Supporting Information

Direct α-C–H amination with various amino agents by selective oxidative copper catalysis: a divergent access to functional quinolines
Yantang Liang, Zhenda Tan, Huanfeng Jiang and Min Zhang*

Table of contents

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>General information</td>
</tr>
<tr>
<td>2.</td>
<td>Substrates employed for the reaction</td>
</tr>
<tr>
<td>3.</td>
<td>Optimization of the reaction conditions</td>
</tr>
<tr>
<td>4.</td>
<td>Typical procedure for the synthesis of 3aa</td>
</tr>
<tr>
<td>5.</td>
<td>Representative time course for the model reaction</td>
</tr>
<tr>
<td>6.</td>
<td>The control experiments</td>
</tr>
<tr>
<td>7.</td>
<td>Cyclic voltammograms</td>
</tr>
<tr>
<td>8.</td>
<td>HPLC Spectra of compound 5am</td>
</tr>
<tr>
<td>9.</td>
<td>Analytical data of the obtained compounds</td>
</tr>
<tr>
<td>10.</td>
<td>NMR spectra of the obtained compounds</td>
</tr>
</tbody>
</table>
1. General information

All the obtained products were characterized by melting points (m.p), 1H-NMR, 13C-NMR and infrared spectra (IR). Melting points were measured on an Electrothemal SGW-X4 microscopy digital melting point apparatus and are uncorrected; IR spectra were recorded on a FTIR2000 spectrometer; 1H-NMR and 13C-NMR spectra were obtained on Bruker-400 and referenced to 7.26 ppm for chloroform solvent with TMS as internal standard (0 ppm). Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), multiplet (m); TLC was performed using commercially prepared 100-400 mesh silica gel plates (GF254), and visualization effected at 254 nm; High performance liquid chromatography (HPLC) analyses were performed on an Agilent Technologies 1260 Infinity II instrument equipped with a quaternary pump, using Daicel Chiralcel IA Columns (250 mmL × 4.6 mm φ). UV absorption was monitored at 254 nm. Unless otherwise stated, all the reagents were purchased from commercial sources (Energy Chemic, J&K Chemic, TCI, Fluka, Acros, SCRC), used without further purification; Cyclic voltammetry (CV) analysis was performed on Ingsens IGS-1030 electrochemical workstation (Ingsens Instruments (Guangzhou) Co., Ltd., China) with a conventional three-electrode cell, using a platinum electrode (d = 2 mm) as working electrode, a Pt wire as counter electrode and saturated calomel electrode (SCE) as a reference electrode. Cyclic voltammograms were recorded at 50 mV/s scan rate.

2. Substrates preparation

1,2,3,4-tetrahydroquinolines were known compounds and could be commercial or prepared via the literature procedures.$^1, 2$ Anilines, alkylamines, amides and sulfamides are all purchased from Energy Chemic, J&K Chemic, TCI, Fluka, Acros, SCRC.

References

3. Substrates employed for the reaction

Scheme S1. Tetrahydroquinolines (THQs) employed for the α-C–H Amination.

Scheme S2. Primary arylamines employed for the α-C–H Amination.
Scheme S3. Alkylamines employed for the α-C–H Amination.

Scheme S4. Primary amides and sulfamides employed for the α-C–H functionalization.

3. Optimization of the reaction conditions

To examine the feasibility of the above idea, we initiated our study by choosing the reaction of tetrahydroquinoline 1a and aniline 2a as a model system to evaluate different reaction parameters. First, the reaction charged with O₂ balloon in toluene was performed at 60 °C for 24 h in the presence of 15 mol % CuCl and 1.5 equivalents of pyridine. However, it failed to give any desired product 3aa, and only quinoline 1a’ and azo compound 2a-1 were observed (Table 1, entry 1). Interestingly, addition of 15 mol % of TEMPO into the reaction led to generate 3aa in 32% GC yield along with a certain amount of 2-aminodihydroquinoline 3a-1 (entry 2). Then, upon addition of TEMPO, a series of copper salts (entries 2-8) and solvents (entries 9-12) were screened, and the combination of CuCl and apolar p-xylene showed to be the best choice (entry 9). Further,
an increase of reaction temperature to 80 °C or the absence of copper salt failed to afford product 3aa (entry 13), indicating that the copper catalyst and a low temperature are two key factors for product formation. Similarly, the change of pyridine to other basic additives resulted in no product formation or poor yield (entry 14). Gratifyingly, a gradient change on temperature significantly improved the yield (entry 15, 81%). Thus, the optimal conditions are as indicated in entry 15.

Table S1: Optimization of the reaction conditions

![Chemical structures and reaction conditions](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cat. (15 mol %)</th>
<th>Additive</th>
<th>Solvent</th>
<th>3a yield %[^b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CuCl</td>
<td>pyridine</td>
<td>toluene</td>
<td>trace[^c]</td>
</tr>
<tr>
<td>2</td>
<td>CuCl</td>
<td>pyridine</td>
<td>toluene</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>CuBr</td>
<td>pyridine</td>
<td>toluene</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>CuCN</td>
<td>pyridine</td>
<td>toluene</td>
<td>NR</td>
</tr>
<tr>
<td>5</td>
<td>CuI</td>
<td>pyridine</td>
<td>toluene</td>
<td>NR</td>
</tr>
<tr>
<td>6</td>
<td>CuCl₂</td>
<td>pyridine</td>
<td>toluene</td>
<td>NR</td>
</tr>
<tr>
<td>7</td>
<td>Cu(OAc)₂</td>
<td>pyridine</td>
<td>toluene</td>
<td>NR</td>
</tr>
<tr>
<td>8</td>
<td>Cu(OTf)₂</td>
<td>pyridine</td>
<td>toluene</td>
<td>NR</td>
</tr>
<tr>
<td>9</td>
<td>CuCl</td>
<td>pyridine</td>
<td>p-xylene</td>
<td>62</td>
</tr>
<tr>
<td>10</td>
<td>CuCl</td>
<td>pyridine</td>
<td>THF</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>CuCl</td>
<td>pyridine</td>
<td>DMSO</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>CuCl</td>
<td>pyridine</td>
<td>MeCN</td>
<td>21</td>
</tr>
<tr>
<td>13</td>
<td>CuCl</td>
<td>pyridine</td>
<td>p-xylene</td>
<td>(trace, -)[^d]</td>
</tr>
<tr>
<td>14</td>
<td>CuCl</td>
<td>base</td>
<td>p-xylene</td>
<td>(-, 13, 38, -)[^e]</td>
</tr>
<tr>
<td>15</td>
<td>CuCl</td>
<td>pyridine</td>
<td>p-xylene</td>
<td>(81)[^f]</td>
</tr>
</tbody>
</table>

[^a]: Reaction conditions: unless otherwise stated, the reaction in solvent (1.5 mL) was performed with 1a (0.3 mmol), 2a (0.3 mmol), cat. (15 mol %), TEMPO (15 mol %), additive (1.5 equiv) at 60 °C for 24 h charged with a O₂ balloon.[^b]: GC yield.[^c]: Without addition of TEMPO.[^d]: 80 °C or the absence of CuCl.[^e]: Yield are with respect to use of (Et)₃N, DBU, K₂CO₃ and t-BuOK as the additives, respectively.[^f]: 45 °C for 10 h then at 95 °C for 12 h.

4. Typical procedure for synthesis of 2- aminoquinolines
The mixture of 1,2,3,4-tetrahydroquinolines (0.3 mmol), amine (0.3 mmol), pyridine (0.45 mmol), TEMPO (0.045 mmol) and CuCl (0.045 mmol) in p-xylene (1.5 mL) was stirred at 45 °C for 10 hours under 1 atm of O₂ atmosphere (using O₂ balloon) and then heat to 95°C for 12 hours. After cooling down to room temperature, the resulting mixture was extracting with ethyl acetate, washed with purified water, and then concentrated by removing the solvent under vacuum. Finally, the residue was purified by preparative TLC on silica, eluting with petroleum ether (60-90 °C) : ethyl acetate (15:1~1:2) to give 2-aminoquinolines.

