the equation $K_{obs} = K_m (1 + [C]/K_i)$.

Figure S5. The nonlinear regression of hydrolysis reaction rate ($t = 0 - 10$ min) by cathepsin B versus the concentration of Z-Arg-Arg-AMC in the presence of compound 9a (A), 9b (B), 9c (C), and 9d (D). The conjugate concentration was 5 μM. The K_i was calculated from the equation $K_{obs} = K_m (1 + [C]/K_i)$.
Figure S6. The nonlinear regression of hydrolysis reaction rate ($t = 0 - 10$ min) by cathepsin B versus the concentration of Z-Arg-Arg-AMC in the presence of conjugate 1a (A), 2a (B), 2b (C), 2c (D), 2d (E), and 2e (F). The conjugate concentration was 15 nM. The K_i was calculated from the equation $K_{obs} = K_m (1 + [C]/K_i)$. All measurements were in triplicate.
3.5 Cell internalization studies

HT-29 cells (~1 × 10^6) suspended in cell culture medium (100 μL) were incubated with each ^177^Lu radioconjugate (100 000 cpm) at 37 °C for 4 h. At 15, 30, 60, 120 and 240 min time points, the culture medium was removed and the cells were washed with fresh medium (5 × 500 μL) to remove the unbound conjugates. The fraction of surface-bound radioactivity was removed by washing the cells twice with an acidic buffer (200 μL, 50 mM glycine–HCl/0.1 M NaCl buffer, pH 2.8). The amount of radioactivity remaining in each cellular pellet was assigned as the internalized fraction. The radioactivity for each fraction was measured by gamma counter. The cellular uptake of the radioconjugates were presented as a percentages of the surface-bound and internalized radioactivity relative to the total activity added to the tube. See Figure S7 for results.

![Internalization and Surface Bound](image)

Figure S7. The internalization and surface bound of ^177^Lu–2c (A) and ^177^Lu–2f (B) by HT-29 cells. Values are means ± SD (n = 3).

3.6 The HT-29 cell efflux studies

The ^177^Lu radioconjugate was added to a sterilized 1.5 mL microcentrifuge tube containing HT-29 cells (~1 × 10^6) suspended in 300 μL of cell culture medium, yielding a final radioactivity concentration of 100 000 cpm/100 μL, and was incubated for 2 h at 37 °C. After the removal of the culture medium, the cells were washed with fresh medium (5 × 500 μL) followed by the addition of 500 μL of fresh medium for the efflux assay. At 0, 1, 2, 4, 8, and 24 h time interval, fresh medium (500 μL) was added to the tube to replace the old medium which was harvested for quantitative analysis of the effluxed radioactivity using a gamma counter. The cells were lysed with a 10% aqueous SDS solution at 24 h to quantify the remaining internalized radioactivity. The effluxed fraction is expressed as a percentage of the total radioactivity added to the tube, which is the sum of the effluxed and internalized fractions obtained from the study. See Figure 2A for results.
3.7 Confocal microscopy

3.7.1 The uptake and cell trafficking studies of the Cy 5 labelled conjugates

The HT-29 cells (1.25 × 10^5 / well) in Lab-Tek chambered #1.0 borosilicate coverglass disk (four-well) were pre-incubated with the medium (500 µL) with (blocking) or without nerotensin peptide N1 (10 µM) at 37 °C for 2 h. The conjugate was added to the wells to a concentration of 5 µM and incubated for 2 and 12 h. For the last hour, Lysotracker-green (100 nM) was added to the cells. DAPI was added in the media (15 µg/ml) to stain the nuclei for 5 min prior to imaging. The cells were washed with PBS (400 µL) and fixed with formaldehyde (400 µL) prior to imaging. The images were obtained using an excitation wavelength of 405 nm (blue excitation), 488 nm (green excitation) and 646 nm (red excitation). ImageJ software was used for the quantifying the fluorescence of Cy5 and the co-localization efficiency. Mean pixel intensities in each image were normalized to the total cell number by counting the number of DAPI-labeled nuclei. See Figure S8 and Figure S9 for results and analysis.

