p-Toluenesulfonic acid catalysed fluorination of α-branched ketones for the construction of fluorinated quaternary carbon centres

Shi-Zhong Tang,a Hong-Li Bian,a Zong-Song Zhan,a Meng-En Chen,a Jian-Wei Lv,a Shaolei Xie,a and Fu-Min Zhanga,b,*

a State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China.
b Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China.

Email: zhangfm@lzu.edu.cn

Table of contents

1. General information ... 02

2. Preparation of substrates ... 02

3. Experimental details and characterization data 06

3.1. General procedure ... 06

3.2. The details for the optimal reaction conditions 07

3.3. Synthesis of product 3a and 3y on 1g-scale 08

3.4. Synthesis of the fluorinated non-quaternary carbon products 09

3.5. Characterization data of products .. 10

3.6. The detailed structural determination of products (4a, 4b, and 5a) 33

4. References .. 39

5. Copies of 1H, 13C, and 19F NMR spectra of products 40
1. General Information

NMR spectra were recorded on a Bruker Avance III 400 MHz NMR Spectrometer or a Varian INOVA 600MHz spectrometer. Chemical shifts of 1HNMR and 13CNMR were recorded in parts per million (ppm, δ) and reported relative to tetramethylsilane (TMS, 0.00 ppm) and CDCl$_3$ (77.00 ppm), respectively. 1H NMR splitting patterns are designated as single (s), double (d), triplet (t), quartet (q), double of doublets (dd), doublet of triplets (dt), triplet of doublets (td), and multiplets (m).

Electron ionization mass (EI-MS) spectra were measured on a Shimadzu GCMSQP2010SE spectrometer by direct inlet at 70 eV and the corresponding signals were given in m/z with relative intensity (%) in brackets. High-resolution mass spectra (HRMS) were measured on a Thermo Scientific Orbitrap Elite Mass Spectrometer by means of the ESI technique. Melting points were determined on a microscopic apparatus and were uncorrected. Optical rotations were detected on RUDOLPH A21202-J APTV/GW using a 0.1 mL cell with 1-cm path length.

Analytical TLC was performed on silica gel GF$_{254}$ plates, and the spots were visualized using UV light (254 nm) or phosphomolybdic acid in ethanol (10%). The products were purified by flash column chromatography on silica gel (200-300 mesh).

Unless otherwise noted, commercial reagents were purchased and used directly. The p-toluenesulfonic acid was further purified by recrystallization from ethanol. Acetonitrile was purchased from Innochem (extra dry over molecular sieves) and used directly. Dichloromethane (DCM), 1,2-dichloroethane (DCE) and chloroform (CHCl$_3$) were purified by distillation over the CaH$_2$ indicated. Tetrahydrofuran (THF) and toluene were purified by distillation over the Na indicated. All reactions were carried out under argon atmosphere.

2. Preparation of substrates

Substrates 2a, 2n, 2q, 2x, 2y, 2aa, 2ab, 2ac, 2ae, 2af, 2ag, and 2ah were commercial available (2n and 2q were purified by flash column chromatography on silica gel before use). Substrates 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2k, 2l, 2m, 2p, 2r, 2ai, 2aj, and 2ak were synthesized according to the literature$^{1-10}$ (Method I). Substrate 2w was synthesized according to the literature1,5 (Method II). The procedures for the preparation of substrates 2j, 2o, 2s, 2u, and 2v were followed as the literature method.11 Substrates 2t was prepared according to the literature method.7,8,12,13 Substrate 2z was
prepared according to the literature method. Substrate **2ad** was prepared according to the literature method. Substrates **4** and **5** were prepared according to the literature method. The **1H** NMR spectra data of **2c, 16 2d, 17 2e, 18 2f, 19 2g, 17,19 2h, 17,20 2i, 17 2j, 11 2k, 17,19 2l, 19 2m, 21 2o, 11 2p, 17,20 2r, 19,22 2s, 11 2t, 7 2u, 11 2v, 11 2w, 20 2z** are in accordance with the literature, respectively. The NMR and MS spectra data of other substrates (2b, 4, and 5) are listed below:

2-(2-fluorophenyl)cyclohexan-1-one (2b)

![2-(2-fluorophenyl)cyclohexan-1-one](image)

1H NMR (400 MHz, CDCl₃): δ 7.27-7.22 (m, 1 H), 7.19-7.10 (m, 2 H), 7.07-7.02 (m, 1 H), 3.85 (dd, J = 12.8 Hz, 5.2 Hz, 1 H), 2.59-2.46 (m, 2 H), 2.29-2.16 (m, 2 H), 2.08-1.98 (m, 2 H), 1.89-1.77 (m, 2 H); **13C NMR** (100 MHz, CDCl₃): δ 208.4 (s), 160.6 (d, J = 243 Hz), 129.6 (d, J = 5 Hz), 128.5 (d, J = 9 Hz), 126.0 (d, J = 15 Hz), 123.9 (d, J = 4 Hz), 115.2 (d, J = 22 Hz), 51.0 (s), 42.1 (s), 33.6 (s), 27.4 (s), 25.5 (s); **MS (EI) m/z (%)**: 192 (19), 148 (100), 135 (42), 122 (46) 109 (34).

3,5-diethylheptan-4-one (2ad)

![3,5-diethylheptan-4-one](image)

1H NMR (400 MHz, CDCl₃): δ 2.45-2.39 (m, 2 H), 1.71-1.60 (m, 4 H), 1.45-1.34 (m, 4 H), 0.86 (t, J = 7.6 Hz, 12 H); **13C NMR** (100 MHz, CDCl₃): δ 216.4, 54.1, 23.0, 11.7; **HRMS (ESI) m/z** calculated for C₁₁H₂₃O [M+H]⁺ 171.1743, found 171.1747; **MS (EI) m/z (%)**: 170 (4), 99 (32), 84 (16), 71 (100).

2-(3,3-dimethylbut-1-yn-1-yl)cyclohexan-1-one (2aj)

![2-(3,3-dimethylbut-1-yn-1-yl)cyclohexan-1-one](image)
1H NMR (600 MHz, CDCl$_3$): δ 3.25-3.23 (m, 1 H), 2.74-2.70 (m, 1 H), 2.25-2.20 (m, 1 H), 2.03-1.87 (m, 4 H), 1.83-1.76 (m, 1 H), 1.69-1.61 (m, 1 H), 1.22 (s, 9 H); 13C NMR (100 MHz, CDCl$_3$): δ 207.8, 94.0, 75.4, 43.9, 39.4, 34.6, 31.1, 27.6, 27.5, 22.6; HRMS (ESI) m/z calculated for C$_{12}$H$_{19}$O $[M+H]^+$ 179.1430, found 179.1432; MS (EI) m/z (%): 178 (8), 163 (21), 109 (25), 97 (17), 81 (27), 57 (100).

(2R, 5S)-2-isopropyl-5-methylcyclohexan-1-one (4)

1H NMR (400 MHz, CDCl$_3$): δ 2.37-2.33 (m, 1 H), 2.17-2.12 (m, 1 H), 2.10-2.02 (m, 2 H), 1.97 (d, $J = 12.8$ Hz, 1 H), 1.92-1.81 (m, 2 H), 1.41-1.33 (m, 2 H), 1.01 (d, $J = 6.0$ Hz, 3 H), 0.91 (d, $J = 6.8$ Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$): δ 212.2, 55.8, 50.8, 35.4, 33.8, 27.8, 25.8, 22.2, 21.1, 18.6; MS (EI) m/z (%): 154 (1), 112 (7), 69 (58), 57 (100).

(1R, 2R, 5S)-2,6,6-trimethylbicyclo[3.1.1]heptan-3-one (5)

1H NMR (600 MHz, CDCl$_3$): δ 2.66-2.61 (m, 2 H), 2.52 (d, $J = 19.2$ Hz, 1 H), 2.46 (q, $J = 7.2$ Hz, 1 H), 2.14-2.11 (m, 1 H), 2.06 (td, $J = 6.0$ Hz, 1.2 Hz, 1 H), 1.32 (s, 3 H), 1.21 (d, $J = 6.0$ Hz, 3 H), 0.88 (s, 3 H); 13C NMR (150 MHz, CDCl$_3$): δ 214.6, 51.2, 45.0, 44.6, 39.1, 39.0, 34.3, 26.9, 21.8, 16.7; MS (EI) m/z (%): 152 (4), 69 (73), 57 (66), 55 (100).

The preparation of substrates (Method I):
To a solution of ArBr (10 mmol) (or ArI, 10 mmol) in dried THF (40 mL) was added \(n \)-BuLi dropwise (4.0 mL, 2.5 M in hexane, 10 mmol) at -78 °C under argon atmosphere,, and the resulting mixture was stirred at this temperature for 1 h. Then cyclohexene oxide (5 mmol) was added dropwise to the mixture at -78 °C, followed by addition of BF\(_3\).Et\(_2\)O (10 mmol) dropwise. The reaction mixture was stirred at this temperature until the consumption of starting material (monitored by TLC), then the reaction was quenched by addition of saturated aqueous NaHCO\(_3\) at -78°C and was allowed to warm to room temperature. The mixture was extracted with ethyl acetate, and the combined organic phase was washed successively with water and brine, dried over Na\(_2\)SO\(_4\), filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate) to provide the desired alcohol.

![OH](Ar) \rightarrow DMP, NaHCO\(_3\) \rightarrow O(Ar)

To a stirred solution of alcohol (1.0 equiv.) in DCM were added NaHCO\(_3\) (4.0 eq) and Dess-Martin periodinane (DMP) (2.0 equiv). The reaction mixture was stirred at room temperature until the consumption of starting material (monitored by TLC). The reaction was quenched by addition of saturated aqueous Na\(_2\)S\(_2\)O\(_3\), then the mixture was extracted with DCM (3×50 mL). The combined organic phase was washed successively with water and brine, dried over Na\(_2\)SO\(_4\), filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate) to afford the expected ketone.

The preparation of substrate (Method II):

![OH](THF, -78°C, BF\(_3\).Et\(_2\)O) \rightarrow 2w-1

To a solution of cyclohexene oxide (5 mmol) in THF (30 mL) was added \(n \)-hexyllithium (4.0 mL, 2.0 M in hexane, 8 mmol) dropwise at -78 °C under an argon atmosphere, then BF\(_3\).Et\(_2\)O (8 mmol)
was added dropwise. The reaction mixture was stirred at that temperature until the starting material disappeared (monitored by TLC). The reaction was quenched at -78 °C by addition of saturated aqueous NaHCO$_3$ and was allowed to warm to room temperature. The mixture was extracted with ethyl acetate, and the combined organic phases were washed successively with water and brine, dried over Na$_2$SO$_4$, filtered, and concentrated. The crude product was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate) to provide the desired alcohol 2w-1.

![Chemical structure](image.png)

To a solution of alcohol 2w-1 (245.2 mg, 1.33 mmol) in 20 mL DCM was added Dess-Martin periodinane (DMP) (1.128 g, 2.66 mmol). The reaction mixture was stirred at room temperature until the starting material disappeared (monitored by TLC). The reaction was quenched by addition of saturated aqueous Na$_2$S$_2$O$_3$, then the mixture was extracted with DCM, and the combined organic phases were washed successively with water and brine, then dried over Na$_2$SO$_4$, filtered and concentrated. The crude product was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate) to afford ketone 2w.