5. Representative time course for the model reaction

The model reactions with (a) or without (b) TEMPO were performed at 45 °C for 10 h, respectively. The reactions were carried out at different reaction times and the reaction mixture was analyzed by GC using hexadecane as the internal standard.

As shown in Figure S1a, THQ 1a was rapidly consumed to give the dihydroquinolines (imine 1a-1 and enamine 1a-2) within 1.5 h. Then, the concentrations of aniline 2a and dihydroquinolines gradually decreased, and 2-aminodihydroquinoline 3a-1 accumulated to a constant yield around 10 h. Then, 3a-1 could be fully transformed into product 2-phenylaminoquinoline (3aa) by prolonging the reaction for another 20 h at elevated temperature (95 °C, see SI, eq 2). The results indicate that dihydroquinolines and 3a-1 are the successive intermediates for the formation of 3aa. In comparison, the reaction without TEMPO (Figure S1b) leads to slow generation of dihydroquinolines, only small portion of aniline 2a was slowly converted into 3a-1 and 3aa, and quinoline 1a’ was produced as a major product. Clearly, the addition of TEMPO makes the first dehydrogenation of THQ a kinetically favorable process, the high concentration of dihydroquinolines favors the addition of amino nucleophiles, even including weak amide and sulfamide nucleophiles, and the conversion of 3a-1 to 3aa is a thermodynamically driven step.
Figure S1a. Representative time course in the presence of TEMPO

CuCl (15 mol %) / TEMPO (15 mol %) / Pyridine (1.5 eq) / 45°C / O₂

Figure S1b. Representative time course in the absence of TEMPO

CuCl (15 mol %) / pyridine (1.5 eq) / 45°C / O₂
6. The control experiments

To gain insight into the reaction mechanism, several verification experiments were performed. First, the model reaction was performed under the standard conditions but at 45 °C for 4 h and 2-Aminoimine intermediate 3a-1 was isolated and confirmed by GC–MS and NMR analyses (eq 1), and then, 3a-1 could be fully transformed into product 2-phenylaminoquinoline (3aa) by prolonging the reaction for another 12 h at elevated temperature (95 °C, eq 2), which indicated that 2-Aminoimine intermediate 3a-1 was the successive intermediate for the formation of 3aa. Noteworthy, the model reaction or 2-aminodihydroquinoline 3a-1 under the standard conditions by treating with excess BHT (butylated hydroxytoluene) suppressed the formation of product 3aa, showing that the reaction involves radical pathways (See eq 3 and eq 4). Further, the reaction of 2a with imine 1a-1 or its tautomer (enamine 1a-2) under the standard conditions succeed to yield product 3aa (eq 5), showing that imine 1a-1 or its tautomer (enamine 1a-2) which generated from the first dehydrogenation of 1a are the crucial intermediate.

\[
\begin{align*}
\text{N} & \quad \text{N} \\
\text{H} & \quad \text{H} \\
1a \ (1 \text{ equiv}) \quad + \quad \text{PhNH}_2 \quad 2a \ (1 \text{ equiv}) \quad \xrightarrow{\text{CuCl (15 mol %), TEMPO (15 mol %), pyridine (1.5 equiv), p-xylene}} \quad \text{O}_2 \ \text{ballon}, \ 45 \ ^\circ\text{C} \ \text{for} \ 4 \ h \quad 3a-1, \ 65\% \\
\text{N} & \quad \text{N} \\
\text{H} & \quad \text{H} \\
1a \ (1 \text{ equiv}) \quad + \quad \text{CuCl (15 mol %), TEMPO (15 mol %), pyridine (1.5 equiv), p-xylene} \quad \xrightarrow{\text{O}_2 \ \text{ballon}, \ 95 \ ^\circ\text{C} \ \text{for} \ 12 \ h} \quad 3aa, \ 95\% \\
\text{N} & \quad \text{N} \\
\text{H} & \quad \text{H} \\
3a-1 \quad \xrightarrow{\text{CuCl (15 mol %), BHT (200 mol %), pyridine (1.5 equiv), p-xylene}} \quad \xrightarrow{\text{O}_2 \ \text{ballon}, \ 95 \ ^\circ\text{C} \ \text{for} \ 12 \ h} \quad 3aa, \ \text{trace} \\
\text{N} & \quad \text{N} \\
\text{H} & \quad \text{H} \\
3a-1 \quad \xrightarrow{\text{standard conditions}} \quad 3aa, \ \text{86\%} \ (\text{eq 5}) \\
\end{align*}
\]

\(\text{Scheme S5. The control experiments.}\)
6.1 The Procedure of the Verification experiments (Equation 5)

![Chemical structure and equation]

The mixture of 1,2,3,4-tetrahydroquinolines (0.3 mmol), pyridine (0.6 mmol), 15 mol % TEMPO and 15 mol % CuCl in p-xylene (1.5 mL) was stirred at 40 °C for 1.5 hours under 1 atm of O₂ atmosphere (using O₂ balloon). After cooling down to room temperature, the reaction mixture contained the mixture of enamine (B) and imine (C). Upon GC–MS analysis, the ratio of 1a-1 to 1a-2 is 6:1. Then, we continued adding aniline (0.3 mmol) to the reaction mixture at 45 °C for 10 hours then 95 °C for 12 hours. After cooling down to room temperature, the resulting mixture was extracting with ethyl acetate, washed with purified water, and then concentrated by removing the solvent under vacuum. Finally the residue was purified by preparative TLC on silica.

7. Cyclic voltammograms

![Cyclic voltammograms graphs]
Figure S2. Cyclic voltammograms of 0.1 M TBAClO₄ solution in Acetonitrile at room temperature. Conditions: (a) CuCl (0.0045 M) + TEMPO (0.0045 M) + Pyridine (0.045 M) and CuCl (0.0045 M) + Pyridine (0.045 M); (b) THQ (0.03 M), p-methoxyaniline (0.03 M) and Aniline (0.03 M); (c) THQ (0.03 M), Piperidine (0.03 M); (d) THQ (0.03 M), Benzamide (0.03 M) and p-Toluenesulfonamide (0.03 M). The voltammogram was obtained with Pt wire as auxiliary electrode and a saturated calomel electrode (SCE) as a reference electrode. The scan rate was 0.05 V/s on a platinum disk electrode ($d = 2$ mm).

8. **HPLC Spectra of compound 5am**

Column: Chiralpak IA, Daicel Corporation;
Eluent: Hexanes/Ethanol (99/1);
Flow rate: 0.5 mL/min;
Detection: UV 254 nm.

HPLC Spectra of Chiral 5am

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Retention time [min]</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area [mAU*s]</th>
<th>Height [mAU]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.362</td>
<td>BH</td>
<td>0.3018</td>
<td>2561.55176</td>
<td>119.6193</td>
<td>100.0000</td>
</tr>
</tbody>
</table>
HPLC Spectra of Racemic 5am

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Retention time [min]</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area [mAU*s]</th>
<th>Height [mAU]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.540</td>
<td>HH</td>
<td>0.2527</td>
<td>1967.78418</td>
<td>112.15722</td>
<td>49.0716</td>
</tr>
<tr>
<td>2</td>
<td>10.735</td>
<td>HB</td>
<td>0.2959</td>
<td>2042.24512</td>
<td>100.15334</td>
<td>50.9284</td>
</tr>
</tbody>
</table>
9. Analytic data of the obtained compound

(1) N-phenylquinolin-2-amine(3aa)

\[
\begin{array}{c}
\text{N} \\
\text{H} \\
\text{C} \\
\text{H} \\
\end{array}
\]

Known compound\(^1\), black solid (40.9 mg, 62 % yield), m.p: 97-99 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.92 (d, \(J = 9.2\) Hz, 1H), 7.79 (d, \(J = 8.4\) Hz, 1H), 7.65 (d, \(J = 8.0\) Hz, 1H), 7.62 – 7.53 (m, 3H), 7.37 (t, \(J = 8.0\) Hz, 2H), 7.30 (t, \(J = 8.0\) Hz, 1H), 7.10 (t, \(J = 7.2\) Hz, 1H), 6.99 (d, \(J = 9.2\) Hz, 1H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 154.49, 147.62, 140.24, 137.99, 130.00, 129.40, 127.57, 126.71, 124.26, 123.24, 123.21, 120.77, 111.75. IR (KBr): 3404, 3050, 1620, 1597, 1533, 1401, 823, 752 cm\(^{-1}\). MS (EI, m/z): 220.1 [M]\(^+\).