Figure S8. Uptake of conjugate 4a into HT-29 cells at 2 h. (A) Representative confocal images of HT-29 cells incubated with 4a in the absence or presence of NTR1 peptide N1. Scale bar = 50 µm. (B) Quantitative analysis of co-localization of the red fluorescence (Cy 5) with the green fluorescence (Lysotracker). (C) The fluorescence uptake of 4a as quantified from the confocal images. All the analysis was performed in 6 random images and the results were presented as mean ± SD, ***p < 0.001.
Figure S9. Uptake of conjugate 4b into HT-29 cells at 2 h. (A) Representative confocal images of HT-29 cells incubated with 4b in the absence or presence of NTR1 peptide N1. Scale bar = 50 μm. (B) Quantitative analysis of co-localization of the red fluorescence (Cy5) with the green fluorescence (Lysotracker) (C) The fluorescence uptake of 4b as quantified from the confocal images. All the analysis was performed in 6 random images and the results were presented as mean ± SD, ***p < 0.001.

3.7.2 The cell trapping studies of the Cy5 labelled conjugates

The HT-29 cells (1.25 × 10⁶ / well) in Lab-Tek chambered #1.0 borosilicate coverglass disk (four-well) were incubated with the conjugate (5 μM) in 500 μL of medium for 4 h. The cells were washed with fresh medium and cultured for up to 24 h. At 2 and 22 h time points, Lysotracker-green (100 nM) was added to the cells and incubated for 2 h. DAPI was added in the media (15 μg/ml) to stain the nuclei for 5 min. The cells were washed with PBS (400 μL) and fixed with formaldehyde (400 μL) prior to imaging. The images were obtained using an excitation wavelength of 405 nm (blue excitation), 488 nm (green excitation), and 646 nm (red excitation). ImageJ software was used for the quantifying the fluorescence of Cy5 and the co-localization efficiency. Mean pixel intensities in each image were normalized to the total cell number by counting the number of DAPI-labeled nuclei. The analysis was performed in 6 random images. See Figure 2B and 2C for results and analysis.
3.8 The cathepsin B binding studies of the radioconjugates

3.8.1 Competitive cathepsin B binding of the radioconjugates with CA-074 and NTR1 ligand N1

The cathepsin B (human Liver) (3 nM, 10 μL) in storing buffer (50 mM sodium acetate and 1 mM EDTA, pH 5.0) was pre-incubated with the commercial cysteine proteases inhibitor CA-074 (10 μM, 10 μL) or NTR1 ligand N1 (20 μM, 10 μL) for 30 min. Then the solution of radioconjugate (500,000 cpm) in 30 μL of binding assay buffer (5 mM Tris, 5 mM MgCl₂, and 2 mM DTT, pH = 5.5) was added to the mixture and incubated on ice for 2 h. Aliquot (30 μL) of the solution was mixed with Novex Tris-Glycine SDS sample buffer (2×) (30 μL) and incubated for further 10 min. The mixtures (20 μL) were loaded onto a Novex 16% tris-glycine gel and analyzed by SDS-PAGE at 110 V for 90 min. After shaking in shrinking buffer (50 mL, 65% methanol, and 0.5% glycerol in water) at 4 °C for overnight, the gel was dried for 6 h at room temperature and the ladders were painted with small amount of radioactivity. The gel was then exposed to a phosphor plate for 72 h which was subsequently scanned by a Typhoon FLA 9500 imaging system at a 25 μm resolution to achieve the autoradiograph. See Figure 3A and Figure S10A for results.

Figure S10. (A) The autoradiography of the SDS-PAGE indicating the minimal interference of the NTR1 ligand N1 on cathepsin B binding of the conjugates. (B) The autoradiography of SDS-PAGE of cathepsin B (human Liver) and live HT-29 cells samples after incubation with ¹⁷⁷Lu-2c and ¹⁷⁷Lu-3a. The incubation times for cathepsin B and cells samples were 2 h and 4 h, respectively.