3. Experimental details and characterization data

3.1 General procedure

Under argon atmosphere, to a 10 mL reaction tube charged with a magnetic stir bar were added sequentially ketones (0.20 mmol), Selectfluor (0.40 mmol, 141.8 mg), p-TsOH (0.04 mmol, 7.6 mg), CH$_2$Cl$_2$ (0.2 mL) and CH$_3$CN (0.8 mL). The reaction mixture was stirred at 25 °C until the complete consumption of starting material (monitored by TLC), and the mixture was diluted with ethyl acetate. The resulting organic phase was washed successively with water and brine, dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate) to afford the fluorinated ketone.
3.2 The details for the optimal reaction conditions

![Diagram](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>F Reagent (eq)</th>
<th>Acid</th>
<th>Solvent (1.0 mL)</th>
<th>Time</th>
<th>Temp (°C)</th>
<th>Yield (%)</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>DCM</td>
<td>48 h</td>
<td>25 °C</td>
<td>18</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>DCE</td>
<td>48 h</td>
<td>25 °C</td>
<td>23</td>
<td>66</td>
</tr>
<tr>
<td>3</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>DMSO</td>
<td>48 h</td>
<td>25 °C</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>DME</td>
<td>48 h</td>
<td>25 °C</td>
<td>30</td>
<td>69</td>
</tr>
<tr>
<td>5</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>1,4-Dioxane</td>
<td>48 h</td>
<td>25 °C</td>
<td>23</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>CHCl₃</td>
<td>48 h</td>
<td>25 °C</td>
<td>11</td>
<td>84</td>
</tr>
<tr>
<td>7</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>DMF</td>
<td>48 h</td>
<td>25 °C</td>
<td>47</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>THF</td>
<td>48 h</td>
<td>25 °C</td>
<td>18</td>
<td>77</td>
</tr>
<tr>
<td>9</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>Hexane</td>
<td>48 h</td>
<td>25 °C</td>
<td>37</td>
<td>36</td>
</tr>
<tr>
<td>10</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>NMP</td>
<td>48 h</td>
<td>25 °C</td>
<td>45</td>
<td>37</td>
</tr>
<tr>
<td>11</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>CH₂NO₂</td>
<td>12 h</td>
<td>25 °C</td>
<td>71</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>Toluene</td>
<td>48 h</td>
<td>25 °C</td>
<td>20</td>
<td>71</td>
</tr>
<tr>
<td>13</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>H₂O</td>
<td>48 h</td>
<td>25 °C</td>
<td>0</td>
<td>92</td>
</tr>
<tr>
<td>14</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>CH₃CN</td>
<td>9 h</td>
<td>25 °C</td>
<td>82</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Selectfluor (2.0)</td>
<td>H₂SO₄ (20%)</td>
<td>CH₃CN</td>
<td>12 h</td>
<td>25 °C</td>
<td>78</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Selectfluor (2.0)</td>
<td>HCl (20%)</td>
<td>CH₃CN</td>
<td>12 h</td>
<td>25 °C</td>
<td>79</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>Selectfluor (2.0)</td>
<td>HBF₄ (20%)</td>
<td>CH₃CN</td>
<td>24 h</td>
<td>25 °C</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>Selectfluor (2.0)</td>
<td>H₂PO₄ (20%)</td>
<td>CH₃CN</td>
<td>48 h</td>
<td>25 °C</td>
<td>37</td>
<td>56</td>
</tr>
<tr>
<td>19</td>
<td>Selectfluor (2.0)</td>
<td>CF₃SO₃H (20%)</td>
<td>CH₃CN</td>
<td>24 h</td>
<td>25 °C</td>
<td>76</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>Selectfluor (2.0)</td>
<td>-</td>
<td>CH₃CN</td>
<td>48 h</td>
<td>25 °C</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td>21</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>CH₃CN:DMSO (4:1)</td>
<td>48 h</td>
<td>25 °C</td>
<td>0</td>
<td>84</td>
</tr>
<tr>
<td>22</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>CH₃CN:THF (4:1)</td>
<td>24 h</td>
<td>25 °C</td>
<td>82</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>CH₃CN:Hexane (4:1)</td>
<td>12 h</td>
<td>25 °C</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>CH₃CN:DMF (4:1)</td>
<td>48 h</td>
<td>25 °C</td>
<td>51</td>
<td>30</td>
</tr>
<tr>
<td>25</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>CH₃CN:H₂O (4:1)</td>
<td>48 h</td>
<td>25 °C</td>
<td>26</td>
<td>73</td>
</tr>
<tr>
<td>26</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>CH₃CN:DME (4:1)</td>
<td>24 h</td>
<td>25 °C</td>
<td>84</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>CH₃CN:CH₂Cl₂ (4:1)</td>
<td>12 h</td>
<td>25 °C</td>
<td>84</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>CH₃CN:CH₂Cl₂ (4:1)</td>
<td>120 h</td>
<td>0 °C</td>
<td>82</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>CH₃CN:CH₂Cl₂ (4:1)</td>
<td>12 h</td>
<td>40 °C</td>
<td>74</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>CH₃CN:CH₂Cl₂ (4:1)</td>
<td>12 h</td>
<td>60 °C</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>CH₃CN:CH₂Cl₂ (9:1)</td>
<td>12 h</td>
<td>25 °C</td>
<td>84</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>CH₃CN:CH₂Cl₂ (7:3)</td>
<td>20 h</td>
<td>25 °C</td>
<td>83</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>Selectfluor (2.0)</td>
<td>p-TsOH (20%)</td>
<td>CH₃CN:CH₂Cl₂ (3:2)</td>
<td>24 h</td>
<td>25 °C</td>
<td>83</td>
<td>0</td>
</tr>
</tbody>
</table>
34 Selectfluor (2.0) p-TsOH (10%) CH$_3$CN:CH$_2$Cl$_2$ (4:1) 24 h 25 °C 83 0
35 Selectfluor (2.0) p-TsOH (5%) CH$_3$CN:CH$_2$Cl$_2$ (4:1) 120 h 25 °C 82 0
36 Selectfluor (1.0) p-TsOH (20%) CH$_3$CN:CH$_2$Cl$_2$ (4:1) 24 h 25 °C 74 0
37 Selectfluor (1.5) p-TsOH (20%) CH$_3$CN:CH$_2$Cl$_2$ (4:1) 12 h 25 °C 78 0
38 Selectfluor (2.5) p-TsOH (20%) CH$_3$CN:CH$_2$Cl$_2$ (4:1) 12 h 25 °C 85 0
39 Selectfluor II (2.0)b p-TsOH (20%) CH$_3$CN:CH$_2$Cl$_2$ (4:1) 12 h 25 °C 80 0
40 NFSI (2.0)b p-TsOH (20%) CH$_3$CN:CH$_2$Cl$_2$ (4:1) 48 h 25 °C 23 71
41 N-fluoro-pyridinium (2.0)b p-TsOH (20%) CH$_3$CN:CH$_2$Cl$_2$ (4:1) 48 h 25 °C 0 97

<table>
<thead>
<tr>
<th>fluorinating reagents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selectfluor</td>
</tr>
</tbody>
</table>

3.3 Synthesis of products on 1 g-scale

To a 100 mL reaction tube charged with a magnetic stir bar were added sequentially 2-phenylcyclohexan-1-one (5.74 mmol, 1.0 g), Selectfluor (11.48 mmol, 4.07 g), p-TsOH (1.15 mmol, 218.8 mg), CH$_2$Cl$_2$ (5.7 mL) and CH$_3$CN (23.0 mL) under an argon atmosphere. The reaction mixture was stirred at 25 °C until the complete consumption of starting material (monitored by TLC), and the mixture was diluted with ethyl acetate. The resulting organic phase was washed successively with water and brine, dried over Na$_2$SO$_4$, filtered and concentrated. The crude product was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate) to afford compound 3a (998.5 mg, 91% yield.).
To a 100 mL reaction tube charged with a magnetic stir-bar were added sequentially, [1,1'-bi(cyclohexan)]-2-one (5.55 mmol, 1.0 g), Selectfluor (11.10 mmol, 3.93 g), p-TsOH (1.11 mmol, 211.1 mg), CH₂Cl₂ (5.6 mL) and CH₃CN (22.2 mL) under an argon atmosphere. The reaction mixture was stirred at 25 °C until the complete consumption of starting material (monitored by TLC), and the mixture was diluted with ethyl acetate. The resulting organic phase was washed with water and brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate) to afford compound 3y (891.6 mg, 81% yield.).

3.4 Synthesis of fluorinated non-quaternary carbon products

These products (6a-6f) were obtained in lower to moderate yield with relatively lower chemical conversion under the optimal reaction conditions. For the details, please see Figure S1.

Figure S1 Some fluorinated non-quaternary carbon products.
3.5 Characterization data of products

2-fluoro-2-phenylcyclohexan-1-one (3a)

Prepared by the general procedure at 25 °C for 12 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as colorless oil (32.3 mg, 84% yield.).

\(^1H \) NMR (400 MHz, CDCl\(_3\)): \(\delta \) 7.45-7.38 (m, 5 H), 2.77-2.60 (m, 2 H), 2.44-2.37 (m, 1 H), 2.35-2.25 (m, 1 H), 2.08-2.03 (m, 1 H), 1.98-1.92 (m, 2 H), 1.85-1.79 (m, 1 H); 13C NMR (100 MHz, CDCl\(_3\)): \(\delta \) 206.4 (d, \(J = 22 \) Hz), 135.9 (d, \(J = 21 \) Hz), 129.1 (d, \(J = 2 \) Hz), 128.6 (s), 126.3 (d, \(J = 6 \) Hz), 98.2 (d, \(J = 183 \) Hz), 39.9 (s), 37.7 (d, \(J = 22 \) Hz), 27.5 (s), 22.2 (d, \(J = 7 \) Hz); 19F NMR (376 MHz, CDCl\(_3\)): \(\delta \) -141.29; MS (EI) \(m/\zeta \) (%): 192 (29), 148 (86), 135 (100), 122 (37).

2-fluoro-2-(2-fluorophenyl)cyclohexan-1-one (3b)

Prepared by the general procedure at 25 °C for 36 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as white foam (37.6 mg, 89% yield.).

\(^1H \) NMR (400 MHz, CDCl\(_3\)): \(\delta \) 7.45 (td, \(J = 7.6 \) Hz, 1.6 Hz, 1 H), 7.39-7.34 (m, 1 H), 7.20 (td, \(J = 7.6 \) Hz, 0.8 Hz, 1 H), 7.11-7.06 (m, 1 H), 2.92-2.83 (m, 1 H), 2.61-2.44 (m, 2 H), 2.41-2.31 (m, 1 H), 2.13-2.01 (m, 2 H), 1.92-1.75 (m, 2 H); 13C NMR (100 MHz, CDCl\(_3\)): \(\delta \) 203.4 (d, \(J = 23 \) Hz), 159.6 (dd, \(J = 247 \) Hz, 5 Hz), 130.5 (d, \(J = 9 \) Hz), 126.7 (dd, \(J = 11 \) Hz, 3 Hz), 124.9 (q, \(J = 12 \) Hz), 124.1 (d, \(J = 3 \) Hz), 116.0 (d, \(J = 22 \) Hz), 96.8 (dd, \(J = 181 \) Hz, 4 Hz), 39.1 (s), 37.8 (dd, \(J = 23 \) Hz, 3 Hz), 27.0 (s), 20.9 (d, \(J = 4 \) Hz); 19F NMR (376 MHz, CDCl\(_3\)): \(\delta \) -110.47 (d, \(J = 2.63 \) Hz), -154.31 (d, \(J = 3.00 \) Hz); HRMS (ESI) \(m/\zeta \) calculated for C\(_{12}\)H\(_{12}\)F\(_2\)ONa [M+Na]+ 233.0748, found 233.0750; MS (EI) \(m/\zeta \) (%): 210 (24), 166 (75), 153 (75), 140 (100), 127 (25), 55 (19).
2-fluoro-2-(3-fluorophenyl)cyclohexan-1-one (3c)

Prepared by the general procedure at 25 °C for 18 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as colorless oil (36.3 mg, 86 % yield.).

1H NMR (400 MHz, CDCl$_3$): δ 7.39 (dd, $J = 14$ Hz, 8 Hz, 1 H), 7.16-7.06 (m, 3 H), 2.87-2.79 (m, 1 H), 2.55-2.29 (m, 3 H), 2.14-1.98 (m, 2 H), 1.97-1.77 (m, 2 H); 13C NMR (100 MHz, CDCl$_3$): δ 205.6 (d, $J = 23$ Hz), 162.7 (d, $J = 245$ Hz), 138.8 (dd, $J = 22$ Hz, 7 Hz), 130.1 (d, $J = 8$ Hz), 121.9 (q, $J = 3$ Hz), 115.8 (d, $J = 21$ Hz.), 113.4 (dd, $J = 24$ Hz, 8 Hz), 97.7 (d, $J = 184$ Hz), 39.6 (s), 38.4 (d, $J = 23$ Hz), 27.4 (s), 21.7 (d, $J = 6$ Hz); 19F NMR (376 MHz, CDCl$_3$): δ -112.11, -146.16; HRMS (ESI) m/z calculated for C$_{12}$H$_{12}$F$_2$ONa [M+Na]$^+$ 233.0748, found 233.0744; MS (EI) m/z (%): 210 (27), 166 (100), 153 (73), 140 (73), 127 (33), 55 (49).