(2) N-(4-chlorophenyl)quinolin-2-amine(3ab)

\[
\begin{array}{c}
\text{N} \\
\text{H} \\
\text{C} \\
\text{H} \\
\end{array}
\]

Known compound\(^1\), white solid (36.5 mg, 48 % yield), m.p: 136-139 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.91 (d, \(J = 9.2\) Hz, 1H), 7.80 (d, \(J = 8.4\) Hz, 1H), 7.65 (d, \(J = 8.0\) Hz, 1H), 7.60 (t, \(J = 8.6\) Hz, 3H), 7.31 (t, \(J = 7.8\) Hz, 3H), 6.88 (d, \(J = 8.8\) Hz, 1H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 153.94, 147.52, 139.02, 137.96, 130.01, 129.21, 127.57, 127.48, 126.91, 124.28, 123.52, 121.34, 112.13. IR (KBr): 3405, 1596, 1536, 750 cm\(^{-1}\). MS (EI, m/z): 254.1 [M]\(^+\).

(3) N-(3-chlorophenyl)quinolin-2-amine(3ac)

\[
\begin{array}{c}
\text{N} \\
\text{H} \\
\text{C} \\
\text{H} \\
\end{array}
\]

Known compound\(^2\), yellow solid (61.7 mg, 81 % yield), m.p: 86-89 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.84 (d, \(J = 9.2\) Hz, 1H), 7.77 – 7.70 (m, 2H), 7.56 (d, \(J = 8.0\) Hz, 1H), 7.52 (t, \(J = 7.6\) Hz, 1H), 7.34 (d, \(J = 8.0\) Hz, 1H), 7.24 (t, \(J = 7.6\) Hz, 1H), 7.16 (t, \(J = 8.0\) Hz, 1H), 6.94 (d, \(J = 8.0\) Hz, 1H), 6.82 (d, \(J = 9.2\) Hz, 1H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 153.64, 147.42, 141.66, 138.06, 134.83, 130.18, 130.06, 127.56, 127.03, 124.35, 123.70, 122.68, 119.72, 117.82, 112.28. IR (KBr): 3413, 1590, 1526, 1479, 1429, 1395, 1345 815, 753, 678 cm\(^{-1}\). MS (EI, m/z): 254.1 [M]\(^+\).

(4) N-(4-bromophenyl)quinolin-2-amine(3ad)

\[
\begin{array}{c}
\text{N} \\
\text{H} \\
\text{C} \\
\text{H} \\
\end{array}
\]

Known compound\(^1\), black solid (38.4 mg, 43 % yield), m.p: 146-149 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.81 (d, \(J = 8.8\) Hz, 1H), 7.71 (d, \(J = 8.4\) Hz, 1H), 7.55 (d, \(J = 8.0\) Hz, 1H), 7.50 (t, \(J = 7.6\) Hz, 1H), 7.45 (d, \(J = 8.8\) Hz, 2H), 7.35 (d, \(J = 8.8\) Hz, 2H), 7.22 (t, \(J = 7.4\) Hz, 1H), 6.79 (d, \(J = 8.8\)
13C NMR (101 MHz, CDCl₃): δ 153.82, 147.46, 139.51, 137.98, 132.13, 130.03, 127.56, 126.91, 124.28, 123.57, 121.60, 115.07, 112.20. IR (KBr): 3402, 1535, 1488, 1239, 818, 750, 542, 497 cm⁻¹. MS (EI, m/z): 298.0 [M]⁺.

(5) N-(4-fluorophenyl)quinolin-2-amine(3ae)

Known compound[1], white solid (46.1 mg, 65 % yield), m.p: 103-105 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, J = 9.2 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.62 – 7.51 (m, 3H), 7.30 (t, J = 7.4 Hz, 1H), 7.07 (t, J = 8.6 Hz, 2H), 6.87 (d, J = 8.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 160.34 (d, ¹J_C-F = 240 Hz), 157.93, 154.60, 147.62, 138.03, 136.28, 130.02, 127.59, 126.74, 124.22, 123.32, 122.77 (d, ³J_C-F = 7.8 Hz), 116.10, 115.87 (d, ²J_C-F = 22.0 Hz), 111.58. IR (KBr): 3223, 1618, 1506, 1428, 1216, 1094, 821, 781, 752, 591, 509, 475 cm⁻¹. MS (EI, m/z): 238.1 [M]⁺.

(6) N-(4-(trifluoromethyl)phenyl)quinolin-2-amine(3af)

Known compound[2], white solid (59.6 mg, 69 % yield), m.p: 120-122 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, J = 8.8 Hz, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 8.0 Hz, 1H), 7.62 (dd, J = 17.8, 9.6 Hz, 3H), 7.36 (t, J = 7.4 Hz, 1H), 6.94 (d, J = 8.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 153.28, 147.32, 143.67, 138.05, 130.10, 127.58, 127.14, 126.40 (q, ³J_C-F = 3.8 Hz), 125.94, 124.47 (q, ¹J_C-F = 270.0 Hz), 123.93, 123.62, 120.24 (q, ²J_C-F = 32.0 Hz), 118.57, 117.20. IR (KBr): 3300, 1603, 1529, 1396, 1324, 1253, 1161, 1109, 1066, 818, 816, 756 cm⁻¹. MS (EI, m/z): 288.1 [M]⁺.

(7) 1-(4-(quinolin-2-ylamino)phenyl)propan-1-one(3ag)

White solid (47.1 mg, 57 % yield), m.p: 171-174 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.05 (d, J = 8.0 Hz, 2H), 7.97 (d, J = 8.8 Hz, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.77 (d, J = 8.2 Hz, 2H), 7.67 (d, J = 8.0 Hz, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 6.97 (d, J = 8.8 Hz, 1H), 4.37 (q, J = 7.2 Hz, 2H), 1.40 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 166.62, 153.17, 147.37, 144.88, 138.00, 131.11, 130.07, 127.53, 127.24, 124.47, 123.94, 123.72, 117.93, 112.92, 60.77, 14.51. IR (KBr): 3348, 1680, 1595, 1535, 1478, 1421, 1278, 1249, 1170, 964, 815, 767, 696 cm⁻¹. HRMS (ESI): Calcd. for C₁₈H₁₇N₂O [M+H]⁺: 293.1285; found: 293.1290.
(8) **N-([1,1'-biphenyl]-4-yl)quinolin-2-amine(3ah)**

Black solid (50.6 mg, 57 % yield), m.p: 157-160 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.94 (d, \(J = 8.8\) Hz, 1H), 7.83 (d, \(J = 8.4\) Hz, 1H), 7.67 (t, \(J = 8.4\) Hz, 3H), 7.60 (m, 5H), 7.45 (t, \(J = 7.6\) Hz, 2H), 7.33 (dd, \(J = 14.4\), 7.2 Hz, 2H), 7.01 (d, \(J = 9.2\) Hz, 1H). \(^1\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 154.25, 147.71, 140.87, 139.66, 137.94, 135.94, 130.00, 128.91, 127.97, 127.57, 127.02, 126.87, 124.32, 123.39, 120.63, 112.06. IR (KBr): 3989, 1601, 1524, 1484, 1395, 1346, 816, 759, 696 cm\(^{-1}\). HRMS (ESI): Calcd. for C\(_{21}\)H\(_{17}\)N\(_2\): [M+H]\(^+\): 297.1386; found: 297.1390.