3.8.2 Cathepsin B binding of the radioconjugates

This procedure use the same solutions as described in 3.8.1. The cathepsin B (human Liver) (3 nM, 10 μL) in storing buffer was added to the solution of the radioconjugate (500,000 cpm) in 40 μL of binding assay buffer and kept on ice for 2 h. An aliquot (25 μL) of the solution was mixed with Novex Tris-Glycine SDS sample buffer (2×) (25 μL) and incubated for a further 10 min. The mixtures (20 μL) were loaded onto a Novex 16% tris-glycine gel and analyzed by SDS-PAGE at 110 V for 90 min. The autoradiograph of the SDS-PAGE was performed according to the same method in section 3.8.1. See Figure 3B and S10B for results.
3.8.3 Intracellular trapping of the radioconjugates in living HT-29 cells

To the HT-29 cells (1 × 10^6 / well) seeded in 6-well plates was added the radioconjugates (0.74 MBq, 20 µCi) in 1 mL of cell culture medium. The cells were incubated at 37 °C for 4 h and the medium was removed by vacuum followed washing with PBS (2 × 2 mL). The cells (~3 × 10^6) were trypsinized and combined in microcentrifuge. The RIPA buffer (100 µL) containing Halt™ protease inhibitor (100 ×, 1 µL) was added to the cell pellet and vigorously vortexed for 1 min. The suspension was incubated on ice for 15 min and centrifuged to remove the pellet. The supernatant (80 µL) was equally divided into two portions. The first portion (40 µL) was directly analyzed by radioactive-GPC with a flow rate of 0.6 mL/min (40% ACN in PBS containing 0.1% sodium azide). See Figure 3D and Figure S11 for results. The second portion (40 µL) of the cell lysate was mixed with Novex Tris-Glycine SDS sample buffer (2×) (40 µL) and incubated for another 15 min. The mixture (30 µL) was loaded onto a Novex 16% tris-glycine gel and analyzed by SDS-PAGE at 110 V for 90 min. The autoradiograph of the SDS-PAGE was performed according to the same method in section 3.8.1. See Figure 3B for results.

Figure S11. The GPC profiles of ^177^Lu-2c and HT-29 cells samples after incubation with ^177^Lu-2c and ^177^Lu-3a for 4 h

3.8.4 Competitive intracellular cathepsin B binding of the radioconjugates with NTR1 ligand N1

To the HT-29 cells (1 × 10^6 / well) seeded in 6-well plates was added the radioconjugates (0.74 MBq, 20 µCi) in 1 mL of cell culture medium with or without competitive NTSR1 ligand N1 (20 µM). The cells were incubated at 37 °C for 4 h and the medium was removed by vacuum followed washing with PBS (2 × 2 mL). The cells were lysed and the autoradiograph of the SDS-PAGE was performed according to the same method in section 3.8.3. See Figure 3C for results.

3.8.5 Investigation of the time-dependent retention of CatB-conjugate adducts in HT-29 cells

To the HT-29 cells (1 × 10^6 / well) seeded in 6-well plates was added the radioconjugate (0.74 MBq, 20 µCi) in 1 mL of cell culture medium. The cells were incubated at 37 °C for 4 h and the medium was removed by vacuum followed washing with fresh medium (2 × 2 mL). The fresh medium (1 mL) was added to the wells and the cells were lysed at 2 h, 4 h, and 24 h. The autoradiograph of the SDS-PAGE was performed according to the same method in section 3.8.3. See Figure 3E for results.
3.9 The metabolic stability of the radioconjugates in human serum

The radioconjugates (11.1 MBq, 300 μCi) was added to 300 μL human serum and incubated at 37 °C for 24 h. At predetermined time points (0, 4, and 24 h), acetonitrile (50 μL) was added to the mixture (50 μL) was centrifuged at 12,000×g for 5 min. The supernatant was collected and dried with nitrogen flow. The sample was reconstituted in water (100 μL) and analyzed by radio-HPLC using the gradient described above. See Figures S12 and S13 for data.

Figure S12. Human serum stability of 177Lu-2c examined by radio-HPLC

Figure S13. Human serum stability of 177Lu-2f examined by radio-HPLC
4 In vivo evaluation of the cysteine proteases trapping effect of the conjugates

4. 1 Biodistribution study

Female SCID mice (5 weeks of age) received subcutaneous injections of HT-29 cells (5 × 10⁶) suspended in Matrigel® into the flanks. When the tumor size reached 80 mm³ (two weeks after injection), the mice were randomized into three groups and intravenously injected with 10 μCi (0.37 MBq) of the purified ¹⁷⁷Lu labeled conjugates via tail vein. The mice were sacrificed and the tissues were excised at 4, 24, and 72 h post-injection time points. The blood, tumor, and excised tissues were weighed. The radioactivity for each sample was measured using a gamma counter. The percentage injected dose per gram (%ID/g) and the radioactivity ratios between tumor and non-targeted tissues were calculated. See Table S6 for data.

