Phosphireinium Borate Betaines from Alkynylphosphoranes and the Halogeno-B(C₆F₅)₂ Reagents

Atsushi Ueno,‡ Jennifer Mörck, Constant G. Daniliuc, Gerald Kehr, and Gerhard Erker*

Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
email: erker@uni-muenster.de

‡ These authors have contributed equally.

Supporting Information

Table of content

Preparation of compound 8a ... 3
Preparation of compound 8b ... 7
Preparation of compound 8c ... 10
Preparation of compound 8d ... 13
Preparation of compound 8e ... 15
Preparation of compound 8f ... 19
Preparation of compound 8g ... 22
Heating of compound 8a ... 25
Heating of compound 8b ... 26
Heating of compound 8d ... 27
Heating of compound 8e ... 28
Heating of compound 8f ... 29
Heating of compound 8g ... 30
Preparation of compound 13a ... 31
Generation of compound 13e (NMR scale, in situ reaction) 33
Preparation of compound 13e ... 36

S1
General Information: All syntheses involving air- and moisture sensitive compounds were carried out using standard Schlenk-type glassware (or in a glovebox) under an atmosphere of argon. Solvents were dried and stored under an argon atmosphere. NMR spectra were recorded on a Varian Inova 500 (1H 500 MHz, 13C 126 MHz, 19F 470 MHz, 11B 160 MHz, 31P 202 MHz) and on a Varian UnityPlus 600 (1H 600 MHz, 13C 151 MHz, 19F 564 MHz, 11B 192 MHz, 31P 243 MHz). 1H NMR and 13C NMR: chemical shifts δ are given relative to TMS and referenced to the solvent signal. 19F NMR: chemical shifts δ are given relative to CFCl₃ (external reference, δ = 0), 11B NMR: chemical shifts δ are given relative to BF₃·Et₂O (external reference, δ = 0), 31P NMR: chemical shifts δ are given relative to H₃PO₄ (85% in D₂O) (external reference, δ = 0). NMR assignments were supported by additional 2D-NMR experiments. Elemental analyses: Foss–Heraeus CHNO-Rapid.

X-Ray diffraction: For compounds 8b und 8f sets were collected with a Nonius Kappa CCD diffractometer. Programs used: data collection, COLLECT (R. W. W. Hooft, Bruker AXS, 2008, Delft, The Netherlands); data reduction Denzo-SMN (Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307-326); absorption correction, Denzo (Z. Otwinowski, D. Borek, W. Majewski, W. Minor, Acta Crystallogr. 2003, A59, 228-234); structure solution SHELXS-97 (G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467-473); structure refinement SHELXL-97 (G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112-122). Data sets for compounds 8a and 8g were collected with a D8 Venture CMOS diffractometer. For compound 8e data sets were collected with a Bruker APEX II CCD diffractometer. Programs used: data collection: APEX3 V2016.1-0 (Bruker AXS Inc., 2016); cell refinement: SAINT V8.37A (Bruker AXS Inc., 2015); data reduction: SAINT V8.37A (Bruker AXS Inc., 2015); absorption correction, SADABS V2014/7 (Bruker AXS Inc., 2014); structure solution SHELXT-2015 (Sheldrick, 2015); structure refinement SHELXL-2015 (Sheldrick, 2015) and graphics, XP (Bruker AXS Inc., 2015). R-values are given for observed reflections, and wR² values are given for all reflections. Exceptions and special features: For compound 8b a half badly disordered dichloromethane molecule was found in the asymmetrical unit and could not be satisfactorily refined. The program SQUEEZE (A. L. Spek (2015) Acta Cryst., C71, 9-18) was therefore used to remove mathematically the effect of the solvent. The quoted formula and derived parameters are not included the squeezed solvent molecule. For compound 8f one C₆F₅ group and for compound 8e one half toluene molecule were found disordered over two positions in the asymmetric unit. Several restraints (SADI, SAME, ISOR and SIMU) were used in order to improve refinement stability. CCDC deposition numbers are 1865543 to 1865547.

5) compound 1d [J. C. Lee, F. E. Hong, *Organometallics* 2005, 24, 5686-5695.] were synthesized according to procedures described in the literature.