(9) **N-(m-tolyl)quinolin-2-amine(3ai)**

Known compound\(^{[1]}\), yellow solid (36.5 mg, 52 % yield), m.p: 106-108 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.80 (d, \(J = 9.2\) Hz, 1H), 7.69 (d, \(J = 8.4\) Hz, 1H), 7.54 (d, \(J = 8.0\) Hz, 1H), 7.51 - 7.45 (m, 1H), 7.26 (d, \(J = 8.0\) Hz, 1H), 7.23 (s, 1H), 7.18 (dt, \(J = 15.2\), 7.2 Hz, 2H), 6.90 (d, \(J = 8.8\) Hz, 1H), 6.82 (d, \(J = 7.6\) Hz, 1H), 2.28 (s, 3H). \(^1\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 154.69, 147.83, 140.18, 139.26, 137.84, 129.89, 129.20, 127.54, 126.75, 124.26, 124.21, 123.18, 117.95, 111.70, 21.66. IR (KBr): 3400, 3050, 1605, 1535, 1486, 1430, 1396, 1346, 818, 777, 753, 690 cm\(^{-1}\). MS (EI, m/z): 234.1 [M]\(^+\).

(10) **N-(o-tolyl)quinolin-2-amine(3aj)**

Known compound\(^{[1]}\), yellow solid (44.9 mg, 64 % yield), m.p: 97-99 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.79 (d, \(J = 8.8\) Hz, 1H), 7.63 (d, \(J = 8.4\) Hz, 1H), 7.54 (d, \(J = 8.0\) Hz, 1H), 7.49 (dd, \(J = 14.0\), 7.6 Hz, 2H), 7.23 - 7.12 (m, 3H), 7.03 (t, \(J = 7.4\) Hz, 1H), 6.77 (d, \(J = 8.8\) Hz, 1H), 6.77 (t, \(J = 7.4\) Hz, 1H), 2.22 (s, 3H). \(^1\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 155.52, 147.80, 138.10, 137.97, 131.82, 131.09, 129.91, 127.54, 126.93, 126.26, 124.94, 124.11, 123.70, 122.94, 110.68, 18.16. IR (KBr): 3410, 3010, 2962, 1619, 1504, 1422, 1346, 819, 750 cm\(^{-1}\). MS (EI, m/z): 234.1 [M]\(^+\).

(11) **N-(4-methoxy-2-nitrophenyl)quinolin-2-amine(3ak)**

Known compound\(^{[1]}\), yellow solid (44.9 mg, 64 % yield), m.p: 97-99 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.79 (d, \(J = 8.8\) Hz, 1H), 7.63 (d, \(J = 8.4\) Hz, 1H), 7.54 (d, \(J = 8.0\) Hz, 1H), 7.49 (dd, \(J = 14.0\), 7.6 Hz, 2H), 7.23 - 7.12 (m, 3H), 7.03 (t, \(J = 7.4\) Hz, 1H), 6.77 (d, \(J = 8.8\) Hz, 1H), 6.77 (t, \(J = 7.4\) Hz, 1H), 2.22 (s, 3H). \(^1\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 155.52, 147.80, 138.10, 137.97, 131.82, 131.09, 129.91, 127.54, 126.93, 126.26, 124.94, 124.11, 123.70, 122.94, 110.68, 18.16. IR (KBr): 3410, 3010, 2962, 1619, 1504, 1422, 1346, 819, 750 cm\(^{-1}\). MS (EI, m/z): 234.1 [M]\(^+\).
Orange solid (32.5 mg, 41 % yield), m.p: 128-134 °C; 1H NMR (400 MHz, CDCl$_3$): δ 10.24 (brs, 1H), 9.34 (d, $J = 9.6$ Hz, 1H), 7.98 (d, $J = 8.8$ Hz, 1H), 7.86 (d, $J = 8.4$ Hz, 1H), 7.71 – 7.66 (m, 2H), 7.63 (t, $J = 7.4$ Hz, 1H), 7.37 (t, $J = 7.2$ Hz, 1H), 7.29 (dd, $J = 9.2$, 2.8 Hz, 1H), 6.95 (d, $J = 8.8$ Hz, 1H), 3.85 (s, 3H). 13C NMR (101 MHz, CDCl$_3$): δ 153.03, 152.48, 146.96, 138.02, 135.28, 133.00, 130.03, 127.53, 127.52, 124.89, 124.79, 124.40, 122.63, 114.84, 107.74, 55.94. IR (KBr): 3433, 1594, 1507, 1336, 1275, 1220, 937, 818, 740, 658 cm$^{-1}$. HRMS (ESI): Calcd. for C$_{16}$H$_{14}$N$_3$O$_3$ [M+H]$^+$: 296.1030; found: 296.1031.

(12) 6-methyl-N-phenylquinolin-2-amine (3ba)

Black solid (57.0 mg, 82 % yield), m.p: 93-95 °C; 1H NMR (400 MHz, CDCl$_3$): δ 7.83 (d, $J = 8.8$ Hz, 1H), 7.71 (d, $J = 8.0$ Hz, 1H), 7.56 (d, $J = 7.6$ Hz, 2H), 7.43 (d, $J = 8.4$ Hz, 2H), 7.36 (t, $J = 7.8$ Hz, 2H), 7.08 (t, $J = 7.4$ Hz, 1H), 6.96 (d, $J = 8.8$ Hz, 1H), 2.48 (s, 3H). 13C NMR (101 MHz, CDCl$_3$): δ 153.98, 145.96, 140.49, 137.34, 132.80, 131.94, 129.31, 126.68, 126.49, 124.21, 122.99, 120.45, 111.76, 21.32. IR (KBr): 3440, 2919, 1596, 1531, 1498, 1442, 1402, 1350, 1320, 1247, 1126, 824, 749, 692 cm$^{-1}$. HRMS (ESI): Calcd. for C$_{16}$H$_{15}$N$_2$ [M+H]$^+$: 235.1230; found: 235.1227.

(13) 8-bromo-N-(4-bromophenyl)quinolin-2-amine (3cd)

Black solid (99.8 mg, 88 % yield), m.p: 157-159 °C; 1H NMR (400 MHz, CDCl$_3$): δ 7.92 (dd, $J = 7.6$, 0.8 Hz, 1H), 7.85 (t, $J = 8.8$ Hz, 3H), 7.58 (d, $J = 7.2$ Hz, 1H), 7.47 (d, $J = 8.8$ Hz, 2H), 7.15 (t, $J = 7.6$ Hz, 1H), 6.82 (d, $J = 8.8$ Hz, 1H). 13C NMR (101 MHz, CDCl$_3$): δ 153.88, 144.75, 139.25, 138.15, 133.43, 132.06, 127.21, 125.28, 123.87, 122.28, 121.07, 114.92, 113.44. IR (KBr): 3419, 1604, 1527, 1486, 1421, 1387, 1334, 937, 825 cm$^{-1}$. HRMS (ESI): Calcd. for C$_{15}$H$_{11}$Br$_2$N$_2$ [M+H]$^+$: 376.9283; found: 376.9282.

(14) 7-nitro-N-phenylquinolin-2-amine (3da)

Orange solid (71.5 mg, 90 % yield), m.p: 168-170 °C; 1H NMR (400 MHz, CDCl$_3$): δ 8.63 (s, 1H), 8.05 (dd, $J = 8.8$, 2.0 Hz, 1H), 7.97 (d, $J = 9.0$ Hz, 1H), 7.74 (d, $J = 8.8$ Hz, 1H), 7.65 (d, $J = 8.0$ Hz, 2H), 7.41 (t, $J = 7.6$ Hz, 2H), 7.16 (t, $J = 7.2$ Hz, 1H), 7.07 (d, $J = 9.2$ Hz, 1H). 13C NMR (101 MHz,
CDCl$_3$: δ 155.66, 148.76, 147.16, 139.33, 137.30, 129.50, 128.75, 127.68, 124.17, 122.65, 121.07, 116.79, 115.36. IR (KBr): 3368, 1596, 1545, 1495, 1463, 1442, 1395, 1343, 973, 890, 840, 734, 686 cm$^{-1}$. HRMS (ESI): Calcd. for C$_{15}$H$_{12}$N$_3$O$_2$ [M+H]$^+$: 266.0924; found: 266.0920.

