Does Deamidation of Islet Amyloid Polypeptide Accelerate Amyloid Fibril Formation?

Yuko P. Y. Lam, Christopher A. Wootton, Ian Hands-Portman; Juan Wei, Cookson K. C. Chiu, I. Romero-Canelon, Frederik Lermyte, Mark P. Barrow, and Peter B. O'Connor

Electronic Supplementary Information

Experimental Procedure

Sample preparation for deamidated hIAPP and fibrils. Wild-type hIAPP lyophilized powder (Sigma Aldrich Company Ltd, Dorset, England) was dissolved in Milli-Q (Direct-Q® 3 UV System, Millipore Corporation, US) H₂O (~pH 7.5) at a concentration of 500 µM and further diluted into 10 uM solution. The 10 µM hIAPP aqueous solution was incubated for 28 days (4 weeks). The incubated solution was then centrifuged at 14,000 rpm for one hour to separate the soluble hIAPP (supernatant) from the insoluble hIAPP fibril (fibrillary pellet). The supernatant solution containing soluble hIAPP was then diluted 20-fold with 49.5:49.5:1 water/acetonitrile/formic acid prior to MS analysis. hIAPP fibrillary pellets from 7-, 14-, 21-, and 28-day solutions were rinsed with 100 µL Milli-Q H₂O three times and then re-dissolved with 20 µL of 47.5:47.5:5 water/acetonitrile/formic acid, and sonicated in water bath at 37 °C for one Re-dissolved samples were further diluted with 80 µL of 50:50 hour. water/acetonitrile. The final concentration of formic acid in solutions was 1% (mol/mol).

Sample preparation for seeding mutant peptides. Wild-type hIAPP lyophilized powder and synthetic mutant hIAPPs (Pepscan Company Ltd, The Netherlands) were dissolved in Milli-Q H₂O to a concentration of 500 μ M. The seeding experiments were performed by mixing wild-type hIAPP stock solution with 5%, 10%, 25%, or 50% mutant ((D)₃hIAPP) or ((isoD)₃hIAPP) solutions. Samples were then diluted to a final concentration of 10 μ M wild-type hIAPP plus mutant ((D)₃hIAPP) or ((isoD)₃hIAPP), which were incubated for 1 week at 37°C. The supernatants and fibrillary pellets were separated and prepared as mentioned above.

FTICR MS analysis. Mass spectra were acquired on a 12 tesla solariX FTICR MS (Bruker Daltonik GmbH, Bremen, Germany). All samples were analyzed in positive ionization mode. For the detection of deamidated hIAPP and dissociated fibrils, an Apollo II electrospray ionization (ESI) source (Bruker Daltonik GmbH, Bremen, Germany) was used with a capillary voltage of 4-4.5 kV. The ESI flow rate was optimized to 100-150 µL/h and the source temperature was set to 200°C. Ions were externally accumulated in a hexapole collision cell before transferred to an infinity cell (ICR cell) for excitation and detection.¹ Data obtained from FTICR-MS were analyzed using Bruker DataAnalysis 4.2 software (Bruker Daltonics, Bremen, Germany). For the CAD experiments, precursor ions were first isolated using the quadrupole mass filter, then collided with argon gas and accumulated in the collision cell. The collision energy was optimized to 2-18 V and the ion accumulation time to 1-3 seconds. Fragments were then transferred to the infinity cell for detection. The most intense isotopic peak from each fragment with signal-to-noise ratio (S/N) over 5 was manually matched with the theoretical m/z. All of the fragments were internally calibrated and then assigned with an uncertainty less than 1 part-per-million (ppm).

Quantification of deamidated/ mutant hIAPP in solutions and fibrillary pellets.

The monoisotopic peak area of non-deamidated and deamidated/mutant hIAPP peaks were measured using Bruker DataAnalysis 4.2 software. The percentage of deamidated hIAPP (%) was calculated as follows:

 $Deamidated (\%) = \frac{Peak area of deamidated hIAPP}{Sum of Peak area of deamidated hIAPP and nondeamidated hIAPP} x 100\%$

The same calculation method was applied to obtain the percentage of mutant hIAPP against wild-type hIAPP.