2-fluoro-2-(4-fluorophenyl)cyclohexan-1-one (3d)

Prepared by the general procedure at 25 °C for 18 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as colorless oil (32.5 mg, 77% yield.).

1H NMR (400 MHz, CDCl$_3$): δ 7.39-7.35 (m, 2 H), 7.11 (t, $J = 8.4$ Hz, 2 H), 2.83-2.75 (m, 1 H), 2.62-2.49 (m, 1 H), 2.43-2.27 (m, 2 H), 2.12-2.03 (m, 1 H), 2.01-1.87 (m, 2 H), 1.83-1.75 (m, 1 H); 13C NMR (100 MHz, CDCl$_3$): δ 206.1 (d, $J =$22 Hz), 162.9 (dd, $J = 247$ Hz, 3 Hz), 132.0 (dd, $J = 22$ Hz, 3 Hz), 128.3 (dd, $J = 8$ Hz, 6 Hz), 115.5 (d, $J = 21$ Hz), 97.8 (d, $J = 182$ Hz), 39.7 (s), 38.1 (d, $J = 22$ Hz), 27.5 (s), 21.9 (d, $J = 6$ Hz); 19F NMR (376 MHz, CDCl$_3$): δ -112.55 (d, $J = 4.51$ Hz), -142.59; HRMS (ESI) m/z calculated for C$_{12}$H$_{12}$F$_2$ONa [M+Na]$^+$ 233.0748, found 233.0745. MS (EI) m/z (%): 210 (24), 166 (73), 153 (100), 140 (35), 127 (13).
2-(2-chlorophenyl)-2-fluorocyclohexan-1-one (3e)

Prepared by the general procedure at 25 °C for 36 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as colorless oil (33.8 mg, 75% yield.).

\(^1\text{H NMR}\) (400 MHz, CDCl\(_3\)): \(\delta\) 7.55-7.53 (m, 1 H), 7.41-7.39 (m, 1 H), 7.36-7.29 (m, 2 H), 2.92-2.82 (m, 1 H), 2.78-2.59 (m, 2 H), 2.39-2.29 (m, 1 H), 2.16-2.09 (m, 1 H), 2.07-1.99 (m, 1 H), 1.96-1.83 (m, 2 H); \(^{13}\text{C NMR}\) (100 MHz, CDCl\(_3\)): \(\delta\) 202.9 (d, \(J = 23\) Hz), 136.2 (d, \(J = 21\) Hz), 131.5 (d, \(J = 5\) Hz), 130.6 (s), 129.7 (s), 127.0 (d, \(J = 14\) Hz), 126.8 (d, \(J = 2\) Hz), 97.3 (d, \(J = 178\) Hz), 39.1 (d, \(J = 2\) Hz), 37.1 (d, \(J = 24\) Hz), 25.8 (s), 20.8 (d, \(J = 2\) Hz); \(^{19}\text{F NMR}\) (376 MHz, CDCl\(_3\)): \(\delta\) -152.42; \(^{19}\text{F NMR}\) (376 MHz, CDCl\(_3\)): \(\delta\) -152.42; \(^{19}\text{F NMR}\) (376 MHz, CDCl\(_3\)): \(\delta\) -152.42; HRMS (ESI) \(m/z\) calculated for C\(_{12}\)H\(_{13}\)ClFO \([\text{M+H}^+]\): 227.0633, found 227.0629; MS (EI) \(m/z\) (%): 228 (3), 226 (11), 184 (15), 182 (49), 169 (36), 156 (41), 115 (15).

2-(3-chlorophenyl)-2-fluorocyclohexan-1-one (3f)

Prepared by the general procedure at 25 °C for 18 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as colorless oil (40.7 mg, 90 % yield.).

\(^1\text{H NMR}\) (400 MHz, CDCl\(_3\)): \(\delta\) 7.38-7.33 (m, 3 H), 7.26-7.24 (m, 1 H), 2.88-2.80 (m, 1 H), 2.54-2.28 (m, 3 H), 2.13-1.99 (m, 2 H), 1.96-1.89 (m, 1 H), 1.86-1.77 (m, 1 H); \(^{13}\text{C NMR}\) (100 MHz, CDCl\(_3\)): \(\delta\) 205.6 (d, \(J = 23\) Hz), 138.3 (d, \(J = 21\) Hz), 134.5 (s), 129.7 (s), 129.0 (d, \(J = 1\) Hz), 126.3 (d, \(J = 8\) Hz), 124.4 (d, \(J = 7\) Hz), 97.7 (d, \(J = 183\) Hz), 39.6 (s), 38.4 (d, \(J = 23\) Hz), 27.4 (s), 21.7 (d, \(J = 5\) Hz); \(^{19}\text{F NMR}\) (376 MHz, CDCl\(_3\)): \(\delta\) -146.96; HRMS (ESI) \(m/z\) calculated for C\(_{12}\)H\(_{12}\)ClFONa \([\text{M+Na}^+]\): 249.0453, found 249.0458; MS (EI) \(m/z\) (%): 228 (10), 226 (26), 182 (41), 171 (19), 156 (35), 115 (82), 57 (87), 55 (100).
2-(4-chlorophenyl)-2-fluorocyclohexan-1-one (3g)\(^7\)

![Structure of 2-(4-chlorophenyl)-2-fluorocyclohexan-1-one (3g)](image)

Prepared by the general procedure at 25\(^\circ\)C for 18 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as colorless oil (42.8 mg, 94% yield.).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.39 (d, \(J = 8.4\) Hz, 2 H), 7.32-7.30 (m, 2 H), 2.86-2.78 (m, 1 H), 2.55-2.27 (m, 3 H), 2.13-2.04 (m, 2 H), 1.97-1.91 (m, 1 H), 1.86-1.75 (m, 1 H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 205.8 (d, \(J = 23\) Hz), 134.9 (d, \(J = 3\) Hz), 134.8 (d, \(J = 22\) Hz), 128.7 (s), 127.6 (d, \(J = 7\) Hz), 97.8 (d, \(J = 182\) Hz), 39.6 (s), 38.3 (d, \(J = 22\) Hz), 27.5 (s), 21.8 (d, \(J = 6\) Hz); \(^{19}\)F NMR (376 MHz, CDCl\(_3\)): \(\delta\) -145.71; MS (EI) \(m/z\) (%): 228 (11), 226 (31), 184 (17), 182 (53), 169 (100), 171 (32), 115 (42).

2-(4-bromophenyl)-2-fluorocyclohexan-1-one (3h)\(^7\)

![Structure of 2-(4-bromophenyl)-2-fluorocyclohexan-1-one (3h)](image)

Prepared by the general procedure at 25 \(^\circ\)C for 18 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as colorless oil (46.0 mg, 85% yield.).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.54 (d, \(J = 8\) Hz, 2 H), 7.27-7.24 (m, 2 H), 2.87-2.78 (m, 1 H), 2.54-2.28 (m, 3 H), 2.12-1.99 (m, 2 H), 1.94-1.89 (m, 1 H), 1.84-1.76 (m, 1 H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 205.8 (d, \(J = 24\) Hz), 135.3 (d, \(J = 22\) Hz), 131.6 (s), 127.9 (d, \(J = 7\) Hz), 123.1 (d, \(J = 3\) Hz), 97.9 (d, \(J = 182\) Hz), 39.6 (s), 38.3 (d, \(J = 22\) Hz), 27.5 (s), 21.7 (d, \(J = 6\) Hz); \(^{19}\)F NMR (376 MHz, CDCl\(_3\)): \(\delta\) -146.30; MS (EI) \(m/z\) (%): 272 (24), 270 (26), 228 (62), 226 (65), 202 (20), 200 (22), 134 (100).
2-fluoro-2-(4-iodophenyl)cyclohexan-1-one (3i)

Prepared by the general procedure at 25 °C for 48 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as yellow oil (14.6 mg, 23% yield.).

1H NMR (600 MHz, CDCl$_3$): δ 7.74 (d, $J = 7.8$ Hz, 2 H), 7.11 (d, $J = 8.4$ Hz, 2 H), 2.85-2.80 (m, 1 H), 2.48-2.39 (m, 2 H), 2.35-2.28 (m, 1 H), 2.10-2.00 (m, 2 H), 1.93-1.87 (m, 1 H), 1.82-1.77 (m, 1 H); 13C NMR (150 MHz, CDCl$_3$): δ 205.4 (d, $J = 24$ Hz), 137.6 (s), 136.3 (d, $J = 22.5$ Hz), 128.0 (d, $J = 7.5$ Hz), 97.9 (d, $J = 183$ Hz), 94.9 (s), 39.6 (s), 38.5 (d, $J = 22.5$ Hz), 27.5 (s), 21.7 (d, $J = 6$ Hz); 19F NMR (376 MHz, CDCl$_3$): δ -147.05; HRMS (ESI) m/z calculated for C$_{12}$H$_{12}$FIONa [M+Na]$^+$ 340.9809, found 340.9813; MS (EI) m/z (%): 318 (55), 274 (68), 261 (18), 248 (20), 134 (100).

2-fluoro-2-(4-nitrophenyl)cyclohexan-1-one (3j)

Prepared by the general procedure at 25 °C for 18 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as a yellow crystal (38.3 mg, 81% yield.), m.p. = 60.8-62.4 °C.

1H NMR (400 MHz, CDCl$_3$): δ 8.26 (d, $J = 8.4$ Hz, 2 H), 7.53 (d, $J = 8.8$ Hz, 2 H), 3.04-2.95 (m, 1 H), 2.53-2.46 (m, 1 H), 2.45-2.09 (m, 4 H), 1.95-1.82 (m, 2 H); 13C NMR (100 MHz, CDCl$_3$): δ 204.8 (d, $J = 25$ Hz), 147.7 (s), 143.8 (d, $J = 22$ Hz), 126.8 (d, $J = 8$ Hz), 123.3 (s), 98.0 (d, $J = 182$ Hz). 39.5 (d, $J = 23$ Hz), 39.3 (d, $J = 1$ Hz), 27.5 (s), 20.9 (d, $J = 4$ Hz); 19F NMR (376 MHz, CDCl$_3$): δ -154.91; HRMS (ESI) m/z calculated for C$_{12}$H$_{13}$FNO$_3$ [M+H]$^+$ 238.0874, found 238.0871; MS (EI) m/z (%): 237 (17), 193 (100), 167 (110), 134 (36), 115 (7).
2-fluoro-2-(4-(trifluoromethyl)phenyl)cyclohexan-1-one (3k)

Prepared by the general procedure at 25 °C for 18 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as white foam (30.8 mg, 59% yield.).

1H NMR (400 MHz, CDCl$_3$): δ 7.67 (d, J = 8.8 Hz, 2 H), 7.49 (d, J = 8.4 Hz, 2 H), 2.96-2.87 (m, 1 H), 2.48-2.35 (m, 3 H), 2.17-2.06 (m, 2 H), 1.96-1.78 (m, 2 H); 13C NMR (100 MHz, CDCl$_3$): δ 205.4 (d, J = 25 Hz), 140.5 (d, J = 22 Hz), 130.7 (q, J = 32 Hz), 126.4 (d, J = 8 Hz), 125.3 (q, J = 4 Hz), 123.9 (q, J = 271 Hz), 97.9 (d, J = 182 Hz), 39.5 (d, J = 1 Hz), 39.0 (d, J = 22 Hz), 27.5 (s), 21.3 (d, J = 5 Hz); 19F NMR (376 MHz, CDCl$_3$): δ -62.74, -151.10; HRMS (ESI) m/z calculated for C$_{13}$H$_{12}$F$_4$ONa [M+Na]$^+$ 283.0716, found 283.0709. MS (EI) m/z (%): 260 (18), 216 (51), 203 (35), 190 (43), 147 (100), 115 (31), 55 (24).