(15) N-ethylquinolin-2-amine (5aa)

![N-ethylquinolin-2-amine](image)

Known compound$^{[1]}$, yellow oil (33.4 mg, 60 % yield); 1H NMR (400 MHz, CDCl$_3$): δ 7.80 (d, J = 8.8 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.19 (t, J = 7.2 Hz, 1H), 6.63 (d, J = 8.8 Hz, 1H), 4.80 (s, 1H), 3.44 (dd, J = 12.8, 6.8 Hz, 2H), 1.74 -1.64 (m, 2H), 1.02 (t, J = 7.2 Hz, 3H). 13C NMR (101 MHz, CDCl$_3$): δ 157.16, 148.11, 137.35, 129.54, 127.43, 126.02, 123.36, 121.90, 110.98, 43.68, 23.00, 11.57. IR (KBr): 3389, 3050, 2961, 2901, 1618, 1525, 1400, 1264, 817, 746 cm$^{-1}$. MS (EI, m/z): 186.1 [M]$^+$. HRMS (ESI): Calcd. for C$_{13}$H$_{12}$N$_2$O [M+H]$^+$: 217.1335; found: 217.1336.

(16) N-(3-methoxypropyl)quinolin-2-amine (5ab)

![N-(3-methoxypropyl)quinolin-2-amine](image)

Brown oil (27.2 mg, 42 % yield); 1H NMR (400 MHz, CDCl$_3$): δ 7.78 (d, J = 8.8 Hz, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.52 (dd, J = 11.2, 4.0 Hz, 1H), 7.19 (t, J = 7.2 Hz, 1H), 6.62 (d, J = 8.8 Hz, 1H), 5.19 (s, 1H), 3.60 (dd, J = 12.0, 6.4 Hz, 2H), 3.53 (t, J = 6.0 Hz, 2H), 3.36 (s, 3H), 1.93 (p, J = 6.4 Hz, 2H). 13C NMR (101 MHz, CDCl$_3$): δ 157.09, 148.07, 137.32, 129.58, 127.50, 126.04, 123.40, 121.97, 111.52, 71.40, 58.84, 39.87, 29.56. IR (KBr): 3402, 2960, 2852, 1618, 1527, 1118, 818, 753 cm$^{-1}$. HRMS (ESI): Calcd. for C$_{13}$H$_{17}$N$_2$O [M+H]$^+$: 217.1335; found: 217.1336.

(17) N-phenethylquinolin-2-amine (5ac)

![N-phenethylquinolin-2-amine](image)

Yellow oil (56.5 mg, 76 % yield); 1H NMR (400 MHz, CDCl$_3$): δ 7.85 (d, J = 8.8 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.60 (t, J = 7.6 Hz, 1H), 7.43 – 7.36 (m, 2H), 7.35 – 7.27 (m, 3H), 6.63 (d, J = 8.8 Hz, 1H), 4.86 (s, 1H), 3.85 (dd, J = 12.8, 6.4 Hz, 2H), 3.05 (t, J = 7.2 Hz, 2H). 13C NMR (101 MHz, CDCl$_3$): δ 156.83, 148.15, 139.47, 137.36, 129.63, 128.98, 128.70, 127.53, 126.50, 126.29, 123.53, 122.15, 111.59, 42.94, 35.83. IR (KBr): 3408, 3030, 3026, 2802, 1617, 1524, 1398, 1346, 816, 751, 699 cm$^{-1}$. HRMS (ESI): Calcd. for C$_{13}$H$_{17}$N$_2$ [M+H]$^+$: 249.1386; found: 249.1388.

(18) N-cyclohexylquinolin-2-amine (5ad)
Known compound[2], white solid (29.1 mg, 43 % yield), m.p: 124-127 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 8.8 Hz, 1H), 7.64 (d, J = 8.4 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.18 (t, J = 7.2 Hz, 1H), 6.62 (d, J = 8.8 Hz, 1H), 4.74 (s, 1H), 3.84 (dd, J = 11.2, 7.2 Hz, 1H), 2.16 – 2.04 (m, 2H), 1.85 – 1.72 (m, 2H), 1.71 – 1.59 (m, 1H), 1.45 (tt, J = 11.6, 3.6 Hz, 2H), 1.30 – 1.20 (m, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 156.48, 148.06, 137.53, 129.66, 127.52, 126.02, 123.40, 121.93, 111.11, 50.06, 33.66, 25.92, 25.05. IR (KBr): 3401, 2927, 2851, 1617, 1524, 1399, 1346, 1146, 816, 753 cm⁻¹. MS (EI, m/z): 226.1 [M⁺].

(19) N-(furan-2-ylmethyl)quinolin-2-amine(5ae)

Known compound[3], yellow solid (31.5 mg, 47 % yield), m.p: 93-96 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, J = 8.8 Hz, 1H), 7.73 (d, J = 8.2 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.37 (s, 1H), 7.25 -7.18 (m, 1H), 6.66 (dd, J = 8.8, 1.2 Hz, 1H), 6.39 - 6.25 (m, 2H), 5.02 (s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 156.38, 152.74, 147.98, 142.10, 137.52, 129.70, 127.56, 126.49, 123.77, 122.47, 111.69, 110.56, 107.34, 38.99. IR (KBr): 3255, 1619, 1535, 1400, 1180, 1141, 1011, 913, 810, 758, 738 cm⁻¹. MS (EI, m/z): 224.1 [M⁺].

(20) N-benzhydrylquinolin-2-amine(5af)

White solid (38.1 mg, 41 % yield), m.p: 184-188 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, J = 8.8 Hz, 1H), 7.56 (d, J = 8.4 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.30 (d, J = 7.6 Hz, 4H), 7.24 (t, J = 7.2 Hz, 4H), 7.17 (dd, J = 8.4, 6.0 Hz, 2H), 7.12 (t, J = 7.2 Hz, 1H), 6.54 (d, J = 8.8 Hz, 1H), 6.16 (d, J = 6.0 Hz, 1H), 5.36 (s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 156.16, 147.96, 142.68, 137.81, 129.74, 128.80, 127.66, 127.54, 127.49, 126.37, 123.75, 123.42, 110.83, 60.05. IR (KBr): 3401, 3031, 3029, 1609, 1569, 1518, 1482, 1397, 1234, 943, 818, 756, 735, 697, 569 cm⁻¹. HRMS (ESI): Calcd. for C₂₂H₁₉N₂ [M+H⁺]: 311.1543; found: 311.1545.

(21) 3-(methyl(quinolin-2-yl)amino)propanenitrile(5ag)
White solid (31.1 mg, 65 % yield), m.p: 99-103 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 9.2 Hz, 1H), 7.60 (d, J = 8.4 Hz, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 7.14 (t, J = 7.2 Hz, 1H), 6.78 (d, J = 9.2 Hz, 1H), 3.93 (t, J = 6.4 Hz, 2H), 3.17 (s, 3H), 2.75 (t, J = 6.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 155.94, 147.85, 137.83, 129.73, 127.46, 126.68, 122.86, 122.38, 119.26, 108.83, 47.15, 37.80, 16.07. IR (KBr): 3096, 2916, 2243, 1606, 1555, 1426, 1388, 986, 810, 752 cm⁻¹. HRMS (ESI): Calcd. for C₁₃H₁₄N₃ [M+H]^+: 212.1182; found: 212.1183.

(22) 2-(piperidin-1-yl)quinoline(5ah)

Known compound⁴, yellow oil (57.8 mg, 91 % yield); ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 9.2 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.21 (t, J = 7.2 Hz, 1H), 6.98 (d, J = 9.2 Hz, 1H), 3.74 (d, J = 4.8 Hz, 4H), 1.69 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 157.71, 148.16, 137.28, 129.42, 127.20, 126.55, 122.87, 122.03, 109.94, 46.36, 25.87, 24.95. IR (KBr): 2930, 2849, 1610, 1505, 1431, 1349, 1228, 1121, 1019, 808, 752 cm⁻¹. MS (EI, m/z): 212.1 [M]⁺.