Preparation of compound 8a:

![Scheme S1](#)

A mixture of compound 1a (36.5 mg, 0.10 mmol) and chloro bis(pentafluorophenyl)borane (7a, 38.0 mg, 0.10 mmol) in CH\(_2\)Cl\(_2\) (1 mL) was stirred for 1 hour at room temperature. Then, the colorless solution was concentrated *in vacuo* and n-pentane (5 mL) was added to the resulting residue. After stirring the obtained suspension for 15 minutes, the white precipitate was collected and dried *in vacuo* to give compound 8a as a white powder (60.2 mg, 0.08 mmol, 81%).

Melting point: 135 °C

Elemental Analysis calcd for C\(_{35}\)H\(_{31}\)BClF\(_{10}\)PSi (746.94 g/mol): C, 56.28; H, 4.18. Found: C, 56.40; H, 4.43.

\(^1\text{H NMR}\) (600 MHz, CD\(_2\)Cl\(_2\), 299 K): \(\delta = 6.92\) (m, 4H, \(m\)-Mes), 2.33 (s, 12H, \(o\)-Me\(_{\text{Mes}}\)), 2.30 (s, 6H, \(p\)-Me\(_{\text{Mes}}\)), 0.30 (s, \(^2J_{\text{SiH}} = 6.8\) Hz, 9H, SiMe\(_3\)).

\(^{13}\text{C}{\{^1\text{H}}\text{ NMR}\) (151 MHz, CD\(_2\)Cl\(_2\), 299 K): \(\delta = 165.3\) (br, BC=), 148.0 (dm, \(^1J_{\text{PC}} \sim 240\) Hz, C\(_6\)F\(_5\)), 144.1 (d, \(^4J_{\text{PC}} = 3.0\) Hz, \(p\)-Mes), 143.1 (d, \(^2J_{\text{PC}} = 11.7\) Hz, \(o\)-Mes), 141.5 (d, \(^1J_{\text{PC}} = 29.7\) Hz, SiC=), 139.9 (dm, \(^1J_{\text{PC}} \sim 249\) Hz, C\(_6\)F\(_5\)), 137.3 (dm, \(^1J_{\text{PC}} \sim 252\) Hz, C\(_6\)F\(_5\)), 130.7 (d, \(^3J_{\text{PC}} = 12.8\) Hz, \(m\)-Mes), 120.9 (d, \(^1J_{\text{PC}} = 96.9\) Hz, \(i\)-Mes), 120.8 (i-C\(_6\)F\(_5\)), 22.4 (d, \(^3J_{\text{PC}} = 8.3\) Hz, \(o\)-Me\(_{\text{Mes}}\)), 21.3 (\(p\)-Me\(_{\text{Mes}}\)), -0.5 (\(^1J_{\text{SiC}} = 55.5\) Hz, SiMe\(_3\)).

\(^{11}\text{B NMR}\) (192 MHz, CD\(_2\)Cl\(_2\), 299 K): \(\delta = -7.8\) (\(\nu_{1/2} \sim 150\) Hz).

\(^{31}\text{P NMR}\) (202 MHz, CD\(_2\)Cl\(_2\), 299 K): \(\delta = -151.5\) (\(\nu_{1/2} \sim 17\) Hz).

\(^{19}\text{F NMR}\) (564 MHz, CD\(_2\)Cl\(_2\), 299 K): \(\delta = -130.5\) (m, 2F, \(o\)-C\(_6\)F\(_5\)), -159.7 (t, \(^3J_{\text{FF}} = 19.2\) Hz, 1F, \(p\)-C\(_6\)F\(_5\)), -165.4 (m, 2F, \(m\)-C\(_6\)F\(_5\)), [\(\Delta^{19}\text{F}_{\text{m,p}} = 5.7\)].

\(^{29}\text{Si}{\{^{1}\text{H}}\text{ DEPT}\) (119 MHz, C\(_6\)D\(_6\), 299 K): \(\delta = -1.4\) (d, \(^2J_{\text{PSi}} = 4.8\) Hz).
Figure S1 1H NMR (600 MHz, CD$_2$Cl$_2$, 299K) spectrum of compound 8a.

Figure S2 13C(1H) NMR (151 MHz, CD$_2$Cl$_2$, 299K) spectrum of compound 8a.
Figure S3 (1) 11B{1H} and (2) 11B NMR (192 MHz, CD$_2$Cl$_2$, 299 K) spectra of compound 8a.

Figure S4 (1) 31P{1H} and (2) 31P NMR (202 MHz, CD$_2$Cl$_2$, 299 K) spectra of compound 8a.

Figure S5 29Si{1H} DEPT (119 MHz, CD$_2$Cl$_2$, 299 K)) spectra of compound 8a.