2-fluoro-2-(p-tolyl)cyclohexan-1-one (3l)

Prepared by the general procedure at 25 °C for 18 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as a white crystal (31.5 mg, 76% yield.). m.p. = 52.4-53.4 °C.

1H NMR (400 MHz, CDCl$_3$): δ 7.30-7.28 (m, 2 H), 7.23 (d, J = 8.4 Hz, 2 H), 2.74-2.64 (m, 2 H), 2.43-2.35 (m, 1 H), 2.37 (d, J = 1.6 Hz, 3 H), 2.31-2.21 (m, 1 H), 2.08-2.00 (m, 1 H), 1.96-1.89 (m, 2 H), 1.84-1.74 (m, 1 H); 13C NMR (100 MHz, CDCl$_3$): δ 206.6 (d, J = 22 Hz), 139.2 (d, J = 3 Hz), 132.8 (d, J = 22 Hz), 129.4 (s), 126.4 (d, J = 5 Hz), 98.2 (d, J = 182 Hz), 39.9 (s), 37.4 (d, J = 23 Hz), 27.5 (s), 22.3 (d, J = 7 Hz), 21.2 (s); 19F NMR (376 MHz, CDCl$_3$): δ -139.05; MS (EI) m/z (%): 206 (20), 162 (16), 149 (100), 136 (24), 115 (30), 91 (12).
2-(4-(tert-butyl)phenyl)-2-fluorocyclohexan-1-one (3m)

Prepared by the general procedure at 25 °C for 18 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as a white crystal (41.9 mg, 84% yield.). m.p. = 55.5-56.2 °C.

1H NMR (400 MHz, CDCl$_3$): δ 7.43 (d, J = 8.0 Hz, 2 H), 7.33 (dd, J = 8.4 Hz, 1.2 Hz, 2 H), 2.75-2.65 (m, 2 H), 2.44-2.37 (m, 1 H), 2.32-2.22 (m, 1 H), 2.07-2.00 (m, 1 H), 1.96-1.89 (m, 2 H), 1.86-1.76 (m, 1 H), 1.32 (s, 9 H); 13C NMR (100 MHz, CDCl$_3$): δ 206.6 (d, J = 22 Hz), 152.2 (d, J = 3 Hz), 132.8 (d, J = 22 Hz), 126.2 (d, J = 5 Hz), 125.7 (s), 98.1 (d, J = 183 Hz), 39.9 (s), 37.5 (d, J = 22 Hz), 34.6 (s), 31.2 (s), 27.5 (s), 22.4 (d, J = 8 Hz); 19F NMR (376 MHz, CDCl$_3$): δ -138.63;

HRMS (ESI) m/z calculated for C$_{16}$H$_{21}$FONa [M+Na]$^+$ 271.1469, found 271.1476; MS (El) m/z (%): 248 (32), 205 (100), 204 (19), 115 (16), 57 (29).

2-fluoro-2-(3-methoxyphenyl)cyclohexan-1-one (3n)7

Prepared by the general procedure at 25 °C for 18 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as white foam (40.5 mg, 91% yield.).

1H NMR (400 MHz, CDCl$_3$): δ 7.34 (td, J = 8.4 Hz, 0.8 Hz, 1 H), 7.00-6.97 (m, 1 H), 6.94-6.91 (m, 2 H), 3.82 (s, 3 H), 2.77-2.59 (m, 2 H), 2.44-2.37 (m, 1 H), 2.33-2.23 (m, 1 H), 2.09-2.01 (m, 1 H), 1.98-1.91 (m, 2 H), 1.87-1.78 (m, 1 H); 13C NMR (100 MHz, CDCl$_3$): δ 206.2 (d, J = 22 Hz), 159.7 (s), 137.4 (d, J = 21 Hz), 129.7 (s), 118.6 (d, J = 6 Hz), 114.4 (d, J = 3 Hz), 112.2 (d, J = 6 Hz), 98.1 (d, J = 183 Hz), 55.3 (s), 39.9 (s), 37.7 (d, J = 22 Hz), 27.4 (s), 22.2 (d, J = 7 Hz); 19F NMR (376 MHz, CDCl$_3$): δ -141.29; MS (El) m/z (%): 222 (46), 178 (30), 165 (44), 152 (28), 70 (44), 57 (93),
2-(3-chloro-4-nitrophenyl)-2-fluorocyclohexan-1-one (3o)

Prepared by the general procedure at 25 °C for 30 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as a white crystal (43.8 mg, 81% yield.). m.p. = 96.8-97.4 °C.

1H NMR (600 MHz, CDCl$_3$): δ 7.91 (d, $J = 8.4$ Hz, 1 H), 7.54 (d, $J = 1.2$ Hz, 1 H), 7.37 (dd, $J = 8.4$ Hz, 1.8 Hz, 1 H), 3.03-2.96 (m, 1 H), 2.51 (dt, $J = 13.2$ Hz, 3.6 Hz, 1 H), 2.45-2.39 (m, 1 H), 2.28-2.11 (m, 3 H), 1.91-1.83 (m, 2 H); 13C NMR (100 MHz, CDCl$_3$): δ 204.2 (d, $J = 25$ Hz), 147.3 (s), 143.0 (d, $J = 22$ Hz), 129.3 (d, $J = 10$ Hz), 127.0 (d, $J = 1$ Hz), 125.2 (s), 125.1 (d, $J = 9$ Hz), 97.5 (d, $J = 183$ Hz), 39.6 (d, $J = 23$ Hz), 39.1 (d, $J = 2$ Hz), 27.4 (s), 20.8 (d, $J = 3$ Hz); 19F NMR (376 MHz, CDCl$_3$): δ -156.09; HRMS (ESI) m/z calculated for C$_{12}$H$_{12}$ClFNO$_3$ [M+H]$^+$ 272.0484, found 272.0487; MS (EI) m/z (%): 271 (39), 227 (91), 201 (9), 55 (33).

2-fluoro-2-(naphthalen-2-yl)cyclohexan-1-one (3p)

Prepared by the general procedure at 25 °C for 18 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as a white crystal (36.3 mg, 75% yield.). m.p. = 67.5-69.0 °C.

1H NMR (400 MHz, CDCl$_3$): δ 7.91-7.84 (m, 4 H), 7.54-7.50 (m, 2 H), 7.46 (dd, $J = 8.8$ Hz, 1.6 Hz, 1 H), 2.85-2.74 (m, 2 H), 2.46-2.33 (m, 2 H), 2.14-2.07 (m, 1 H), 2.01-1.94 (m, 2 H), 1.92-1.84 (m, 1 H); 13C NMR (100 MHz, CDCl$_3$): δ 206.5 (d, $J = 22$ Hz), 133.4 (d, $J = 21$ Hz), 133.3 (d, $J =
2-fluoro-2,6-diphenylcyclohexan-1-one (3q)

Prepared by the general procedure at 25 °C for 120 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as a white crystal (37.1 mg, 69% yield). m.p. = 116.6-117.6 °C.

1H NMR (400 MHz, CDCl$_3$): δ 7.35-7.30 (m, 7 H), 7.26-7.18 (m, 3 H), 4.49-4.42 (m, 1 H), 2.58-2.51 (m, 1 H), 2.41-2.33 (m, 2 H), 2.32-2.25 (m, 1 H), 2.15-2.08 (m, 1 H), 1.93-1.89 (m, 1 H); 13C NMR (100 MHz, CDCl$_3$): δ 204.9 (d, $J = 28$ Hz), 137.4 (s), 137.1 (d, $J = 21$ Hz), 128.7 (s), 128.2 (s), 128.1 (s), 127.8 (s), 127.1 (s), 125.7 (d, $J = 9$ Hz), 99.4 (d, $J = 179$ Hz), 53.7 (s), 40.1 (d, $J = 24$ Hz), 35.8 (s), 20.7 (d, $J = 3$ Hz); 19F NMR (376 MHz, CDCl$_3$): δ -156.81; HRMS (ESI) m/z calculated for C$_{18}$H$_{17}$FONa [M+Na]$^+$ 291.1156, found 291.1155; MS (EI) m/z (%): 268 (11), 248 (36), 144 (100), 77 (13).

2-fluoro-2-phenylcyclopentan-1-one (3r)

Prepared by the general procedure at 25 °C for 36 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as white foam (10.5 mg, 29% yield).

1H NMR (400 MHz, CDCl$_3$): δ 7.43-7.38 (m, 5 H), 2.63-2.49 (m, 3 H), 2.47-2.36 (m, 1 H), 2.27-
2.16 (m, 1 H), 2.08-1.97 (m, 1 H); 13C NMR (100 MHz, CDCl$_3$): δ 211.6 (d, $J = 19$ Hz), 135.8 (d, $J = 23$ Hz), 128.9 (d, $J = 2$ Hz), 128.5 (s), 125.7 (d, $J = 6$ Hz), 97.3 (d, $J = 183$ Hz), 36.0 (d, $J = 22$ Hz), 35.5 (s), 21.5 (d, $J = 4$ Hz); 19F NMR (376 MHz, CDCl$_3$): δ -149.78; HRMS (ESI) m/z calculated for C$_{11}H_{12}FO [M+H]^+ 179.0867$, found 179.0856; MS (EI) m/z (%): 178 (20), 122 (100), 77 (8).

2-fluoro-2-(4-nitrophenyl)cycloheptan-1-one (3s)

Prepared by the general procedure at 25 °C for 168 h and. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as a yellow crystal (41.2 mg, 82% yield.). 110.6-112.4 °C.

1H NMR (400 MHz, CDCl$_3$): δ 8.24 (d, $J = 8.8$ Hz, 2 H), 7.70-7.67 (m, 2 H), 2.93-2.86 (m, 1 H), 2.63-2.55 (m, 1 H), 2.30-2.14 (m, 2 H), 2.04-1.92 (m, 3 H), 1.87-1.70 (m, 2 H), 1.43 (q, $J = 12.4$ Hz, 1 H); 13C NMR (100 MHz, CDCl$_3$): δ 207.6 (d, $J = 26$ Hz), 147.6 (s), 145.4 (d, $J = 23$ Hz), 126.3 (d, $J = 10$ Hz), 123.4 (s), 101.0 (d, $J = 188$ Hz), 40.2 (s), 37.1 (d, $J = 23$ Hz), 27.7 (s), 24.4 (d, $J = 1$ Hz), 24.3 (d, $J = 2$ Hz); 19F NMR (376 MHz, CDCl$_3$): δ -159.04; HRMS (ESI) m/z calculated for C$_{13}H_{14}FNO_3Na [M+Na]^+ 274.0850$, found 274.2734; MS (EI) m/z (%): 251 (8), 167 (37), 134 (100), 84 (22), 55 (37).

3-fluoro-3-phenyltetrahydro-4H-pyran-4-one (3t)7

Prepared by the general procedure at 25 °C for 72 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as colorless oil (28.3 mg, 73% yield.).
1H NMR (400 MHz, CDCl$_3$): δ 7.63-7.61 (m, 2 H), 7.45-7.39 (m, 3 H), 4.59-4.55 (m, 1 H), 4.27-4.21 (m, 1 H), 3.99-3.91 (m, 2 H), 2.75-2.60 (m, 2 H); 13C NMR (100 MHz, CDCl$_3$): δ 201.3 (d, J = 20 Hz), 134.9 (d, J = 22 Hz), 129.4 (d, J = 2 Hz), 128.7 (s), 126.1 (d, J = 6 Hz), 94.8 (d, J = 189 Hz), 74.2 (d, J = 29 Hz), 68.5 (s), 40.7 (s); 19F NMR (376 MHz, CDCl$_3$): δ -156.46; MS (EI) m/z (%): 194 (3), 112 (100), 77 (8), 55 (30).

2-fluoro-2-(4-nitrophenyl)-3,4-dihydronaphthalen-1(2H)-one (3u)24

![Structure of 3u](image)

Prepared by the general procedure at 100 °C for 48 h using a sealed tube. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as a yellow crystal (36.7 mg, 64% yield.). m. p. = 119.0-120.0 °C.