(23) 4-(quinolin-2-yl)morpholine(5ai)

Known compound⁴, yellow solid (55.8 mg, 87 % yield), m.p: 86-87 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 9.2 Hz, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.56 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7.29 -7.21 (m, 1H), 6.93 (dd, J = 9.2, 0.8 Hz, 1H), 3.89 - 3.81 (m, 4H), 3.74 – 3.67 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 157.55, 147.78, 137.58, 129.64, 127.82, 126.79, 123.35, 122.69, 109.31, 66.90, 45.62. IR (KBr): 3051, 2957, 2922, 2851, 1609, 1556, 1428, 1390, 1260, 1229, 1058, 926, 808, 753 cm⁻¹. MS (EI, m/z): 214.1 [M]⁺.

(24) 2-(pyrrolidin-1-yl)quinoline(5aj)

Known compound⁴, white solid (31.4 mg, 53 % yield), m.p: 85-88 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 9.2 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.54 – 7.45 (m, 1H), 7.22 – 7.11 (m, 1H), 6.72 (d, J = 9.2 Hz, 1H), 3.62 (t, J = 6.4 Hz, 4H), 2.10 – 1.98 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 155.79, 148.54, 136.99, 129.41, 127.40, 126.09, 122.60, 121.28, 110.28, 46.85, 25.56. IR (KBr): 3053, 2957, 2924, 2857, 1606, 1553, 1511, 1482, 1430, 1401, 1157, 1118, 869, 807, 752 cm⁻¹. MS (EI, m/z): 198.1 [M]⁺.
(25) 6-methoxy-2-(3-methylpiperidin-1-yl)-1,2,3,4-tetrahydroquinoline(5ek)

Brown solid (45.0 mg, 58% yield), m.p: 100-104 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 9.2 Hz, 1H), 7.64 (d, J = 9.2 Hz, 1H), 7.20 (dd, J = 9.2, 2.8 Hz, 1H), 6.98 (d, J = 9.2 Hz, 1H), 6.94 (d, J = 2.8 Hz, 1H), 4.43 - 4.28 (m, 2H), 3.87 (s, 3H), 2.89 (td, J = 12.4, 2.8 Hz, 1H), 2.56 (dd, J = 12.8, 10.8 Hz, 1H), 1.91 - 1.81 (m, 1H), 1.81 - 1.69 (m, 2H), 1.67 - 1.57 (m, 1H), 1.22 - 1.07 (m, 1H), 0.98 (d, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 156.86, 154.95, 143.70, 136.39, 128.09, 123.22, 110.49, 106.19, 55.58, 53.46, 46.10, 33.57, 31.03, 25.37, 19.51. IR (KBr): 2928, 1606, 1556, 1507, 1460, 1402, 1320, 1240, 1147, 1114, 847, 827, 802, 740, 624 cm⁻¹. HRMS (ESI): Calcd. for C₁₆H₂₁NO₂ [M+H]⁺: 257.1648; found: 257.1645.

(26) 4-(6-chloroquinolin-2-yl)morpholine(5fi)

Yellow solid (53.9 mg, 72% yield), m.p: 125-126 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 9.2 Hz, 1H), 7.63 (d, J = 8.8 Hz, 1H), 7.56 (d, J = 2.4 Hz, 1H), 7.46 (dd, J = 8.8, 2.3 Hz, 1H), 6.93 (d, J = 9.2 Hz, 1H), 3.83 (t, J = 4.0 Hz, 4H), 3.69 (t, J = 4.0 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 157.56, 146.29, 136.68, 130.28, 128.32, 127.77, 126.05, 123.86, 110.16, 66.89, 45.54. IR (KBr): 3091, 2958, 2854, 1602, 1548, 1495, 1447, 1395, 1312, 1262, 1230, 1193, 1074, 934, 875, 829, 805, 619 cm⁻¹. HRMS (ESI): Calcd. for C₁₃H₁₄ClN₂O [M+H]⁺: 249.0789; found: 249.0785.

(27) Methyl 2-(piperidin-1-yl)quinoline-6-carboxylate(5gh)

Red solid (38.9 mg, 48% yield), m.p: 109-112 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 1.6 Hz, 1H), 8.09 (dd, J = 8.8, 2.0 Hz, 1H), 7.88 (d, J = 9.2 Hz, 1H), 7.65 (d, J = 8.4 Hz, 1H), 6.98 (d, J = 9.2 Hz, 1H), 3.93 (s, 3H), 3.78 (d, J = 5.2 Hz, 4H), 1.69 - 1.58 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 167.07, 158.00, 150.91, 138.08, 130.13, 129.25, 125.93, 122.93, 121.39, 109.96, 51.73, 45.88, 25.63, 24.59. IR (KBr): 3342, 2933, 2852, 1712, 1618, 1499, 1406, 1280, 1229, 1196, 1095, 962, 847, 805, 757 cm⁻¹. HRMS (ESI): Calcd. for C₁₆H₁₉N₂O₂ [M+H]⁺: 271.1441; found: 271.1434.
(28) 5-nitro-2-(piperidin-1-yl)quinoline(5hh)

Orange solid (53.9 mg, 70 % yield), m.p: 75-77 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.54 (d, \(J = 9.6\) Hz, 1H), 7.84 (dd, \(J = 8.0, 4.0\) Hz, 2H), 7.44 (t, \(J = 8.0\) Hz, 1H), 7.07 (d, \(J = 9.6\) Hz, 1H), 3.77 – 3.62 (m, 4H), 1.69 – 1.58 (m, 6H). \(^1\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 157.15, 149.11, 145.84, 133.18, 132.83, 127.48, 119.40, 115.26, 112.57, 46.00, 25.85, 24.85. IR (KBr): 2933, 2853, 1604, 1508, 1422, 1338, 1253, 1225, 1127, 1022, 807, 736 cm\(^{-1}\). HRMS (ESI): Calcd. for C\(_{14}\)H\(_{16}\)N\(_3\)O\(_2\) [M+H]\(^+\): 258.1237; found: 258.123.

(29) 2-(azepan-1-yl)-1,2,3,4-tetrahydrobenzo[h]quinoline(5il)

Brown oil (43.8mg, 53 % yield); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 9.08 (dd, \(J = 6.8, 2.4\) Hz, 1H), 7.80 (d, \(J = 9.2\) Hz, 1H), 7.76 – 7.70 (m, 1H), 7.55 – 7.46 (m, 2H), 7.42 (dd, \(J = 20.0, 8.8\) Hz, 2H), 6.80 (d, \(J = 9.2\) Hz, 1H), 3.80 (t, \(J = 6.0\) Hz, 4H), 1.84 (s, 4H), 1.50 (dd, \(J = 8.4, 5.6\) Hz, 4H). \(^1\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 155.33, 144.94, 136.15, 133.26, 129.81, 126.45, 126.18, 124.52, 124.32, 123.49, 120.71, 117.44, 106.46, 47.06, 26.80, 26.02. IR (KBr): 3433, 2922, 1637 1599, 1514, 1454, 1396, 1263, 1155, 1016, 824, 798, 749 cm\(^{-1}\). HRMS (ESI): Calcd. for C\(_{19}\)H\(_{21}\)N\(_2\) [M+H]\(^+\): 277.1699; found: 277.1696.

(30) N-(quinolin-2-yl)benzamide(8aa)

Known compound\(^[5]\), white solid (46.1 mg, 62 % yield), m.p: 124-125 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.95 (brs, 1H), 8.43 (d, \(J = 9.2\) Hz, 1H), 8.30 (d, \(J = 9.2\) Hz, 1H), 7.81 (d, \(J = 8.0\) Hz, 2H), 7.63 (t, \(J = 9.6\) Hz, 2H), 7.48 (t, \(J = 7.6\) Hz, 1H), 7.38 (t, \(J = 7.2\) Hz, 1H), 7.30 (t, \(J = 7.6\) Hz, 3H). \(^1\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 166.24, 151.28, 146.62, 138.76, 134.23, 132.43, 130.10, 128.87, 127.67, 127.45, 127.34, 126.47, 125.31, 114.57. IR (KBr): 3059, 1681, 1599, 1497, 1423, 1319, 1283, 1263, 1247, 1123, 921, 829, 705 cm\(^{-1}\). MS (EI, m/z): 248.1 [M]\(^+\).