Transmission electron microscopy (TEM). The TEM images of the incubated solutions, including 10 μ M wild-type hIAPP, 10 μ M mutant ((D)₃hIAPP), and 10 μ M mutant ((isoD)₃hIAPP) solution were acquired on a Jeol 2010F TEM operated at 200 kV. 10 μ L of incubated solution was transferred onto a carbon-coated grid and settled for one minute, followed by removing the excess solution using filter paper. A 2% (w/v) uranyl acetate solution was used for the negative stain. Multiple images with magnification from x10,000 to x40,000 were acquired.

Thioflavin T (ThT) fluorescence reactivity. The fluorescence reactivity of the 10 μ M hIAPP, mutant ((D)₃hIAPP), mutant ((isoD)₃hIAPP), and hIAPP seeding solutions were measured using a GloMax®-Multi Detection System (Promega; Wisconsin, USA). All samples were placed in a black 96 well-plate and mixed with 10 μ M ThT aqueous solution. Fluorescence spectra of the samples were acquired every 45 minutes with excitation at 405 nm and emission measurement at 490 nm, in a similar fashion to Chan *et al.*^{2, 3} The intensities obtained from the fluorescence spectrometer were normalized to the signal intensity of the most mature fibril.

Deamidated (D)3hIAPP: KCNTATCATQ RLANFLVHSS DDFGAILSST NVGSDTY-NH2 Deamidated (isoD)3hIAPP: KCNTATCATQ RLANFLVHSS (isoD)(isoD)FGAILSST NVGS(isoD)TY-NH2

Figure S1. Sequences of synthetic mutant hIAPPs. As residues at position 21, 22, and 35 are replaced with aspartic acid – deamidated ($(D)_3$ hIAPP) or iso-aspartic acid – deamidated ($(isoD)_3$ hIAPP) in order to act as deamidation mimics.

Figure S2. (A) Summary of a-, c-, y-, and z-ion fragments observed in the (B) ECD MS/MS spectrum of the 7+ charge state ((D)₃hIAPP) dimer. Highlighted sequence represents the proposed non-covalent interaction region. The side chain losses were not labeled for clarity. The assigned fragments are listed in the ESI Table S1.