Crystals suitable for the X-ray crystal structure analysis were obtained by slow diffusion of n-pentane into a saturated solution of compound 8a in CH$_2$Cl$_2$ at -35 °C.
X-ray crystal structure analysis of compound 8a (erk8890): A colorless prism-like specimen of C_{35}H_{31}BClF_{10}PSi, approximate dimensions 0.129 mm x 0.153 mm x 0.187 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 1325 frames were collected. The total exposure time was 14.72 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 78562 reflections to a maximum θ angle of 26.73° (0.79 Å resolution), of which 7216 were independent (average redundancy 10.887, completeness = 99.9%, R_{int} = 6.57%, R_{sig} = 3.00%) and 5820 (80.65%) were greater than 2σ(F^2). The final cell constants of a = 10.9107(4) Å, b = 17.0092(6) Å, c = 18.4957(6) Å, β = 97.9540(10)°, volume = 3399.5(2) Å^3, are based upon the refinement of the XYZ-centroids of 9969 reflections above 20σ(I) with 4.750° < 2θ < 54.94°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.933. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9500 and 0.9650. The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P2_1/n, with Z = 4 for the formula unit, C_{35}H_{31}BClF_{10}PSi. The final anisotropic full-matrix least-squares refinement on F^2 with 451 variables converged at R1 = 3.55%, for the observed data and wR2 = 8.32% for all data. The goodness-of-fit was 1.026. The largest peak in the final difference electron density synthesis was 0.306 e/Å^3 and the largest hole was -0.318 e/Å^3 with an RMS deviation of 0.056 e/Å^3. On the basis of the final model, the calculated density was 1.459 g/cm^3 and F(000), 1528 e.

Figure S6: Crystal structure of compound 8a (thermal ellipsoids: 30% probability).
Preparation of compound 8b:

Scheme S2

A mixture of 1a (73 mg, 0.20 mmol) and bromo bis(pentafluorophenyl)borane (7b, 84 mg, 0.20 mmol) in CH$_2$Cl$_2$ (2 mL) was stirred for 1 hour at room temperature. Then, the colorless solution was concentrated in vacuo and n-pentane (5 mL) was added to the resulting residue. After stirring the obtained suspension for 15 minutes, the white precipitate was collected and dried in vacuo to give compound 8b as a white powder (115 mg, 0.145 mmol, 73%).

Melting point: 145 °C

Elemental Analysis calcd for C$_{35}$H$_{31}$BBrF$_{10}$PSi (791.39 g/mol): C, 53.12; H, 3.95. Found: C, 53.02; H, 4.00.

1H NMR (500 MHz, CD$_2$Cl$_2$, 299 K): δ = 6.93 (m, 4H, m-Mes), 2.31 (s, 18H, p,o-Me$_{\text{Mes}}$), 0.37 (s, 2J$_{\text{SiH}}$ = 6.9 Hz, 9H, SiMe$_3$).

13C(1H) NMR (126 MHz, CD$_2$Cl$_2$, 299 K): δ = 164.0 (br, BC=), 148.0 (dm, 1J$_{\text{PC}}$ ~ 242 Hz, C$_6$F$_5$), 144.2 (d, 4J$_{\text{PC}}$ = 3.1 Hz, p-Mes) 143.1 (d, 2J$_{\text{PC}}$ = 12.0 Hz, o-Mes), 142.8 (d, 1J$_{\text{PC}}$ = 30.1 Hz, SiC=), 140.0 (dm, 1J$_{\text{PC}}$ ~ 259 Hz, C$_6$F$_5$), 137.3 (dm, 1J$_{\text{PC}}$ ~ 250 Hz, C$_6$F$_5$), 130.6 (d, 3J$_{\text{PC}}$ = 13.3 Hz, m-Mes), 120.8 (d, 1J$_{\text{PC}}$ = 95.9 Hz, i-Mes), 120.2 (i-C$_6$F$_5$), 22.5 (d, 3J$_{\text{PC}}$ = 9.0 Hz, o-Me$_{\text{Mes}}$), 21.3 (p-Me$_{\text{Mes}}$), -0.2 (d, 3J$_{\text{PC}}$ = 1.6 Hz, 1J$_{\text{SiC}}$ = 55.6 Hz, SiMe$_3$).

11B NMR (192 MHz, CD$_2$Cl$_2$, 299 K): δ = -11.4 (ν$_{1/2}$ ~ 250 Hz).