(31) 4-chloro-N-(quinolin-2-yl)benzamide(8ab)
Yellow solid (56.6 mg, 67 % yield), m.p: 151-153 °C; 1H NMR (400 MHz, CDCl₃): δ 9.03 (brs, 1H), 8.53 (d, J = 8.8 Hz, 1H), 8.21 (d, J = 9.2 Hz, 1H), 7.91 (d, J = 8.0 Hz, 2H), 7.79 (dd, J = 8.4, 4.0 Hz, 2H), 7.65 (t, J = 7.2 Hz, 1H), 7.50 – 7.39 (m, 3H). 13C NMR (101 MHz, CDCl₃): δ 164.17, 150.06, 145.36, 137.78, 131.52, 129.11, 128.03, 127.79, 126.60, 126.13, 125.40, 124.36, 113.48. IR (KBr): 3331, 1667, 1598, 1500, 1425, 1320, 1260, 849, 821, 745 cm⁻¹. HRMS (ESI): Calcd. for C₁₆H₁₂N₂ClO [M+H]+: 283.0633; found: 283.0632.

(32) 4-methoxy-N-(quinolin-2-yl)benzamide(8ac)

Known compound[5], white solid (50.0 mg, 60 % yield), m.p: 79-82 °C; 1H NMR (400 MHz, CDCl₃): δ 8.91 (brs, 1H), 8.57 (d, J = 8.8 Hz, 1H), 8.20 (d, J = 8.8 Hz, 1H), 7.96 (d, J = 8.8 Hz, 2H), 7.81 (dd, J = 14.4, 7.6 Hz, 2H), 7.66 (t, J = 7.2 Hz, 1H), 7.45 (t, J = 7.2 Hz, 1H), 6.98 (dd, J = 9.2, 3.2 Hz, 2H), 3.87 (m, 6.99 – 6.96, 3H). 13C NMR (101 MHz, CDCl₃): δ 165.68, 163.09, 151.50, 146.58, 138.81, 130.17, 129.49, 127.74, 127.25, 126.44, 126.38, 125.27, 114.62, 114.18, 55.61. IR (KBr): 3340, 2728, 1677, 1600, 1495, 1320, 1247, 1175, 830, 755, 614 cm⁻¹. MS (EI, m/z): 278.0 [M]+.

(33) N-(quinolin-2-yl)butyramide(8ad)

Yellow solid (29.5 mg, 46 % yield), m.p: 89-91 °C; 1H NMR (400 MHz, CDCl₃): δ 8.56 (brs, 1H), 8.44 (d, J = 8.8 Hz, 1H), 8.16 (d, J = 8.8 Hz, 1H), 7.79 (dd, J = 14.4, 8.8 Hz, 2H), 7.69 – 7.60 (m, 1H), 7.48 – 7.40 (m, 1H), 2.40 (t, J = 7.6 Hz, 2H), 1.83 – 1.71 (m, 2H), 0.99 (t, J = 7.6 Hz, 3H). 13C NMR (101 MHz, CDCl₃): δ 172.17, 151.11, 146.49, 138.66, 130.02, 127.62, 127.20, 126.33, 125.13, 114.38, 39.78, 18.80, 13.69. IR (KBr): 2913, 1697, 1599, 1498, 1425, 1319, 831, 753 cm⁻¹. HRMS (ESI): Calcd. for C₁₃H₁₅N₂O [M+H]+: 215.1179; found: 215.1174.

(34) 2-chloro-N-(quinolin-2-yl)butanamide(8ae)

Yellow solid (42.4 mg, 57 % yield), m.p: 97-100 °C; 1H NMR (400 MHz, CDCl₃): δ 9.08 (brs, 1H), 8.40 (d, J = 8.8 Hz, 1H), 8.19 (d, J = 8.8 Hz, 1H), 7.87 (d, J = 8.4 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.72 – 7.61 (m, 1H), 7.53 – 7.42 (m, 1H), 4.46 (dd, J = 7.6, 4.8 Hz, 1H), 2.24 (dqd, J = 14.4, 7.2, 4.8
Hz, 1H), 2.17 – 2.04 (m, 1H), 1.13 (t, J = 7.6 Hz, 3H). 13C NMR (101 MHz, CDCl3): δ 167.97, 150.08, 146.60, 138.76, 130.18, 127.59, 125.56, 113.87, 62.53, 29.03, 10.49. IR (KBr): 3830, 2917, 1702, 1599, 1500, 1427, 1320, 828, 754 cm⁻¹. HRMS (ESI): Calcd. for C13H14ClN2O [M+H]+: 249.0789; found: 249.0787.

(35) 2-chloro-N-(6-methylquinolin-2-yl)butanamide (8be)

Yellow oil (51.0 mg, 65 % yield); 1H NMR (400 MHz, CDCl3): δ 9.08 (s, 1H), 8.34 (d, J = 9.2 Hz, 1H), 8.09 (d, J = 8.8 Hz, 1H), 7.76 (d, J = 8.8 Hz, 1H), 7.54 (s, 1H), 7.50 (dd, J = 8.4, 1.6 Hz, 1H), 4.45 (dd, J = 7.6, 4.8 Hz, 1H), 2.51 (s, 3H), 2.24 (dqd, J = 14.4, 7.2, 4.8 Hz, 1H), 2.17 – 2.04 (m, 1H), 1.12 (t, J = 7.2 Hz, 3H). 13C NMR (101 MHz, CDCl3): δ 167.98, 149.55, 145.12, 138.15, 135.50, 132.51, 127.37, 126.72, 126.61, 113.96, 62.59, 29.11, 21.55, 10.58. IR (KBr): 2971, 1687, 1600, 1492, 1383, 1319, 1282, 826 cm⁻¹. HRMS (ESI): Calcd. for C14H16ClN2O [M+H]+: 263.0946; found: 263.0942.

(36) N-(8-methylquinolin-2-yl)benzamide (8ja)

Yellow solid (37.7 mg, 48 % yield), m.p: 97-100 °C; 1H NMR (400 MHz, CDCl3): δ 8.47 (d, J = 8.4 Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 7.3 Hz, 2H), 7.56 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 7.2 Hz, 1H), 7.44 (d, J = 7.6 Hz, 3H), 7.26 (t, J = 7.6 Hz, 1H), 2.63 (s, 3H). 13C NMR (101 MHz, CDCl3): δ 165.02, 149.1, 144.77, 137.87, 133.37, 131.29, 129.15, 127.82, 126.36, 125.21, 124.54, 123.94, 113.03, 16.80. IR (KBr): 3419, 1673, 1599, 1525, 1495, 1432, 1315, 1245, 926, 836, 794, 760, 705 cm⁻¹. HRMS (ESI): Calcd. for C15H11BrN2O [M+H]+: 263.1179; found: 263.1173.

(37) N-(5-bromoquinolin-2-yl)benzamide (8ka)

White solid (63.4 mg, 65 % yield), m.p: 127-129 ℃; 1H NMR (400 MHz, CDCl3): δ 8.94 (s, 1H), 8.66 (d, J = 9.2 Hz, 1H), 8.55 (d, J = 9.2 Hz, 1H), 7.98 (d, J = 7.6 Hz, 2H), 7.77 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 7.6 Hz, 1H), 7.58 (t, J = 7.2 Hz, 1H), 7.49 (dt, J = 14.8, 7.2 Hz, 3H). 13C NMR (101 MHz, CDCl3): δ 166.14, 151.88, 147.50, 138.33, 134.07, 132.67, 130.34, 129.07, 129.02, 127.49, 127.39, 125.91, 121.95, 115.57. IR (KBr): 1681, 1593, 1487, 1439, 1393, 1318, 935, 804, 704 cm⁻¹. HRMS (ESI): Calcd. for C16H12BrN2O [M+H]+: 327.0128; found: 327.0123.