Assignment Table of the ECD MS/MS of 7+ charge state ((D)₃hIAPP) dimer

lon	charge	Theoretical m/z	Experimental m/z	Error (ppm)	lon	charge	Theoretical m/z	Experimental m/z	Error (ppm)
MH	4+	977.462474	977.461786	-0.704	M+c32	4+	1822.618557	1822.618598	0.022
MH	3+	1302.279143	1302.279165	0.017	M+c33	5+	1469.700594	1469.701214	0.422
MH	2+	1952.915077	1952.915991	0.468	M+c33	4+	1837.376472	1837.376990	0.282
2[MH]	7+	1116.383162	1116.383047	-0.103	M+c34	5+	1487.107000	1487.107008	0.005
2[MH]	6+	1303.115465	1303.115560	0.073	M+c34	4+	1858.883887	1858.885137	0.672
2[MH]	5+	1563.738667	1563.738999	0.212	M+c35	6+	1258.761936	1258.761197	-0.587
2[MH]	4+	1954.673471	1954.674185	0.365	M+c35	5+	1510.312868	1510.313214	0.229
2[MH]	3+	2605.897413	2605.897274	-0.053	M+c35	4+	1887.891222	1887.892061	0.444
a14	2+	724.354565	724.354485	-0.110	M+c36	6+	1275.603219	1275.603240	0.016
a15	2+	797.888772	797.888565	-0.259	M+c36	5+	1530.924420	1530.924741	0.210
a17	2+	903.965011	903.965096	0.094	M+z3	3+	1429.328685	1429.329245	0.392
a18	2+	972.494467	972.494518	0.052	M+z4	3+	1458.339361	1458.339476	0.079
a22	2+	1174.553438	1174.553758	0.272	M+z5	3+	1477.346514	1477.347034	0.352
a23	2+	1248.087645	1248.088012	0.294	M+z6	3+	1510.369320	1510.368816	-0.334
a25	2+	1312.116934	1312.116940	0.005	M+z7	3+	1548.049351	1548.049768	0.269
c3	1+	362.173076	362.173008	-0.188	M+z7	2+	2323.077144	2323.078314	0.504
c5	1+	534.257869	534.257735	-0.251	M+z8	3+	1582.400354	1582.401276	0.583
c6	1+	636.313372	636.313252	-0.189	M+z9	3+	1611.746974	1611.746129	-0.524
c7	1+	737.306908	737.306867	-0.056	M+z10	3+	1639.753258	1639.752527	-0.446
c8	1+	808.344022	808.344002	-0.025	M+z11	4+	1258.839125	1258.839009	-0.092
c9	1+	909.391701	909.391767	0.073	M+z11	3+	1677.447952	1677.448418	0.278
c10	1+	1037.450279	1037.450336	0.055	M+z12	4+	1287,110147	1287.110616	0.364
c11	2+	597.279333	597,279236	-0.162	M+z12	3+	1715.811104	1715.812415	0.764
c11	1+	1193.551390	1193.551711	0.269	M+z13	4+	1304.869427	1304.869520	0.071
c12	2+	653.821365	653.821279	-0.132	M+z13	3+	1738.821678	1738.820724	-0.549
c13	2+	689.339922	689.339851	-0.103	M+z14	4+	1318.623443	1318.623618	0.133
c13	1+	1377.672568	1377.673273	0.512	M+z14	3+	1757.828832	1757.829443	0.348
c14	2+	746.361386	746.361348	-0.051	M+z14	2+	2637.748852	2637.749391	0.204
c15	2+	819.895593	819.895538	-0.067	M+715	4+	1355,390547	1355.390850	0.224
c16	2+	876.437625	876,437608	-0.019	M+z15	3+	1807 856058	1807 856916	0.475
c17	2+	925 971832	925 971879	0.051	M+z16	4+	1384 147283	1384 147298	0.011
c18	2+	994 501288	994 501285	-0.003	M+z16	3+	1846 532522	1846 533255	0.397
c19	2+	1038 017303	1038 017350	0.045	M+z16	2+	2769 799453	2769 799567	0.041
c20	2+	1081 533317	1081 533397	0.074	M+717	4+	1412 904019	1412 904502	0.342
c21	2+	1139 046789	1139 046866	0.068	M+717	3+	1884 874843	1884 874962	0.042
c22	2+	1196 560261	1196 560497	0.000	M+718	4+	1/3/ 012737	1/3/ 91303/	0.003
c23	3+	847 065404	847 065401	-0.004	M+718	3+	1013 885523	1013 885817	0.154