1H NMR (600 MHz, CDCl$_3$): δ 8.23 (d, J = 8.4 Hz, 2 H), 8.14 (d, J = 7.8 Hz, 1 H), 7.59 (td, J = 7.8 Hz, 1.2 Hz, 1 H), 7.54 (d, J = 8.4 Hz, 2 H), 7.42 (t, J = 7.8 Hz, 1 H), 7.31 (d, J = 7.8 Hz, 1 H), 3.29 (dt, J = 17.4 Hz, 6 Hz, 1 H), 2.89 (dt, J = 17.4 Hz, 6.6 Hz, 1 H), 2.75-2.65 (m, 2 H); 13C NMR (150 MHz, CDCl$_3$): δ 191.4 (d, J = 19.5 Hz), 148.1 (s), 144.8 (d, J = 22.5 Hz), 143.1 (s), 134.7 (s), 131.4 (s), 128.9 (s), 128.6 (s), 127.5 (s), 126.8 (d, J = 7.5 Hz), 123.6 (s), 95.0 (d, J = 183 Hz), 35.8 (d, J = 24 Hz), 25.4 (d, J = 7.5 Hz); 19F NMR (376 MHz, CDCl$_3$): δ -154.22; MS (EI) m/z (%): 285 (31), 118 (100), 99 (45).

3-fluoro-3-(4-nitrophenyl)-4-phenylbutan-2-one (3v)

![Structure of 3v](image)

Prepared by the general procedure at 80 °C for 60 h using a sealed tube. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the
residue by flash column chromatography afforded the product as a yellow crystal (52.5 mg, 91% yield.). m. p. = 100.5-101.5 °C.

\textbf{1H NMR} (600 MHz, CDCl$_3$): δ 8.20 (d, $J = 8.4$ Hz, 2 H), 7.65 (d, $J = 9$ Hz, 2 H), 7.23-7.21 (m, 3 H), 7.10-7.08 (m, 2 H), 3.56 (dd, $J = 27.6$ Hz, 14.4 Hz, 1 H), 3.32 (dd, $J = 24$ Hz, 14.4 Hz, 1 H), 2.10 (d, $J = 6$ Hz, 3 H); \textbf{13C NMR} (150 MHz, CDCl$_3$): δ 206.5 (d, $J = 31.5$ Hz), 147.9 (s), 144.0 (d, $J = 22.5$ Hz), 133.4 (s), 130.5 (s), 128.3 (s), 127.3 (s), 125.7 (d, $J = 10.5$ Hz), 123.6 (s), 101.9 (d, $J = 192$ Hz), 44.4 (d, $J = 22.5$ Hz), 26.0 (s); \textbf{19F NMR} (376 MHz, CDCl$_3$): δ -164.01; \textbf{HRMS} (ESI) m/z calculated for C$_{16}$H$_{15}$FNO$_3$ [M+H]$^+$ 288.1030, found 288.1033; \textbf{MS} (EI) m/z (%): 287 (1), 196 (18), 165 (16), 91 (100), 77 (16).

\textbf{2-fluoro-2-hexylcyclohexan-1-one (3w)}

\[\text{O} \]
\[\text{F} \]
\[\text{CH}_3\text{CH} \]

Prepared by the general procedure at 25 °C for 48 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as colorless oil (25.6 mg, 64% yield.).

\textbf{1H NMR} (600 MHz, CDCl$_3$): δ 2.66-2.61 (m, 1 H), 2.39-2.34 (m, 1 H), 2.08-2.02 (m, 1 H), 1.99-1.86 (m, 4 H), 1.85-1.79 (m, 1 H), 1.75-1.65 (m, 2 H), 1.47-1.41 (m, 1 H), 1.33-1.21 (m, 7 H), 0.88 (t, $J = 6.6$ Hz, 3 H); \textbf{13C NMR} (100 MHz, CDCl$_3$): δ 208.1 (d, $J = 20$ Hz), 98.9 (d, $J = 183$ Hz), 39.6 (s), 38.1 (d, $J = 22$ Hz). 34.6 (d, $J = 23$ Hz), 31.5 (s), 29.4 (s), 27.4 (s), 22.5 (s), 22.3 (d, $J = 3$ Hz), 22.1 (d, $J = 8$ Hz), 14.0 (s); \textbf{19F NMR} (376 MHz, CDCl$_3$): δ -158.04; \textbf{HRMS} (ESI) m/z calculated for C$_{12}$H$_{21}$FONa [M+Na]$^+$ 223.1469, found 223.1472; \textbf{MS} (EI) m/z (%): 200 (1), 116 (100), 85 (7), 55 (31).

\textbf{2-benzyl-2-fluorocyclohexan-1-one (3x)}

\[\text{O} \]
\[\text{F} \]
\[\text{CH}_3\text{CH} \]

Prepared by the general procedure at 25 °C for 18 h. The reaction mixture was diluted with ethyl
acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as a white crystal (37.5 mg, 91% yield). m. p. = 95.9-97.8 °C.

\[^1H \text{NMR (400 MHz, CDCl}_3\text{):} \delta 7.33-7.22 \text{ (m, 5 H), 3.23 (dd, } J = 20.4 \text{ Hz, 14.8 Hz, 1 H), 3.02 (dd, } J = 30.4 \text{ Hz, 14.4 Hz, 1 H), 2.77-2.71 \text{ (m, 1 H), 2.50-2.43 (m, 1 H), 2.01-1.69 (m, 6 H);} \]

\[^{13}C \text{NMR (100 MHz, CDCl}_3\text{):} \delta 207.7 \text{ (d, } J = 21 \text{ Hz), 134.6 \text{ (s), 130.5 \text{ (s), 128.2 \text{ (s), 126.9 \text{ (s), 97.8 \text{ (d, } J = 183 \text{ Hz), 39.8 \text{ (d, } J = 23 \text{ Hz), 39.5 \text{ (s), 36.9 \text{ (d, } J = 23 \text{ Hz), 27.4 \text{ (s), 21.5 \text{ (d, } J = 6 \text{ Hz);} \]

\[^{19}F \text{NMR (376 MHz, CDCl}_3\text{):} \delta -156.34; \text{MS (EI) } m/\text{z (%): 206 (1), 186 (40), 129 (31), 115 (46), 91 (100), 77 (13).} \]

1-fluoro-[1,1'-bi(cyclohexan)]-2-one (3y)

Prepared by the general procedure at 25 °C for 18 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as a white crystal (36.2 mg, 91% yield). m. p. = 63.7-64.6 °C.

\[^1H \text{NMR (400 MHz, CDCl}_3\text{):} \delta 2.60-2.53 \text{ (m, 1 H), 2.43-2.36 \text{ (m, 1 H), 2.31-2.23 \text{ (m, 1 H), 2.02-1.66 \text{ (m, 10 H), 1.40-1.37(m, 1 H), 1.33-1.10 (m, 5 H);} \]

\[^{13}C \text{NMR (100 MHz, CDCl}_3\text{):} \delta 208.7 \text{ (d, } J = 18 \text{ Hz), 100.8 \text{ (d, } J = 189 \text{ Hz), 40.0 \text{ (s), 39.7 \text{ (d, } J = 22 \text{ Hz), 34.7 \text{ (d, } J = 22 \text{ Hz), 27.3 \text{ (s), 26.2 \text{ (d, } J = 2 \text{ Hz), 25.9 \text{ (d, } J = 2 \text{ Hz), 24.9 \text{ (d, } J = 4 \text{ Hz), 22.0 \text{ (d, } J = 10 \text{ Hz);} \]

\[^{19}F \text{NMR (376 MHz, CDCl}_3\text{):} \delta -168.08; \text{HRMS (ESI) } m/\text{z calculated for C}_{12}H_{16}FONa [M+Na]^+ 221.1312, found 221.1308; \text{MS (EI) } m/\text{z (%): 198 (1), 178 (2), 154 (5), 116 (100), 55 (13).} \]

methyl 3-(1-fluoro-2-oxocyclohexyl)propanoate (3z)

Prepared by the general procedure at 25 °C for 48 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as a white crystal (39.5 mg, 91% yield). m. p. = 63.7-64.6 °C.

\[^1H \text{NMR (400 MHz, CDCl}_3\text{):} \delta 2.33-2.25 \text{ (m, 1 H), 2.11-1.99 \text{ (m, 1 H), 2.00-1.65 (m, 10 H), 1.38-1.23 (m, 5 H);} \]

\[^{13}C \text{NMR (100 MHz, CDCl}_3\text{):} \delta 208.7 \text{ (d, } J = 21 \text{ Hz), 100.8 \text{ (d, } J = 189 \text{ Hz), 40.0 \text{ (s), 39.7 \text{ (d, } J = 22 \text{ Hz), 34.7 \text{ (d, } J = 22 \text{ Hz), 27.3 \text{ (s), 26.2 \text{ (d, } J = 2 \text{ Hz), 25.9 \text{ (d, } J = 2 \text{ Hz), 24.9 \text{ (d, } J = 4 \text{ Hz), 22.0 \text{ (d, } J = 10 \text{ Hz);} \]

\[^{19}F \text{NMR (376 MHz, CDCl}_3\text{):} \delta -168.08; \text{HRMS (ESI) } m/\text{z calculated for C}_{12}H_{16}FONa [M+Na]^+ 221.1312, found 221.1308; \text{MS (EI) } m/\text{z (%): 198 (1), 178 (2), 154 (5), 116 (100), 55 (13).} \]
acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as colorless oil (27.0 mg, 67% yield.).

1H NMR (600 MHz, CDCl₃): δ 3.68 (s, 3 H), 2.72-2.67 (m, 1 H), 2.49-2.28 (m, 4 H), 2.14-2.01 (m, 2 H), 1.95-1.82 (m, 4 H), 1.74-1.68 (m, 1 H); **13C NMR** (150 MHz, CDCl₃): δ 207.2 (d, J = 21 Hz), 173.3 (s), 97.7 (d, J = 183 Hz), 51.7 (s), 39.4 (s), 38.4 (d, J = 22.5 Hz), 29.7 (d, J = 22.5 Hz), 27.5 (d, J = 4.5 Hz), 27.4 (s), 21.6 (d, J = 6 Hz); **19F NMR** (376 MHz, CDCl₃): δ -160.39; **MS** (EI) m/z (%): 202 (1), 171 (22), 158 (29), 132 (19), 55 (100).

3-(1-fluoro-2-oxocyclohexyl)propanenitrile (3aa)

![Chemical structure of 3aa](image)

Prepared by the general procedure at 25 °C for 96 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as a yellow crystal (27.7 mg, 82% yield.). m. p. = 72.6-73.3 °C.

1H NMR (600 MHz, CDCl₃): δ 2.84-2.78 (m, 1 H), 2.48 (t, J = 7.2 Hz, 2 H), 2.41-2.29 (m, 2 H), 2.26-2.22 (m, 1 H), 2.05-1.94 (m, 3 H), 1.81-1.69 (m, 3 H); **13C NMR** (100 MHz, CDCl₃): δ 206.8 (d, J = 23 Hz), 119.2 (s), 96.7 (d, J = 181 Hz), 39.1 (s), 38.3 (d, J = 22 Hz), 30.3 (d, J = 22 Hz), 27.6 (s), 20.8 (d, J = 5 Hz), 11.3 (d, J = 7 Hz); **19F NMR** (376 MHz, CDCl₃): δ -162.96; **MS** (EI) m/z (%): 169 (7), 125 (100), 99 (7), 55 (100).

cyclohexyl(1-fluorocyclohexyl)methanone (3ab)

![Chemical structure of 3ab](image)

Prepared by the general procedure at 60 °C for 96 h using a sealed tube. The reaction mixture was diluted with dichloromethane, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as colorless oil (27.0 mg, 64% yield.).
1H NMR (600 MHz, CDCl$_3$): δ 3.02-2.94 (m, 1 H), 1.80-1.56 (m, 14 H), 1.37-1.19 (m, 6 H); 13C NMR (150 MHz, CDCl$_3$): δ 214.8 (d, $J = 28.5$ Hz), 100.3 (d, $J = 183$ Hz), 44.9 (s), 32.2 (d, $J = 22.5$ Hz), 28.5 (s), 25.8 (s), 25.7 (s), 24.6 (s), 20.9 (s); 19F NMR (376 MHz, CDCl$_3$): δ -168.92; HRMS (ESI) m/z calculated for C$_{13}$H$_{15}$FNO$_2$ [M+Na]$^+$ 229.0999, found 229.1005; MS (EI) m/z (%): 212 (1), 129 (11), 111 (21), 83 (42), 57 (100).