Table S6. Biodistribution data of the ¹⁷⁷Lu-2f and ¹⁷⁷Lu-3b in a HT-29 xenograft mouse model. Data are represented as mean ± SD. (n = 5).

<table>
<thead>
<tr>
<th>Tissue (ID %/g)</th>
<th>4 h</th>
<th>24 h</th>
<th>72 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2f</td>
<td>3b</td>
<td>2f</td>
</tr>
<tr>
<td>Blood</td>
<td>1.22 ± 0.14</td>
<td>0.83 ± 0.11</td>
<td>0.17 ± 0.05</td>
</tr>
<tr>
<td>Heart</td>
<td>1.40 ± 0.36</td>
<td>1.10 ± 0.22</td>
<td>0.89 ± 0.23</td>
</tr>
<tr>
<td>Lung</td>
<td>4.45 ± 1.54</td>
<td>4.26 ± 0.61</td>
<td>6.14 ± 3.78</td>
</tr>
<tr>
<td>Liver</td>
<td>38.62 ± 4.24</td>
<td>9.24 ± 1.16</td>
<td>25.55 ± 8.18</td>
</tr>
<tr>
<td>Pancreas</td>
<td>0.89 ± 0.15</td>
<td>0.84 ± 0.16</td>
<td>0.64 ± 0.18</td>
</tr>
<tr>
<td>Stomach</td>
<td>1.74 ± 1.06</td>
<td>1.57 ± 0.59</td>
<td>0.92 ± 0.17</td>
</tr>
<tr>
<td>Spleen</td>
<td>16.05 ± 2.82</td>
<td>18.58 ± 4.56</td>
<td>17.08 ± 10.12</td>
</tr>
<tr>
<td>Small int.</td>
<td>6.06 ± 0.58</td>
<td>7.55 ± 0.80</td>
<td>5.48 ± 1.70</td>
</tr>
<tr>
<td>Large int.</td>
<td>2.91 ± 0.38</td>
<td>4.28 ± 2.06</td>
<td>2.05 ± 0.86</td>
</tr>
<tr>
<td>Kidney</td>
<td>58.18 ± 1.10</td>
<td>63.59 ± 9.91</td>
<td>61.96 ± 4.91</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.53 ± 0.04</td>
<td>0.44 ± 0.04</td>
<td>0.35 ± 0.06</td>
</tr>
<tr>
<td>Bone</td>
<td>1.58 ± 0.20</td>
<td>2.56 ± 0.57</td>
<td>1.54 ± 0.39</td>
</tr>
<tr>
<td>Brain</td>
<td>0.09 ± 0.08</td>
<td>0.11 ± 0.03</td>
<td>0.04 ± 0.03</td>
</tr>
<tr>
<td>Tumor</td>
<td>7.82 ± 1.82</td>
<td>8.35 ± 1.92</td>
<td>9.83 ± 2.52</td>
</tr>
<tr>
<td>Excretion (ID%)</td>
<td>16.55 ± 1.39</td>
<td>36.64 ± 3.92</td>
<td>34.94 ± 6.26</td>
</tr>
</tbody>
</table>
4.2 Evaluation of tissue adduct formation of the radioconjugates.