023	2+	1270 094468	1270 09/6/8	0.142	M+710	4+	1456 420033	1456 420138	0.134
020	3+	866 072559	866 072757	0.229	M+710	3+	1042 806202	1942 805513	0.355
024	3+	880 751507	889 751369	0.225	M+719	2+	2014 846456	2014 846774	0.333
025	2+	133/ 1238/0	1334 123808	-0.230	M+-219	4	1401 196124	1401 196700	0.105
025	2+	027 446285	027 446207	-0.031	M+720	2+	1491.100124	1099 593200	0.380
026	2+	1200 665790	1200 665049	0.013	N+-21	4+	1515 052307	1515 052422	0.444
020	2+	065 140072	065 141252	0.114	N+=21	4T 2+	2021 605220	2021 606146	0.133
027	2+	1447 700221	1447 700700	0.290	N1+221	31	2021.005520	2021.000140	0.409
027	2+	004 151640	004 151665	0.337	IVI+222	4+	1044.224202	1044.224620	0.500
020	3+	1002 160205	1022 162402	0.016	N1+222	3+	2059.300020	2059.301231	0.000
029	2+	1525.102325	1525.102402	0.075	N+7223	4+T 2+	2109 222942	2109 222967	0.230
029	2+	1056 944995	1056 844020	0.033	N1+223	3T	1600 000716	1600.001072	0.400
-20	3+	1000.044000	1056.644929	0.042	NI+Z24	4+	1609.000716	1609.001073	0.222
-24	2+	1004.703090	1564.764560	0.549	NI+224	3+	2140.337153	2146.338370	0.567
C31	3+	1094.859194	1094.859257	0.058	NI+Z25	4+	1627.512008	1627.512728	0.442
C31	2+	1642.286550	1642.287622	0.653	M+Z25	3+	2170.350335	2170.351553	0.561
C32	3+	1127.881999	1127.882005	0.005	M+226	5+	1324.827880	1324.828098	0.165
C32	2+	1692.823617	1692.824904	0.760	M+226	4+	1655.783031	1655.783641	0.368
C33	3+	1146.889154	1146.889155	0.001	M+226	3+	2208.046833	2208.046628	-0.093
C34	3+	1175.899830	1175.899842	0.010	M+z27	5+	1356.048099	1356.048275	0.130
c34	2+	1763.346107	1763.347520	0.801	M+z27	4+	1695.060261	1695.060689	0.252
c35	3+	1214.576411	1214.576892	0.396	M+z27	3+	2260.080530	2260.081089	0.247
c35	2+	1820.859579	1820.859860	0.154	M+z28	5+	1381.659815	1381.660080	0.192
c36	3+	1247.924704	1247.924446	-0.207	M+z28	4+	1726.824267	1726.824613	0.200
y3	1+	397.171777	397.171687	-0.227	M+z29	5+	1402.069844	1402.070205	0.257
y4	1+	484.203806	484.203654	-0.314	M+z29	4+	1752.086188	1752.086770	0.332
y5	1+	541.225270	541.225155	-0.212	M+z30	5+	1416.076777	1416.077014	0.167
y6	1+	640.293684	640.293629	-0.086	M+z30	4+	1770.096109	1770.096483	0.211
y7	1+	754.336612	754.336600	-0.016	M+z30	3+	2359.792401	2359.792212	-0.080
y8	1+	855.384291	855.384408	0.137	M+z34	5+	1491.103517	1491.103695	0.119
y9	1+	942.416320	942.416439	0.126	M+z34	4+	1864.130123	1864.130663	0.290
y10	1+	1029.448349	1029.448387	0.037	M+z34	3+	2485.507093	2485.507949	0.344
y13	1+	1326.653591	1326.653604	0.010	M+z35	5+	1513.912103	1513.912030	-0.048
z2	1+	266.126109	266.126109	0.000	M+z36	5+	1534.713228	1534.713352	0.081
z3	1+	382.160877	382.160842	-0.092	M+z36	4+	1918.141132	1918.141936	0.419
z4	1+	467.177255	467.177105	-0.321				Average Error:	0.124
z5	1+	526.214369	526.214234	-0.257				Absolute Average Error:	0.236
z27	2+	1435.701402	1435.700996	-0.283				Standard Deviation:	0.278
M+c31	5+	1438.883524	1438.884166	0.446				Standard Deviation.	0.210
M+c32	5+	1458.496774	1458.496281	-0.338					