2-fluoro-2,4-dimethylpentan-3-one (3ac)

Prepared by the general procedure at 60 °C for 40 h using a sealed tube and CD$_3$CN/CD$_2$Cl$_2$ (v/v = 4/1) as a mixture solvent. After the reaction was completed, the reaction mixture was diluted with CDCl$_3$, and its chemical yield (82%) was obtained using CH$_2$Br$_2$ as NMR internal standard.

1H NMR (400 MHz, CDCl$_3$): δ 3.25-3.20 (m, 1 H), 1.46 (dd, $J = 21.2$ Hz, 2.0 Hz, 6 H), 1.11 (dd, $J = 6.8$ Hz, 2.0 Hz, 6 H); 13C NMR (100 MHz, CDCl$_3$): δ 215.6 (d, $J = 27$ Hz), 98.8 (d, $J = 178$ Hz), 34.5 (s), 24.4 (d, $J = 24$ Hz), 18.0 (d, $J = 2$ Hz); 19F NMR (376 MHz, CDCl$_3$): δ -150.68; MS (EI) m/z (%): 132 (11), 89 (13), 71 (100), 61 (13).

3, 5-diethyl-3-fluoroheptan-4-one (3ad)

Prepared by the general procedure at 60 °C for 60 h using a sealed tube. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as colorless oil (14.2 mg, 38% yield.).

1H NMR (400 MHz, CDCl$_3$): δ 2.92-2.86 (m, 1 H), 1.92-1.77 (m, 2 H), 1.77-1.64 (m, 4 H), 1.48-1.37 (m, 2 H), 0.89 (t, $J = 7.6$ Hz, 6 H), 0.86 (t, $J = 7.6$ Hz, 6 H); 13C NMR (100 MHz, CDCl$_3$): δ 214.9 (d, $J = 28$ Hz), 104.0 (d, $J = 185$ Hz), 49.1 (s), 28.4 (d, $J = 22$ Hz), 22.4 (d, $J = 1$ Hz), 11.5 (s), 7.4 (d, $J = 5$ Hz); 19F NMR (376 MHz, CDCl$_3$): δ -170.12; HRMS (ESI) m/z calculated for
C$_{11}$H$_{21}$FONa [M+Na]$^+$ 211.1469, found 211.1470; MS (EI) m/z (%): 188 (1), 169 (5), 99 (23), 84 (16), 71 (100).

2-fluoro-2-methyl-2,3-dihydro-1H-inden-1-one (3ae)27

Prepared by the general procedure at 25 °C for 40 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as colorless oil (23.8 mg, 72% yield.).

1H NMR (600 MHz, CDCl$_3$): δ 7.81 (d, $J = 7.8$ Hz, 1 H), 7.66 (t, $J = 7.8$ Hz, 1 H), 7.43 (q, $J = 7.8$ Hz, 2 H), 3.45 (dd, $J = 22.8$ Hz, 17.4 Hz, 1 H), 3.30 (dd, $J = 17.4$ Hz, 11.4 Hz, 1 H), 1.62 (d, $J = 22.8$ Hz, 3 H); 13C NMR (150 MHz, CDCl$_3$): δ 200.9 (d, $J = 19.5$ Hz), 150.0 (d, $J = 3$ Hz), 136.2 (s), 133.7 (s), 128.3 (s), 126.7 (s), 125.2 (d, $J = 6$ Hz), 95.7 (d, $J = 183$ Hz), 40.5 (d, $J = 24$ Hz), 21.6 (d, $J = 27$ Hz); 19F NMR (376 MHz, CDCl$_3$): δ -152.19; MS (EI) m/z (%): 164 (100), 149 (92).

2-fluoro-2-methyl-3,4-dihydronaphthalen-1(2H)-one (3af)27

Prepared by the general procedure at 25 °C for 96 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as colorless oil (31.5 mg, 88% yield.).

1H NMR (400 MHz, CDCl$_3$): δ 8.07 (dd, $J = 7.6$ Hz, 0.8 Hz, 1 H), 7.52 (td, $J = 7.6$ Hz, 1.6 Hz, 1 H), 7.35 (t, $J = 7.6$ Hz, 1 H), 7.26 (d, $J = 7.6$ Hz, 1 H), 3.21-3.14 (m, 1 H), 3.05-2.97 (m, 1 H), 2.54-2.45 (m, 1 H), 2.33-2.23 (m, 1 H), 1.60 (d, $J = 22$ Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$): δ 194.2 (d, $J = 18$ Hz), 142.7 (s), 134.0 (s), 130.7 (s), 128.7 (s), 128.3 (s), 127.1 (s), 93.7 (d, $J = 179$ Hz), 35.0 (d, $J = 23$ Hz), 26.2 (d, $J = 9$ Hz), 20.9 (d, $J = 25$ Hz); 19F NMR (376 MHz, CDCl$_3$): δ -152.70; MS (EI) m/z (%): 178 (27), 158 (15), 118 (100), 60 (25).
(1-fluorocyclohexyl)(phenyl)methanone (3ag)28

\begin{center}
\includegraphics[width=0.2\textwidth]{image}
\end{center}

Prepared by the general procedure at 100 °C for 96 h using a sealed tube. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as colorless oil (23.2 mg, 56% yield.).

\textbf{1H NMR} (600 MHz, CDCl\textsubscript{3}): \(\delta\) 8.05 (d, \(J = 7.8\) Hz, 2 H), 7.54 (t, \(J = 7.8\) Hz, 1 H), 7.43 (t, \(J = 7.8\) Hz, 2 H), 2.09-2.06 (m, 2 H), 1.98-1.87 (m, 2 H), 1.74-1.70 (m, 5 H), 1.38-1.34 (m, 1 H); \textbf{13C NMR} (150 MHz, CDCl\textsubscript{3}): \(\delta\) 201.3 (d, \(J = 27\) Hz), 134.9 (d, \(J = 3\) Hz), 132.8 (s), 129.8 (d, \(J = 7.5\) Hz), 128.2 (s), 100.9 (d, \(J = 183\) Hz), 33.2 (d, \(J = 22.5\) Hz), 24.8 (s), 21.1 (d, \(J = 1.5\) Hz); \textbf{19F NMR} (376 MHz, CDCl\textsubscript{3}): \(\delta\) -161.73; \textbf{MS} (El) \textit{m/z} (%): 206 (8), 105 (100), 77 (24).

2-fluoro-2-methyl-1-phenylpropan-1-one (3ah) 29

\begin{center}
\includegraphics[width=0.2\textwidth]{image}
\end{center}

Prepared by the general procedure at 80 °C for 120 h using a sealed tube. The reaction mixture was diluted with dichloromethane, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as colorless oil (24.5 mg, 74% yield.).

\textbf{1H NMR} (400 MHz, CDCl\textsubscript{3}): \(\delta\) 8.07 (d, \(J = 8.4\) Hz, 2 H), 7.56 (t, \(J = 7.6\) Hz, 1 H), 7.45 (t, \(J = 7.6\) Hz, 2 H), 1.70 (d, \(J = 21.6\) Hz, 6 H); \textbf{13C NMR} (100 MHz, CDCl\textsubscript{3}): \(\delta\) 200.9 (d, \(J = 26\) Hz), 134.2 (d, \(J = 4\) Hz), 133.1 (s), 129.9 (d, \(J = 8\) Hz), 128.3 (s), 99.9 (d, \(J = 180\) Hz), 25.7 (d, \(J = 24\) Hz); \textbf{19F NMR} (376 MHz, CDCl\textsubscript{3}): \(\delta\) -143.56; \textbf{MS} (El) \textit{m/z} (%): 166 (6), 105 (95), 77 (55), 57 (100).
2-fluoro-2-(phenylethynyl)cyclohexan-1-one (3ai) \(^7\)

\[
\text{\includegraphics[width=0.2\textwidth]{structures/3ai.png}}
\]

Prepared by the general procedure at 25 °C for 5 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as colorless oil (17.1 mg, 40% yield.).

\(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta\) 7.49-7.48 (m, 2 H), 7.40-7.38 (m, 1 H), 7.36-7.33 (m, 2 H), 2.86 (td, \(J = 13.2\) Hz, 6.0 Hz, 1 H), 2.60-2.52 (m, 2 H), 2.14-1.97 (m, 4 H), 1.77-1.70 (m, 1 H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 201.6 (d, \(J = 19\) Hz), 131.9 (d, \(J = 2\) Hz), 129.5 (s), 128.4 (s), 121.1 (d, \(J = 3\) Hz), 92.0 (d, \(J = 188\) Hz), 91.3 (d, \(J = 9\) Hz), 83.3 (d, \(J = 31\) Hz), 40.4 (d, \(J = 23\) Hz), 38.8 (s), 27.0 (s), 22.8 (d, \(J = 7\) Hz); \(^1^9\)F NMR (376 MHz, CDCl\(_3\)): \(\delta\) -146.36; MS (EI) \(m/z\) (%): 216 (58), 172 (100), 159 (85), 146 (69), 133 (48), 115 (28), 57 (15).

2-(3,3-dimethylbut-1-yn-1-yl)-2-fluorocyclohexan-1-one (3aj)

\[
\text{\includegraphics[width=0.2\textwidth]{structures/3aj.png}}
\]

Prepared by the general procedure at 25 °C for 5 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as colorless oil (13.8 mg, 35% yield.).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 2.78 (td, \(J = 13.6\) Hz, 6.0 Hz, 1 H), 2.51-2.45 (m, 1 H), 2.41-2.37 (m, 1 H), 2.07-1.88 (m, 4 H), 1.71-1.62 (m, 1 H), 1.25 (s, 9 H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 202.3 (d, \(J = 19\) Hz), 101.1 (d, \(J = 9\) Hz), 91.7 (d, \(J = 186\) Hz), 73.9 (d, \(J = 30\) Hz), 40.5 (d, \(J = 22\) Hz), 38.6 (s), 30.5 (s), 27.6 (s), 27.0 (s), 23.0 (d, \(J = 8\) Hz); \(^1^9\)F NMR (376 MHz, CDCl\(_3\)): \(\delta\) -146.02; HRMS (ESI) \(m/z\) calculated for C\(_{12}\)H\(_{17}\)FONa [M+Na]\(^+\) 219.1156, found 219.1159; MS (EI) \(m/z\) (%): 196 (2), 181 (30), 115 (11), 81 (25), 57 (100).
2-fluoro-2-(hex-1-yn-1-yl)cyclohexan-1-one(3ak)\(^7\)

\[
\begin{align*}
\text{Prepared by the general procedure at 25 }^\circ\text{C for 5 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as colorless oil (15.7 mg, 40% yield.).} \\
\text{\(1^H\) NMR (400 MHz, CDCl}_3\text{): } \delta 2.78 \text{ (td, } J = 13.2 \text{ Hz, } 6.0 \text{ Hz, 1 H}), 2.50 \text{ (dq, } J = 12.4 \text{ Hz, } 4.0 \text{ Hz, 1 H}), 2.41-2.36 \text{ (m, 1 H), 2.30 (q, } J = 6.8 \text{ Hz, 2 H), 2.06-1.89 \text{ (m, 4 H), 1.73-1.62 \text{ (m, 1 H), 1.55-1.50 (m, 2 H), 1.46-1.37 (m, 2 H), 0.92 (t, } J = 7.2 \text{ Hz, 3 H); } 1^C\text{ NMR (100 MHz, CDCl}_3\text{): } \delta 202.2 \text{ (d, } J = 19 \text{ Hz), 93.1 (d, } J = 9 \text{ Hz), 91.9 (d, } J = 186 \text{ Hz), 75.1 (d, } J = 30 \text{ Hz), 40.4 (d, } J = 23 \text{ Hz), 38.6 (s), 30.2 (s), 27.0 (s), 22.8 (d, } J = 8 \text{ Hz), 21.9 (s), 18.5 (s), 13.5 (s); } 19^F\text{ NMR (376 MHz, CDCl}_3\text{): } \delta -145.36; \text{ MS (EI) } m/z (\%) : 196 (6), 123 (71), 109 (76), 105 (37), 97 (100), 81 (38).}
\end{align*}
\]