The radioconjugates (800 μCi/mouse) were intravenously injected to the tumor bearing mice. The mice were sacrificed and the tumor, liver, and kidney were excised at 24 and 72 h post-injection time points. The tumor and organs were homogenized in RIPA buffer (50 mg / 100 μL) containing Halt™ protease inhibitor (100 ×, 1 μL) on ice and centrifuged to remove the pellet. An aliquot (20 μL) of the supernatant of the sample at 24 h was mixed with Novex Tris-Glycine SDS sample buffer (2×, 20 μL) and incubated for further 10 min. The mixtures (20 μL) were loaded onto a Novex 16% tris-glycine gel and analyzed by SDS-PAGE at 110 V for 90 min. The autoradiograph of the SDS-PAGE was performed according to the same method in section 3.8.1. On the other hand, the aliquots (100 μL) of supernatants of all the tumor samples at 24 h and 72 h were individually centrifuged with Pierce™ protein concentrators (MWCO = 10kDa) to separate the low molecular weight radioactivity. The radioactivity in each fraction was quantified using a gamma counter to calculate the percentage of the cysteine proteases trapped radioconjugate in the total counts. See Table S14 for data.

![Image](image.png)

Figure S14. The autoradiography of SDS-PAGE of the liver and kidney at 24 h postinjection of 177Lu-2f and 177Lu-3b in tumor bearing mice.
4. 3 Evaluation of cysteine proteases trapping of the Cy 5-labeled conjugates.

The Cy 5-labeled conjugates (40 nmol) were intravenously injected to the tumor bearing mice. The mice were sacrificed at 24 post-injection time points, and the heart, lung, liver, spleen, pancreas, kidney, intestine, brain, and tumor were excised and imaged using an IVIS spectrum system. The tumor and organs were homogenized in RIPA buffer (50 mg / 100 μL) containing Halt™ protease inhibitor (100 ×, 1 μL) on ice and centrifuged to remove the pellet. An aliquot (18 μL) of the supernatant of the sample was added in NuPAGE® sample reducing reagent (10×, 2 μL) and denatured at 80 °C for 2 min. The sample was mixed with Novex Tris-Glycine SDS sample buffer (2×, 20 μL) and incubated for further 10 min. The mixtures (20 μL) were loaded onto a Novex 16% tris-glycine gel and analyzed by SDS-PAGE at 110 V for 90 min, followed by electro transferring onto PVDF membranes. The PVDF membranes were blocked by animal-free blocking buffer for 1h at room temperature and then were incubated with Cathepsin B (D1C7Y) XP® Rabbit mAb at 4 °C for overnight. Membranes was then incubated with Goat anti-Rabbit IgG (H+L) secondary antibody at room temperature for 1h and visualized using Typhoon FLA 9500. See Figure S15 and S16 for data.

Figure S15. (A) The ex vivo fluorescent image of the tissues after injected with 4a and 4b at 24 h. (B) Quantification of the average fluorescence in each tissue. The excitation filter was 615-665 nm, and the emission filter was 695-770 nm.
5 NMR and Mass Spectra

1H NMR spectrum (500 MHz) of 6 in CDCl$_3$

13C NMR spectrum (125 MHz) of 6 in CDCl$_3$
1H NMR spectrum (500 MHz) of 7 in CDCl$_3$

13C NMR spectrum (125 MHz) of 7 in CDCl$_3$
1H NMR spectrum (500 MHz) of 1a in (CD$_3$)$_2$SO

13C NMR spectrum (125 MHz) of 1a in (CD$_3$)$_2$SO
1H NMR spectrum (500 MHz) of 8 in CDCl$_3$

13C NMR spectrum (125 MHz) of 8 in CDCl$_3$
1H NMR spectrum (500 MHz) of 9b in CDCl$_3$

13C NMR spectrum (125 MHz) of 9b in CDCl$_3$
1H NMR spectrum (500 MHz) of $9c$ in CDCl$_3$

13C NMR spectrum (125 MHz) of $9c$ in CDCl$_3$
1H NMR spectrum (500 MHz) of 9d in CDCl$_3$

13C NMR spectrum (125 MHz) of 9d in CDCl$_3$
^{1}H NMR spectrum (500 MHz) of 9e in CDCl$_3$

^{13}C NMR spectrum (125 MHz) of 9e in CDCl$_3$
1H NMR spectrum (500 MHz) of 10 in CDCl$_3$

13C NMR spectrum (125 MHz) of 10 in CDCl$_3$
1H NMR spectrum (500 MHz) of 11 in CDCl$_3$

13C NMR spectrum (125 MHz) of 11 in CDCl$_3$
1H NMR spectrum (500 MHz) of 9a in CDCl$_3$