31P NMR (243 MHz, CD$_2$Cl$_2$, 299 K): δ = -149.3 (ν$_{1/2}$ ~ 20 Hz).

19F NMR (564 MHz, CD$_2$Cl$_2$, 299 K): δ = -129.1 (br, 2F, o-C$_6$F$_5$), -159.4 (t, 3J$_{\text{PP}}$ = 20.3 Hz, 1F, p-C$_6$F$_5$), -165.3 (m, 2F, m-C$_6$F$_5$), [Δ19F$_{\text{m,p}}$ = 5.9].

29Si(1H) DEPT (99 MHz, CD$_2$Cl$_2$, 299 K): δ = -1.3 (d, 2J$_{\text{PSi}}$ = 5.1 Hz).

Figure S7 29Si(1H) DEPT (99 MHz, CD$_2$Cl$_2$, 299 K) spectrum of compound 8b.
Figure S8 1H NMR (500 MHz, CD$_2$Cl$_2$, 299K) spectrum of compound 8b.

Figure S9 13C(1H) NMR (126 MHz, CD$_2$Cl$_2$, 299K) spectrum of compound 8b.
Figure S10 (1) 11B(1H) and (2) 11B NMR (192 MHz, CD$_2$Cl$_2$, 299 K) spectra of compound 8b.

Figure S11 (1) 31P(1H) and (2) 31P NMR (243 MHz, CD$_2$Cl$_2$, 299K) spectra of compound 8b.

Figure S12 19F NMR (564 MHz, CD$_2$Cl$_2$, 299 K) spectrum of compound 8b.
Crystals suitable for the X-ray crystal structure analysis were obtained by slow diffusion of n-pentane into a saturated solution of compound 8b in CH$_2$Cl$_2$ at -35 °C.

X-ray crystal structure analysis of compound 8b (erk9214): formula C$_{35}$H$_{31}$BBrF$_{10}$PSi, $M = 791.38$, colourless crystal, 0.08 x 0.07 x 0.07 mm, $a = 9.6668(2)$ Å, $b = 20.0637(4)$ Å, $c = 19.4399(3)$ Å, $\beta = 95.326(2)^\circ$, $V = 3754.12(12)$ Å3, $\rho_{\text{calc}} = 1.400$ gcm$^{-3}$, $\mu = 1.243$ mm$^{-1}$, empirical absorption correction (0.907 ≤ T ≤ 0.918), $Z = 4$, monoclinic, space group $P2_1/c$ (No. 14), $\lambda = 0.71073$ Å, $T = 173(2)$ K, ω and ϕ scans, 26502 reflections collected ($\pm h$, $\pm k$, $\pm l$), 6527 independent ($R_{\text{int}} = 0.066$) and 5034 observed reflections [$I>2\sigma(I)$], 451 refined parameters, $R = 0.051$, $wR^2 = 0.113$, max. (min.) residual electron density 0.48 (-0.39) e.A$^{-3}$, hydrogen atoms were calculated and refined as riding atoms.

Figure S13: Crystal structure of compound 8b (thermal ellipsoids: 30% probability).

Preparation of compound 8c

```
Mes$_2$P            + ClB(C$_6$F$_5$)$_2$
Mes$_2$C$_5$H$_4$Ph  7a  CH$_2$Cl$_2$, r.t. 1 h
Mes$_2$C$_5$H$_4$Ph  8c
```

Scheme S3
A mixture of compound 1b (37 mg, 0.10 mmol) and chlorobis(pentafluorophenyl)borane (7a, 38.0 mg, 0.10 mmol) in CH$_2$Cl$_2$ (1 mL) was stirred for 1 hour at room temperature. After the colorless solution was concentrated in vacuo, n-pentane (5 mL) was added to the obtained residue. After stirring the resulting suspension for 15 minutes, the white precipitate was collected and dried in vacuo to give compound 8c as a white powder (65.2 mg, 0.087 mmol, 87%).

Melting point: 125 °C

Elemental Analysis calcd for C$_{38}$H$_{27}$BClF$_{10}$P (750.85 g/mol): C, 60.79; H, 3.62. Found: C, 60.49; H, 3.43.

1H NMR (600 MHz, toluene-d_8, 299 K): δ = 7.69 (m, 2H, o-Ph), 6.95 (m, 2H, m-Ph), 6.91 (m, 1H, p-Ph), 6.41 (m, 4H, m-Mes), 2.11 (s, 12H, o-Me$_{Mes}$), 1.88 (s, 6H, p-Me$_{Mes}$).