Table S1. List of the assigned fragments from the ECD MS/MS spectrum of the 7+charge state ($(D)_3hIAPP$) dimer ion. M represents one ($(D)_3hIAPP$) unit.

Figure S3. (A) Summary of a-, c-, y-, and z-ion fragments observed in the (B) ECD MS/MS spectrum of the 7+ charge state ((isoD)₃hIAPP) dimer. Highlighted sequence represents the proposed non-covalent interaction region. The side chain losses were not labeled for clarity. The assigned fragments are listed in the ESI Table S2.

Assignment '	Table of	the ECD	MS/MS of
7+ charge s	state ((is	oD),hIAF	PP) dimer

Туре	lon	charge	Theoretical m/z	Experimental m/z	Error (ppm)	Туре	lon	charge	Theoretical m/z	Experimental m/z	Error (ppm)
MH	MH	4+	977.211884	977.211677	-0.212	M+c	34	5+	1487.105911	1487.106523	0.412
MH	MH	3+	1302.279143	1302.279080	-0.048	M+c	34	4+	1858.883887	1858.883845	-0.023
MH	MH	2+	1952.915077	1952.915655	0.296	M+c	35	6+	1258.761936	1258.761954	0.014
2[MH]		(+ 6)	1110.383162	1116.383218	0.050	M+C	35	5+	1510.312868	1510.312981	0.075
		6+	1503.113403	1562 729712	0.101	IVI+C	35	4+	1007.091222	1087.091000	0.150
		+0	1054 672471	1054 670757	0.029	IVI+C	30	6+	1275.603219	1275.003310	0.076
Z[IVITI]	2[111]	2+	1248 087645	1248 087703	-0.303	NI+C	24	5+	1000.924420	1409 707610	-0.142
a	24	2+	1277 099772	1277 099889	0.092	M+c	341	4+	1873 1310/3	1873 132005	0.407
2	24	2+	1312 116934	1312 117109	0.133	M+7	2	4+	1301 65/617	1391 655808	0.514
c	3	1+	362 173076	362 173033	_0 119	M+Z	2	3+	1420 328685	1429 329444	0.531
c	6	1+	636 313372	636 313275	-0.152	M+z	4	3+	1458 339361	1458 340006	0.442
C	7	1+	737 306908	737 306876	-0.043	M+z	5	3+	1477 680667	1477 680895	0.154
c	8	1+	808 344022	808.343966	-0.069	M+z	6	3+	1510 369320	1510 368775	-0.361
C	9	1+	909 391701	909 391605	-0 106	M+z	7	3+	1548 049351	1548 049654	0.196
c	10	1+	1037,450279	1037.450277	-0.002	M+z	7	2+	2323 578098	2323 578660	0.242
C	11	2+	597.279333	597,279315	-0.030	M+z	8	3+	1582 400354	1582 401094	0.468
c	11	1+	1193,551390	1193,551247	-0.120	M+z	9	3+	1611.746974	1611 746700	-0.170
C	12	2+	653.821365	653,821303	-0.095	M+z	10	4+	1230 568102	1230 567991	-0.090
с	13	2+	689.339922	689,339931	0.013	M+z	10	3+	1639 753258	1639 753036	-0.135
С	14	2+	746.361386	746,361372	-0.019	M+z	11	4+	1258 839125	1258 839593	0.372
с	15	2+	819.895593	819.895597	0.005	M+z	11	3+	1677.447952	1677.447828	-0.074
С	16	2+	876.437625	876.437697	0.082	M+z	12	4+	1287,110147	1287,110909	0.592
с	17	2+	925.971832	925.971846	0.015	M+z	12	3+	1715.811104	1715.811618	0.300
С	18	2+	994.501288	994.501292	0.004	M+z	13	4+	1304 869427	1304 869611	0.141
с	19	2+	1038.017303	1038.017376	0.070	M+z	13	3+	1738.821678	1738.821082	-0.343
С	20	2+	1081.533317	1081.533351	0.031	M+z	14	4+	1318.623443	1318.623189	-0.193
с	21	3+	759.700285	759.700251	-0.045	M+z	14	3+	1757.828832	1757.829081	0.142
с	21	2+	1139.046789	1139.046820	0.027	M+z	14	2+	2638,247419	2638.246892	-0.200
С	22	3+	798.042599	798.042537	-0.078	M+z	15	4+	1355.390547	1355.390795	0.183
С	22	2+	1196.560261	1196.560293	0.027	M+z	15	3+	1807.856058	1807.856380	0.178
С	23	3+	847.065404	847.065386	-0.021	M+z	16	4+	1384.147283	1384.147411	0.092
С	23	2+	1270.094468	1270.094418	-0.039	M+z	16	3+	1846.532522	1846.532903	0.206
С	24	3+	866.072559	866.072652	0.107	M+z	16	2+	2769.295145	2769.294672	-0.171
С	25	3+	889.751597	889.751696	0.111	M+z	17	4+	1412.904019	1412.903882	-0.097
С	25	2+	1334.123849	1334.123757	-0.069	M+z	17	3+	1884.874843	1884.874708	-0.072
С	26	3+	927.446285	927.446286	0.001	M+z	18	4+	1434.912737	1434.912984	0.172
С	26	2+	1390.665789	1390.666501	0.512	M+z	18	3+	1913.885523	1913.885178	-0.180