\((2S, 5S)-2\text{-fluoro-2-isopropyl-5-methylcyclohexan-1-one (4a)\(}\)

\[
\begin{align*}
\text{Prepared by the general procedure at 25 }^\circ\text{C for 48 h. The reaction mixture was diluted with dichloromethane, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product 4a as a colorless oil (19.8 mg, 57% yield.), along with the product 4b as colorless oil (10.8 mg, 31% yield.).} \\
\text{\(1^H\) NMR (600 MHz, CDCl}_3\text{): } \delta 2.48 \text{ (dddd, } J = 13.2 \text{ Hz, } 4.8 \text{ Hz, 4.8 Hz, 2.2 Hz, 1 H), 2.35-2.22 (m, 2 H), 2.15 (dd, } J = 12.2 \text{ Hz, 12.2 Hz, 1 H), 1.99-1.92 \text{ (m, 1 H), 1.88-1.83 \text{ (m, 1 H), 1.77 (ddd, } J = 13.2 \text{ Hz, 13.2 Hz, 4.2 Hz, 1 H), 1.41 (ddd, } J = 14.4 \text{ Hz, 14.4 Hz, 3.6 Hz, 1 H), 1.05 (d, } J = 6.0 \text{ Hz, 3 H), 1.04 (d, } J = 6.6 \text{ Hz, 3 H), 0.88 (d, } J = 6.6 \text{ Hz, 3 H); } 1^C\text{ NMR (150 MHz, CDCl}_3\text{): } \delta 207.6 \text{ (d, } J = 12 \text{ Hz), 100.3 (d, } J = 192 \text{ Hz), 47.9 (s), 34.9 (s), 33.8 (d, } J = 21 \text{ Hz), 30.5 (d, } J = 10.5 \text{ Hz), 30.2 (d, } J = 22.5 \text{ Hz), 21.5 (s), 15.9 (d, } J = 3 \text{ Hz), 14.9 (d, } J = 3 \text{ Hz); } 19^F\text{ NMR (376 MHz, CDCl}_3\text{): } \delta -145.36; \text{ MS (EI) } m/z (\%) : 196 (6), 123 (71), 109 (76), 105 (37), 97 (100), 81 (38).}
\end{align*}
\]
NMR (376 MHz, CDCl$_3$): δ -175.73; HRMS (ESI) m/z calculated for C$_{10}$H$_{17}$FONa [M+Na]$^+$ 195.1156, found 195.1156; MS (EI) m/z (%): 172 (6), 128 (67), 84 (18), 69 (31), 57 (100). $[\alpha]_D^{27} = -111.5$ (c 1.0, CH$_2$Cl$_2$).

(2R,5S)-2-fluoro-2-isopropyl-5-methylcyclohexan-1-one (4b)

\[\text{\includegraphics[width=0.8\textwidth]{image}} \]

1H NMR (400 MHz, CDCl$_3$): δ 2.52 (ddd, $J = 12.4$ Hz, 10.0 Hz, 6.4 Hz, 1 H), 2.37 (dd, $J = 12.4$ Hz, 4.4 Hz, 1 H), 2.31-2.15 (m, 2 H), 2.04-1.96 (m, 1 H), 1.78-1.61 (m, 3 H), 1.04 (d, $J = 6.6$ Hz, 3 H), 0.97 (d, $J = 7.2$ Hz, 3 H), 0.94 (d, $J = 7.2$ Hz, 3 H); 19F NMR (376 MHz, CDCl$_3$): δ -168.78; HRMS (ESI) m/z calculated for C$_{10}$H$_{17}$FONa [M+Na]$^+$ 195.1156, found 195.1159; MS (EI) m/z (%): 172 (1), 84 (13), 69 (31), 57 (100). $[\alpha]_D^{27} = 27.6$ (c 1.1, CH$_2$Cl$_2$).

(1S,2S,5S)-2-fluoro-2,6,6-trimethylbicyclo[3.1.1]heptan-3-one (5a)

\[\text{\includegraphics[width=0.8\textwidth]{image}} \]

Prepared by the general procedure at 25 °C for 96 h. The reaction mixture was diluted with dichloromethane, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product 4a as colorless oil (13.9 mg, 41% yield.).

1H NMR (400 MHz, CDCl$_3$): 1H NMR (400 MHz, CDCl$_3$): δ 2.660-2.656 (m, 2 H), 2.53-2.47 (m, 1 H), 2.32 (ddd, $J = 6.0$ Hz, 6.0 Hz, 4.0 Hz, 1 H), 2.18-2.14 (m, 1 H), 1.68 (dd, $J = 11.2$ Hz, 1.2 Hz, 1 H), 1.49 (d, $J = 25.2$ Hz, 3 H), 1.39 (d, $J = 0.8$ Hz, 3 H), 0.87 (s, 3 H); 19F NMR (376 MHz, CDCl$_3$): δ -133.51; HRMS (ESI) m/z calculated for C$_{10}$H$_{16}$FO [M+H]$^+$ 171.1180, found 171.0995; MS (EI) m/z (%): 170 (2), 69 (64), 57 (100), 55 (85). $[\alpha]_D^{27} = -47.1$ (c 1.2, CH$_2$Cl$_2$).
Other fluorinated non-quaternary carbon products:

6-fluorotridecan-7-one (6a)

![Chemical structure of 6-fluorotridecan-7-one (6a)](image)

Prepared by the general procedure at 60 °C for 12 h under the refluxed conditions. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as white foam (9.6 mg, 22% yield.). (30.1 mg starting material (76%) was recovered.).

1H NMR (400 MHz, CDCl$_3$): δ 4.73 (ddd, $J = 50.4$ Hz, 8.0 Hz, 4.4 Hz, 1 H), 2.66-2.51 (m, 2 H), 1.88-1.70 (m, 2 H), 1.62-1.54 (m, 2 H), 1.48-1.40 (m, 2 H), 1.36-1.24 (m, 10 H), 0.91-0.87 (m, 6 H); 13C NMR (100 MHz, CDCl$_3$): δ 210.5 (d, $J = 25$ Hz), 96.1 (d, $J = 183$ Hz), 38.0, 32.0 (d, $J = 21$ Hz), 31.6, 31.3, 28.8, 24.20, 24.17, 22.63, 22.61, 22.5, 22.4, 14.0, 13.9; 19F NMR (376 MHz, CDCl$_3$): δ -191.88; HRMS (ESI) m/z calculated for C$_{13}$H$_{25}$FONa [M+Na]$^+$ 239.1782, found 239.1786; MS (EI) m/z (%): 216 (2), 113 (100), 85 (13), 71 (3).

9-fluorononadecan-10-one (6b)

![Chemical structure of 9-fluorononadecan-10-one (6b)](image)

Prepared by the general procedure at 60 °C for 12 h under the refluxed conditions. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as white foam (11.1 mg, 18% yield.). (43.6 mg starting material (77%) was recovered.).

1H NMR (600 MHz, CDCl$_3$): δ 4.72 (ddd, $J = 50.4$ Hz, 8.4 Hz, 4.2 Hz, 1 H), 2.63-2.52 (m, 2 H), 1.85-1.69 (m, 2 H), 1.59-1.57 (m, 2 H), 1.45-1.40 (m, 2 H), 1.32-1.27 (m, 22 H), 0.88 (t, $J = 7.2$ Hz, 6 H); 13C NMR (150 MHz, CDCl$_3$): δ 210.3 (d, $J = 22.5$ Hz), 96.1 (d, $J = 181.5$ Hz), 38.0, 32.1 (d, $J = 21.0$ Hz), 31.9, 31.8, 29.41, 29.37, 29.3, 29.24, 29.18, 29.1, 24.54, 24.52, 22.7, 22.63, 22.61, 14.0; 19F NMR (376 MHz, CDCl$_3$): δ -191.86; HRMS (ESI) m/z calculated for C$_{19}$H$_{37}$FONa [M+Na]$^+$ 323.2721, found 323.2722; MS (EI) m/z (%): 300 (1), 155 (6), 127 (10), 85 (44), 71 (60).
2-fluorocyclododecan-1-one (6c)

Prepared by the general procedure at 25 °C for 24 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as white foam (5.3 mg, 13% yield.). (28.5 mg starting material (78%) was recovered.).

1H NMR (600 MHz, CDCl$_3$): δ 4.87 (ddd, J = 49.2 Hz, 6.6 Hz, 4.2 Hz, 1 H), 2.79-2.75 (m, 1 H), 2.50-2.45 (m, 1 H), 2.01-1.94 (m, 2 H), 1.81-1.72 (m, 2 H), 1.43-1.22 (m, 14 H); 13C NMR (150 MHz, CDCl$_3$): δ 208.9 (d, J = 22.5 Hz), 95.7 (d, J = 183.0 Hz), 34.4, 29.7 (d, J = 21.0 Hz), 26.5, 26.2, 23.9, 23.4, 23.1, 22.5, 20.8, 19.5; 19F NMR (376 MHz, CDCl$_3$): δ -189.33; HRMS (ESI) m/z calculated for C$_{12}$H$_{21}$FONa [M+Na]$^+$ 223.1469, found 223.1471; MS (EI) m/z (%): 200 (11), 126 (16), 112 (39), 98 (100), 85 (52), 70 (23).

2-fluorocyclopentadecan-1-one (6d)

Prepared by the general procedure at 25 °C for 24 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as white foam (10.4 mg, 21% yield.). (34.5 mg starting material (77%) was recovered.).

1H NMR (600 MHz, CDCl$_3$): δ 4.81 (dt, J = 49.8 Hz, 5.4 Hz, 1 H), 2.82-2.76 (m, 1 H), 2.45-2.40 (m, 1 H), 1.94-1.85 (m, 2 H), 1.83-1.76 (m, 1 H), 1.60-1.54 (m, 1 H), 1.43-1.20 (m, 20 H); 13C NMR (150 MHz, CDCl$_3$): δ 210.5 (d, J = 25.5 Hz), 95.7 (d, J = 183.0 Hz), 37.4, 31.7 (d, J = 19.5
Hz), 27.4, 27.3, 26.8, 26.6, 26.5, 26.4, 26.3, 26.2, 22.34, 22.31, 21.6; 19F NMR (376 MHz, CDCl$_3$): δ -191.12; HRMS (ESI) m/z calculated for C$_{15}$H$_{27}$FONa [M+Na]$^+$ 265.1938, found 265.1942; MS (EI) m/z (%): 242 (3), 112 (37), 98 (100), 84 (37).

2-fluoro-3,4-dihydronaphthalen-1(2H)-one (6e)

Prepared by the general procedure at 80 °C for 120 h using a sealed tube. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as white foam (8.9 mg, 27% yield.). (20.4 mg starting material (70%) was recovered.).

1H NMR (400 MHz, CDCl$_3$): δ 8.06 (dd, J = 8.0 Hz, 1.2 Hz, 1 H), 7.54 (td, J = 8.8 Hz, 1.6 Hz, 1 H), 7.36 (t, J = 7.6 Hz, 1 H), 7.28 (d, J = 7.2 Hz, 1 H), 5.17 (ddd, J = 48.0 Hz, 12.8 Hz, 5.2 Hz, 1 H), 3.16-3.13 (m, 2 H), 2.64-2.55 (m, 1 H), 2.42-2.29 (m, 1 H); 13C NMR (100 MHz, CDCl$_3$): δ 193.4 (d, J = 14 Hz), 142.9, 134.1, 131.1, 128.6, 127.7 (d, J = 3 Hz), 127.1, 91.2 (d, J = 187 Hz), 30.1 (d, J = 19 Hz), 27.0 (d, J = 11 Hz); 19F NMR (376 MHz, CDCl$_3$): δ -190.29; MS (EI) m/z (%): 164 (74), 118 (100), 90 (77).

2-fluoro-4,4-dimethylcyclohexan-1-one (6f)

Prepared by the general procedure at 25 °C for 168 h. The reaction mixture was diluted with ethyl acetate, and washed, dried, filtered, and concentrated. The purification of the residue by flash column chromatography afforded the product as a white crystal (10.1 mg, 35% yield.). m. p. = 80.2-81.2 °C.