(38) N-(3,4-dihydroquinolin-2(1H)-ylidene)methanesulfonamide (9aa')

(39) N-(3,4-dihydroquinolin-2(1H)-ylidene)methanesulfonamide (9aa')
Black solid (38.9 mg, 58 % yield), m.p: 118-122 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.89 (brs, H), 3.07 (s, 3H), 2.96 - 2.86 (m, 2H), 2.73 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 162.85, 134.87, 128.25, 127.93, 124.80, 124.22, 116.81, 42.48, 30.54, 23.89. IR (KBr): 3288, 2926, 1621, 1580, 1498, 1396, 1276, 1201, 968, 825, 757, 565, 509 cm⁻¹. HRMS (ESI): Calcd. for C₁₀H₁₂N₂O₂S [M+H]^+: 247.0512; found: 247.0508.

(39) N-(quinolin-2-yl)methanesulfonamide(9aa)

Known compound⁶, white solid (38.6 mg, 58 % yield), m.p: 200-201 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 9.2 Hz, 1H), 7.61 (dd, J = 14.8, 7.6 Hz, 2H), 7.37 (dd, J = 17.6, 9.2 Hz, 2H), 6.88 (d, J = 9.2 Hz, 1H), 3.12 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 154.32, 140.74, 136.47, 131.70, 128.15, 124.70, 121.25, 120.90, 117.27, 42.65. IR (KBr): 3397, 3021, 1637, 1392, 1215 cm⁻¹. MS (EI, m/z): 222.1 [M]^⁺.

(40) 4-methyl-N-(quinolin-2-yl)benzenesulfonamide(9ab)

Known compound⁶, white solid (47.5 mg, 42 % yield), m.p: 185-186 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, J = 8.0 Hz, 2H), 7.86 (d, J = 9.2 Hz, 1H), 7.61 (dd, J = 8.0, 7.2 Hz, 2H), 7.48 (d, J = 8.8 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.25 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 9.2 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 154.35, 142.74, 140.77, 139.96, 136.63, 131.75, 129.41, 128.10, 126.32, 124.72, 121.43, 120.63, 117.47, 21.48. IR (KBr): 3176, 2922, 1634, 1597, 1388, 1140, 1086, 836, 756, 554 cm⁻¹. MS (EI, m/z): 298.1 [M]^⁺.

(41) 4-methoxy-N-(quinolin-2-yl)benzenesulfonamide(9ac)

Yellow solid (44.3 mg, 47 % yield), m.p: 108-113 °C; ¹H NMR (400 MHz, CDCl₃): δ 11.84 (brs, 1H), 7.93 (d, J = 8.8 Hz, 2H), 7.84 (d, J = 9.2 Hz, 1H), 7.59 (t, J = 7.2 Hz, 2H), 7.48 (d, J = 8.4 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 6.99 (d, J = 9.2 Hz, 1H), 6.91 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 162.59, 154.32, 140.80, 136.82, 134.89, 131.80, 128.45, 128.18, 124.77, 121.52, 120.70, 117.62, 55.64. IR (KBr): 3442, 1634, 1596, 1530, 1499, 1388, 1257, 1138, 1087, 935, 831, 600, 563 cm⁻¹. HRMS (ESI): Calcd. for C₁₆H₁₄N₂NaO₅S [M+H]^⁺: 337.0617; found: 337.0613.
(42) (S)-N-(1-(4-bromophenyl)ethyl)quinolin-2-amine (5am)

Brown oil (58.7 mg, 60 % yield); 1H NMR (400 MHz, CDCl$_3$) δ 7.77 (d, $J = 8.8$ Hz, 1H), 7.67 (d, $J = 8.4$ Hz, 1H), 7.54 (dd, $J = 17.2$, 8.4 Hz, 2H), 7.44 (d, $J = 8.0$ Hz, 2H), 7.30 (d, $J = 8.4$ Hz, 2H), 7.21 (t, $J = 7.6$ Hz, 1H), 6.52 (d, $J = 8.8$ Hz, 1H), 5.17 (brs, 1H), 5.13 – 5.06 (m, 1H), 1.57 (d, $J = 6.8$ Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 156.07, 147.98, 144.02, 137.63, 131.75, 129.71, 127.98, 127.53, 126.27, 123.61, 122.36, 120.80, 110.92, 50.73, 23.61 IR (KBr): 3417, 2967, 1617, 1570, 1517, 1485, 1398, 1247, 1147, 1073, 1009, 817, 755 cm$^{-1}$. HRMS (ESI): Calcd. for C$_{17}$H$_{16}$BrN$_2$ [M+H]$^+$: 327.0491; found: 327.0488.

References

10. NMR spectra of the obtained compounds

1H-NMR spectrum of 3aa

13C-NMR spectrum of 3aa
1H-NMR spectrum of 3ab

13C-NMR spectrum of 3ab
1H-NMR spectrum of 3ac

13C-NMR spectrum of 3ac
^1H-NMR spectrum of 3ad

^13C-NMR spectrum of 3ad
1H-NMR spectrum of 3ae

13C-NMR spectrum of 3ae
1H-NMR spectrum of 3af

13C-NMR spectrum of 3af
1H-NMR spectrum of 3ag

13C-NMR spectrum of 3ag
1H-NMR spectrum of 3ah

13C-NMR spectrum of 3ah
1H-NMR spectrum of 3ai

13C-NMR spectrum of 3ai
1H-NMR spectrum of 3aj

13C-NMR spectrum of 3aj
1H-NMR spectrum of 3ak

13C-NMR spectrum of 3ak
1H-NMR spectrum of 3ba

13C-NMR spectrum of 3ba
\[^1\text{H}-\text{NMR spectrum of 3cd}\]

\[^{13}\text{C}-\text{NMR spectrum of 3cd}\]
1H-NMR spectrum of 3da

13C-NMR spectrum of 3da
H-NMR spectrum of 5aa

C-NMR spectrum of 5aa
\(^1H\)-NMR spectrum of 5ab

\(^13C\)-NMR spectrum of 5ab
\textbf{\(^{1} \text{H-NMR spectrum of 3ac} \)}

\textbf{\(^{13} \text{C-NMR spectrum of 3ac} \)}
1H-NMR spectrum of 5ad

13C-NMR spectrum of 5ad
1H-NMR spectrum of 5ae

13C-NMR spectrum of 5ae
1H-NMR spectrum of 5af

13C-NMR spectrum of 5af
1H-NMR spectrum of 5ag

13C-NMR spectrum of 5ag
1H-NMR spectrum of 5ah

13C-NMR spectrum of 5ah
1H-NMR spectrum of 5ai

13C-NMR spectrum of 5ai
^H-NMR spectrum of 5aj

^13C-NMR spectrum of 5aj
\[^1\text{H-NMR spectrum of 5ek} \]

![H-NMR spectrum of 5ek](image)

\[^13\text{C-NMR spectrum of 5ek} \]

![C-NMR spectrum of 5ek](image)
1H-NMR spectrum of 5fi

13C-NMR spectrum of 5fi
1H-NMR spectrum of 5gh

13C-NMR spectrum of 5gh
1H-NMR spectrum of 5hh

13C-NMR spectrum of 5hh
1H-NMR spectrum of 5il

13C-NMR spectrum of 5il
1H-NMR spectrum of 8aa

13C-NMR spectrum of 8aa
1H-NMR spectrum of 8ab

13C-NMR spectrum of 8ab
1H-NMR spectrum of 8ac

13C-NMR spectrum of 8ac
1H-NMR spectrum of 8ad

13C-NMR spectrum of 8ad
1H-NMR spectrum of 8ae

13C-NMR spectrum of 8ae
1H-NMR spectrum of 3be

13C-NMR spectrum of 3be
1H-NMR spectrum of 8ja

13C-NMR spectrum of 8ja
1H-NMR spectrum of 8ka

13C-NMR spectrum of 8ka
‘H-NMR spectrum of 3aa’

‘C-NMR spectrum of 3aa’
1H-NMR spectrum of 9aa

13C-NMR spectrum of 9aa
1H-NMR spectrum of 9ab

13C-NMR spectrum of 9ab
H-NMR spectrum of 9ac

C-NMR spectrum of 9ac
1H-NMR spectrum of 5am

13C-NMR spectrum of 5am