С	27	3+	965.140973	965.140963	-0.010	M+z	19	4+	1456.420033	1456.420238	0.141
С	27	2+	1447.709221	1447.709778	0.385	M+z	19	3+	1942.896202	1942.895988	-0.110
С	29	3+	1023.162325	1023.162215	-0.108	M+z	20	4+	1491.186124	1491.186435	0.209
С	29	2+	1534.239850	1534.239965	0.075	M+z	20	3+	1988.582507	1988.582942	0.219
С	30	3+	1056.844885	1056.844848	-0.035	M+z	21	4+	1515.953231	1515.953379	0.098
С	30	2+	1584.763690	1584.763724	0.021	M+z	21	3+	2021.605320	2021.605553	0.115
С	31	3+	1094.859194	1094.859270	0.069	M+z	22	4+	1544.224252	1544.224504	0.163
C	31	2+	1042.787950	1642.788594	0.366	M+z	22	3+	2059.300020	2059.300910	0.432
C	32	3+	1127.881999	1127.881584	-0.368	M+z	23	4+	1580.489984	1580.489808	-0.111
C	32	2+	1146 990454	1146 999001	0.794	M+z	23	3+	2108.322843	2108.323448	0.287
0	22	2+	1720 221400	1720 222142	-0.221	M+z	24	4+	1609.000716	1609.000938	0.138
0	24	2+	1175 900920	1175 900626	0.300	M+z	24	3+	2146.337153	2146.337709	0.259
c	34	2+	1763 346107	1763 346490	-0.105	M+z	25	4+	1627.512008	1627.512645	0.391
0	35	2+	1214 576411	1214 576568	0.129	M+z	25	3+	2170.350335	2170.351009	0.311
c	35	2+	1820 859579	1820 860110	0.292	IVI+Z	26	5+	1324.827880	1324.827646	-0.177
c	36	3+	1247 924704	1247 924462	-0 194	M+Z	26	4+	1655.783031	1655.783415	0.232
c	20i	2+	1110 032142	1110 032427	0.256	M+Z	26	3+	2208.046833	2208.046104	-0.330
C	211	2+	1167 545613	1167 545686	0.063	M+Z	27	5+	1356.048099	1356.048495	0.292
c	34i	3+	1195,233316	1195.233951	0.531	IVI+Z	27	4+	1695.060261	1695.060550	0.170
v	3	1+	397,171777	397,171827	0.126	NAL-	21	5+	2200.000000	2200.001209	0.330
v	4	1+	484 203806	484 203771	-0.072	IVI+Z	20	5+	1301.009010	1361.000250	0.315
v	5	1+	541,225270	541.225281	0.020	NA+Z	20	4+	1/20.024207	1/20.023/00	-0.290
ý	6	1+	640.293684	640,293709	0.039	NA+7	29	3+	1752.009044	1402.009730	-0.076
Ý	7	1+	754.336612	754,336563	-0.065	MITZ	29	4+	1/ 52.000100	1/152.000700	0.341
ý	9	1+	942.416320	942.416353	0.035	IVI+Z	30	4+	1410.0/0///	1760 944526	-0.174
ý	10	1+	1029.448349	1029.448645	0.288	M+7	30	4+	1/05.044153	1/05.044030	0.210
z	2	1+	266.126109	266.126109	0.000	M+7	34	4+	1864 130122	1864 130353	0.032
z	3	1+	382.160877	382.160841	-0.094	M+7	26	41	1534 712229	1534 712224	-0.003
z	4	1+	469.192905	469.192914	0.019	M+-	30	4+	1019 141122	1019 141012	-0.003
z	5	1+	526.214369	526.214338	-0.059	M+7	16 :	4+	1370 200229	1370 200200	0.407
z	6	1+	625.282783	625.282678	-0.168	M+7	16-1	3+	1827 100152	1827 100//7	0.123
z	27	2+	1435.197489	1435.196299	-0.829	M+Z	17.1	4+	1399 406577	1399 406737	0.101
M+c	31	5+	1438.482615	1438.482645	0.021	M+7	17-	4+	1865 875642	1865 875456	-0.100
M+c	32	5+	1458.496774	1458.496042	-0.502	IVITZ	17-1	37	1003.073042	Average Error:	-0.100
M+c	32	4+	1822.618557	1822.618534	-0.013					Average Error:	0.000
M+c	33	5+	1469.700594	1469.699673	-0.627					Absolute Average Error:	0.107
M+c	33	4+	1837.375068	1837.375877	0.440					Standard Deviation:	0.245

Table S2. List of the assigned fragments from the ECD MS/MS spectrum of the 7+charge state ((isoD)₃hIAPP) dimer ion. M represents one ((isoD)₃hIAPP) unit.

Figure S4. The nESI-MS spectra showing the fresh, the incubated solutions, and the incubated fibrillary pellets of hIAPP mixed with 5%, 10%, 25%, or 50% of mutant $((D)_3hIAPP)$ or $((isoD)_3hIAPP)$.

References

- 1. P. Caravatti and M. Allemann, Org. Mass Spectrom., 1991, 26, 514-518.
- 2. F. T. S. Chan, G. S. K. Schierle, J. R. Kumita, C. W. Bertoncini, C. M. Dobson and C. F. Kaminski, *Analyst*, 2013, **138**, 2156-2162.
- 3. T. Yang, X. H. Wang, C. L. Zhang, X. Ma, K. Wang, Y. Q. Wang, J. Luo, L. Yang, C. Yao and X. Y. Wang, *Chem. Commun.*, 2016, **52**, 2245-2248.