1H NMR (600 MHz, CDCl$_3$): δ 5.02 (ddd, J = 48.0 Hz,12.0 Hz, 6.6 Hz, 1 H), 2.51 (td, J = 13.8 Hz, 6.0 Hz, 1 H), 2.46-2.41 (m, 1 H), 2.21-2.16 (m, 1 H), 1.81-1.59 (m, 3 H), 1.24 (s, 3 H), 1.10 (s, 3 H); 13C NMR (100 MHz, CDCl$_3$): δ 205.9 (d, J = 14 Hz), 90.2 (d, J = 188 Hz), 46.1 (d, J = 16 Hz), 39.1, 36.4, 32.2 (d, J = 10 Hz), 31.0, 24.6; 19F NMR (376 MHz, CDCl$_3$): δ -193.50; HRMS (ESI)
3.6 The detailed structural determination of products (4a, 4b, and 5a)

In order to determine the stereochemistry of three products (4a, 4b, and 5a), some 1D and 2D NMR experiments were conducted. For the details, please see below:

For products 4a and 4b:

Product 4a:

In order to rapidly identify the configuration of tri-substituted 2-fluoro cyclohexanones, Solladie-Cavallo and coworker extensively investigated the NMR data of these compounds, resulting in the unambiguous assignment of the axial or equatorial position of the fluoro atom by the proton non-equivalence, the F-H and F-C coupling constants, and the values of J_{FH}.

Generally, the four following conclusions could be applied for the determination of the configuration of tri-substituted 2-fluoro cyclohexanones.

Rule 1:

“The geometrical dependence of J_{FH}: J_{FH} axial/axial = 35-40 Hz (fluorine axial) > J_{FH} equatorial/axial = 13-13.5 Hz (fluorine equatorial) > J_{FH} axial/equatorial = 10-12 Hz (fluorine axial) >> J_{FH} (equatorial/equatorial) = 3-4 Hz (fluorine equatorial).”

Rule 2:

“The non-equivalence $\Delta \delta_{6e-6a}$ (between H6e and H6a): $\Delta \delta_{6e-6a}$ is positive when the fluorine atom is equatorial (+0.24 to +0.52 ppm) but negative when the fluorine atom is axial (-0.17 to -0.77 ppm).”

Rule 3:

“The tri-substituted ketones exhibit clear geometrical dependence of J_{FH} between F
and protons H6 (with significantly different values of $^4J_{FH}$): $^4J_{FH}$ axial/axial = 6 Hz $>$ $^4J_{FH}$ equatorial/equatorial = 3-4 Hz $>$ $^4J_{FH}$ axial/equatorial = 1.5 Hz $>$ $^4J_{FH}$ equatorial/axial = 0 Hz."

Rule 4:

"The one-bond coupling constant between F and C2 ($^1J_{FC2}$) reflects the equatorial or axial position of C-F with a 10-14 Hz smaller value when the fluorine is axial ($^1J_{FC2} = 171-172$ Hz) than when the fluorine is equatorial ($^1J_{FC2} = 182-186$ Hz). ..., Similarly the two–bonds coupling constant between F and C1 ($^2J_{FC1}$) reflects also the equatorial or axial position of C-F with a smaller value of $^2J_{FC1}$ (16-18 Hz) when the fluorine is equatorial than when the fluorine is axial (24-25 Hz)."

According to the four conclusions deduced by Solladie-Cavallo, and the combination of the NMR spectra of products (4a and 4b) and the fact that C-5 was not involved in the current fluorinated process, so the stereochemistry of products 4a and 4b were shown in Figure S2.

![Figure S2](attachment:FigureS2.png)

Figure S2 The chemical structures of products (4a and 4b) and the corresponding NOE experiments
The detailed analyses of product 4a were described as followed:

The corresponding NMR spectroscopic analysis of product 4a (¹H NMR, ¹³C NMR, DEPT, COSY, HSQC, HMBC etc.) was carried out, and the chemical shifts of protons H-3 —— H-10 and the J values were listed as follows:

H-3e (1.88-1.83, m), H-3a (1.41, ddd, J = 14.4 Hz, 14.4 Hz, 3.6 Hz);
H-4a (2.35-2.29, m), H-4e (1.77, ddd, J = 13.2 Hz, 13.2 Hz, 4.2 Hz);
H-5a (1.99-1.92, m);
H-6e (2.48, dddd, J = 13.2 Hz, 4.8 Hz, 4.8 Hz, 2.2 Hz), H-6a (2.15, dd, J = 12.2 Hz, 12.2 Hz);
H-7 (1.05, d, J = 6.0 Hz);
H-8 (2.27-2.22, m);
H-9 (1.04, d, J = 6.6 Hz);
H-10 (0.88, d, J =6.6 Hz);

The F atom is equatorial based on the following analyses.

① The value of ³JFH of H-3 is 14.4 Hz, indicating that the F should be equatorial (Rule 1).

② The value of Δδ (6e-6a) is 0.32 > 0, indicating that the fluorine atom should be equatorial (Rule 2).

③ The value of ⁴JFH-6 = 0 Hz, indicating that the fluorine atom should be equatorial (Rule 3).

④ From the J values (¹JFC2 = 191 Hz and ²JFC1 = 10 Hz of product 4a), we could deduced that F should be equatorial (Rule 4), and this conclusion is further confirmed by the ¹JFC2 = 181 Hz and ²JFC1 = 24 Hz of product 4b (Rule 4).

Therefore, the isopropyl group at C-2 position should be axial.

Importantly, the NOE experiments was used to further assign the configuration of C-2
of product 4a. The positive correlation between both H-6a/H-10 and H-4a/H-10 were observed, and the correlation between H-6e/H-5 was also observed. These experimental results indicated that the isopropyl group should be axial, which further confirmed the abovementioned conclusion.

As discussed above, the chemical structure of product 4a is elucidated as shown in Figure S2.

As a consequence, another isomer 4b should be assigned as shown in Figure S2.

Actually, the similar analytical process of product 4b have also been performed.

Based on the 1DNMR and 2DNMR, the chemical shifts of protons (H-3-H-10) and the J values of product 4b were listed as follows:

- H-3e (2.20-2.15, m), H-3a (1.78-1.63, m);
- H-4 (1.78-1.61, m, 2 H);
- H-5 (2.04-1.96, m);
- H-6a (2.52, ddd, $J = 12.4$ Hz, 10.0 Hz, 6.4 Hz); H-6e (2.37, dd, $J = 12.4$ Hz, 4.4 Hz);
- H-7 (1.04, d, $J = 6.6$ Hz);
- H-8 (2.29-2.19, m);
- H-9 (0.97, d, $J = 7.2$ Hz);
- H-10 (0.94, d, $J = 7.2$ Hz);

The F atom is axial based on the following analyses.

1. The combination of J value of H6a (12.4 Hz, 10.0 Hz, 6.4 Hz) and J value of H6e (12.4 Hz, 4.4 Hz.) could be concluded that the fluorine atom is axial (Rule 1). Moreover, the value of $^4J_{FH6} = 6.4$ Hz is also in accordance with the above conclusion (Rule 3).

2. The non-equivalence $\Delta\delta{6e-6a} = -0.16 < 0$, indicating that the fluorine atom should be axial (Rule 2).

3. The combination of J values ($^1J_{FC2} = 181$ Hz and $^2J_{FC1} = 24$ Hz) could be determined
that F should be in axial (Rule 4).

Additionally, the NOE experiments of product 4b were also used to further assign the configuration of C-2 of product 4b. The positive correlation between H-6a/H-7 was observed, indicating that H-5 should be axial. Importantly, the NOE correlation of both H-5a/H-3a and H-3a/H-10 could be concluded that isopropyl group should be axial.

For product 5a:

Because the stereocenters at C-3 and C-5 position of the starting material 5 is not involved in the current fluorinated process, the stereochemistry of C-2 was proposed as followed:

In principle, the relative stereochemistry of C-2 of the compound 5a might be elucidated in terms of the coupling constant between H-3 and F-2 as well as the NOE experiments.

Figure S3. The chemical structures of product 5a and the corresponding NOE experiments

The corresponding NMR spectroscopic analysis of product 5a (1H NMR, 13C NMR, DEPT, COSY, HSQC, HMBC etc.) was carried out first, and the chemical shifts of protons (H-2 - H-10) and the J values of compound 5a were listed as follows:

H-3 (2.32, ddd, J = 6.0 Hz, 6.0 Hz, 4.0 Hz).

H-4a (1.68, dd, J = 11.2 Hz, 1.2 Hz); H-4e (2.53-2.47, m);
H-5 (2.18-2.14, m);
H-6 (2.660-2.656, m, 2H)
H-8 (1.39, d, $J = 0.8$ Hz);
H-9 (0.87, s);
H-10 (1.49, d, $J = 25.2$ Hz).

① Apparently, it can be seen that the 3J (H-F) was less than 8.0 Hz, implying the cis configuration between H-3 and F-2 as shown in Figure S3 (Note: Generally, $^3J_{a,e}$ (H-F) more than 10 Hz in cyclohexane ring system). If the F-2 stereochemistry was reversed, the value of 3J (H3-F2) would be usually more than 10 Hz in the more favorable conformation (Note: $^3J_{a,e} > 10$ Hz in cyclohexane ring system). So, we can conclude a cis-configuration at F-2 and H-3 in compound 5a.

② In addition, the NOE experiment was used to further assign the stereochemistry of C-2.

a) The obvious NOEs between H8/H-3, H8/H-5 and H8/H4 were observed for product 5a, and these results indicate CH$_3$-8 should be equatorial, therefore CH$_3$-9 should be axial.

b) The obvious NOEs between H-9/H-10 and H-10/H-6 were observed in product 5a, and these results indicate CH$_3$-10 should be axial.

In all, the structural identification of product 5a based on NOE experiments is also consistent with the assignment of stereochemistry at C-2 using J value.
4. References

<table>
<thead>
<tr>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.473</td>
</tr>
<tr>
<td>7.470</td>
</tr>
<tr>
<td>7.440</td>
</tr>
<tr>
<td>7.410</td>
</tr>
<tr>
<td>7.390</td>
</tr>
<tr>
<td>7.370</td>
</tr>
<tr>
<td>7.350</td>
</tr>
<tr>
<td>7.330</td>
</tr>
<tr>
<td>7.310</td>
</tr>
<tr>
<td>7.290</td>
</tr>
<tr>
<td>7.270</td>
</tr>
<tr>
<td>7.250</td>
</tr>
<tr>
<td>7.230</td>
</tr>
<tr>
<td>7.210</td>
</tr>
<tr>
<td>7.190</td>
</tr>
<tr>
<td>7.170</td>
</tr>
<tr>
<td>7.150</td>
</tr>
<tr>
<td>7.130</td>
</tr>
<tr>
<td>7.110</td>
</tr>
<tr>
<td>7.090</td>
</tr>
<tr>
<td>7.070</td>
</tr>
<tr>
<td>7.050</td>
</tr>
<tr>
<td>7.030</td>
</tr>
<tr>
<td>7.010</td>
</tr>
<tr>
<td>6.990</td>
</tr>
<tr>
<td>6.970</td>
</tr>
<tr>
<td>6.950</td>
</tr>
<tr>
<td>6.930</td>
</tr>
<tr>
<td>6.910</td>
</tr>
<tr>
<td>6.890</td>
</tr>
</tbody>
</table>

The diagram shows the NMR spectrum of compound 3b, with peaks at various ppm values.
3c
3d
3f
3f
3g
^{1}H NMR (400 MHz, CDCl$_3$): δ 205.94, 134.92, 134.90, 134.87, 128.68, 127.57, 98.89, 77.31, 77.00, 76.68, 39.63, 38.39, 38.17, 27.45, 21.72 ppm
3g
3h
$3h$
3k
[Image of a molecule with labels 3l]
\[\text{3o} \]
3q
3r
3u
\[3w\]
3aa
3aa
3ac
3ac
3ad
3ad
3ae
3ae
3ae
3ag

O

F

$\text{S}137$

$\text{S}137$
3ag
3ah
3ah
3ai
3aj
3aj
3aj

3ak
3ak
$4b$
5a
$6b$
6c
$6c$
^{19}F