13C NMR spectrum (125 MHz) of 9a in CDCl$_3$
1H NMR spectrum (500 MHz) of 12 in CDCl$_3$

13C NMR spectrum (125 MHz) of 12 in CDCl$_3$
1H NMR spectrum (500 MHz) of 1b in (CD$_3$)$_2$SO

13C NMR spectrum (125 MHz) of 1b in (CD$_3$)$_2$SO
1H NMR spectrum (500 MHz) of 13a in CDCl$_3$

13C NMR spectrum (125 MHz) of 13a in CDCl$_3$
1H NMR spectrum (500 MHz) of 13b in CDCl$_3$
LRMS-ESI for 6. $[\text{M+H}]^+$ calcd. 604.2, found 604.2

LRMS-ESI for 7. $[\text{M+H}]^+$ calcd. 688.4, found 688.3
LRMS-ESI for 1a. ([M+H]+ calcd. 588.3, found 588.3

LRMS-ESI for 8. ([M+H]+ calcd. 588.3, found 588.2
LRMS-ESI for 9b. [M+H]+ calcd. 671.3, found 671.2

LRMS-ESI for 9c. [M+H]+ calcd. 803.4, found 803.1
LRMS-ESI for 9d. [M+H]^+ calcd. 989.4, found 989.3

LRMS-ESI for 9d. [M+H]^+ calcd. 1157.6, found 1157.3
LRMS-ESI for 10. [M+H]⁺ calcd. 454.2, found 454.1

LRMS-ESI for 11. [M+H]⁺ calcd. 530.1, found 530.0
LRMS-ESI for 9a. [M+H]^+ calcd. 614.3, found 614.2

LRMS-ESI for 12. [M+H]^+ calcd. 631.3, found 631.3
LRMS-ESI for 1b. [M+H]⁺ calcd. 531.3, found 531.2

LRMS-ESI for 13a. [M+H]⁺ calcd. 746.4, found 746.2
LRMS-ESI for 13b. [M+H]^+ calcd. 1100.6, found 1100.6

LRMS-ESI for 14a. [M+2H]^2+ calcd. 928.0, found 927.8
LRMS-ESI for 14b. [M+2H]^{2+} calcd. 1107.1, found 1106.9

LRMS-ESI for 15a. [M+2H]^{2+} calcd. 1234.6, found 1234.6
LRMS-ESI for 15b. [M+2H]^{2+} calcd. 1263.2, found 1263.1

LRMS-ESI for 15c. [M+2H]^{2+} calcd. 1329.2, found 1329.2
LRMS-ESI for 15d. [M+2H]^{2+} calcd. 1506.3, found 1506.5

LRMS-ESI for 15e. [M+2H]^{2+} calcd. 1508.3, found 1508.3
LRMS-ESI for \textbf{15f} \([\text{M}+2\text{H}]^{2+}\) calcd. 1685.4, found 1685.4

LRMS-ESI for \textbf{2a} \([\text{M}+2\text{H}]^{2+}\) calcd. 1125.6, found 1125.6
LRMS-ESI for 2b. [M+2H]^{2+} calcd. 1154.1, found 1153.9

LRMS-ESI for 2c. [M+2H]^{2+} calcd. 1220.2, found 1220.0
LRMS-ESI for 2d. [M+2H]^{2+} calcd. 1313.2, found 1313.4

LRMS-ESI for 2e. [M+2H]^{2+} calcd. 1315.2, found 1315.2
HRMS-ESI for 2f. [M+2H]$^{2+}$ calcd. 1408.2249, found 1408.2242

LRMS-ESI for 16a. [M+2H]$^{2+}$ calcd. 1300.7, found 1300.6
LRMS-ESI for 16b. [M+2H]^{2+} calcd. 1656.9, found 1656.9

LRMS-ESI for 3a. [M+2H]^{2+} calcd. 1191.7, found 1191.6
HRMS-ESI for 3b. [M+2H]²⁺ calcd. 1379.7197, found 1379.7188

HRMS-ESI for 4a. [M+3H]⁴⁺ calcd. 724.1419, found 724.1420
HRMS-ESI for 4b. [M+3H]^{4+} calcd. 709.8893, found 709.8894
6 References