13C(1H) NMR (151 MHz, toluene-d_8, 299 K): δ = 148.5 (dm, 1J$_{PC}$ \sim 240 Hz, C$_6$F$_5$), 146.1 (br, BC=), 144.0 (d, 4J$_{PC}$ = 1.8 Hz, p-Mes), 142.8 (d, 2J$_{PC}$ = 11.7 Hz, o-Mes), 140.1 (dm, 1J$_{PC}$ \sim 245 Hz, C$_6$F$_5$), 137.5 (dm, 1J$_{PC}$ \sim 250 Hz, C$_6$F$_5$), 136.5 (PhC=), 131.6 (p-Ph), 131.0 (o-Ph), 130.9 (m-Mes), 129.4 (m-Ph), 126.8 (d, 2J$_{PC}$ = 3.7 Hz, i-Ph), 121.3 (i-C$_6$F$_5$), 120.8 (d, 1J$_{PC}$ = 92.5Hz, i-Mes), 22.4 (o-Me$_{Mes}$), 20.9 (p-Me$_{Mes}$).

11B NMR (192 MHz, toluene-d_8, 299 K): δ = -8.0 ($\nu_{1/2}$ \sim 350 Hz).

31P NMR (243 MHz, toluene-d_8, 299 K): δ = -140.3 ($\nu_{1/2}$ \sim 20 Hz).

19F NMR (564 MHz, toluene-d_8, 299 K): δ = -130.8 (m, 2F, o-C$_6$F$_5$), -159.0 (t, 3J$_{FF}$ = 20.5 Hz, 1F, p-C$_6$F$_5$), -164.6 (m, 2F, m-C$_6$F$_5$), $[\Delta^{19}$F$_{mp}$ = 5.6].

Figure S14 1H NMR (600 MHz, toluene-d_8, 299 K) spectrum of compound 8c.
Figure S15 $^{13}\text{C}^{1\text{H}}$ NMR (151 MHz, toluene-d_8, 299 K) spectrum of compound 8c.

Figure S16 (1) $^{11}\text{B}^{1\text{H}}$ and (2) ^{11}B NMR (192 MHz, toluene-d_8, 299 K) spectra of compound 8c.

Figure S17 (1) $^{31}\text{P}^{1\text{H}}$ and (2) ^{31}P NMR (243 MHz, toluene-d_8, 299 K) spectra of compound 8c.
Figure S18 19F NMR (564 MHz, toluene-d_8, 299 K) spectrum of compound 8c.

Preparation of compound 8d:

\[
\begin{align*}
\text{Mes}_2\text{P} & \quad \text{t-Bu} & \quad \text{ClB(C}_6\text{F}_5)_2 \\
1c & & 7a
\end{align*}
\]

S Scheme S4

A solution of phosphane 1c (70.1 mg, 0.20 mmol, 1.0 eq.) in CH$_2$Cl$_2$ (1 mL) was added to a solution of chlorobis(pentafluorophenyl)borane 7a (76.1 mg, 0.20 mmol, 1.0 eq.) in CH$_2$Cl$_2$ (1 mL). The colorless reaction mixture was stirred at room temperature overnight, then all volatiles were removed in vacuo. The residue was suspended with n-pentane (5 mL) and the mixture was filtrated. Subsequently the filtrate was stored at -36 °C whereby compound 8d was obtained as an offwhite solid (113 mg, 0.15 mmol, 77%).

Melting point: 110 °C.

Elemental Analysis calcd for C$_{36}$H$_{31}$BClF$_{10}$P (730.86 g/mol): C, 59.16; H, 4.28. Found: C, 58.74; H, 4.75.

1H NMR (600 MHz, CD$_2$Cl$_2$, 299 K): δ = 6.94 (d, 4J$_{PH}$ = 5.3 Hz, 4H, m-Mes), 2.33 (s, 12H, o-Me$_{\text{Mes}}$), 2.31 (s, 6H, p-Me$_{\text{Mes}}$), 1.33 (s, 9H, t-Bu).

13C(1H) NMR (151 MHz, CD$_2$Cl$_2$, 299 K): δ = n.o. (br, BC=), 149.0 (d, 1J$_{PC}$ = 10.3 Hz, t-BuC=), 147.9 (dm, 1J$_{PC}$ ~ 240 Hz, C$_6$F$_3$), 143.9 (d, 4J$_{PC}$ = 3.4 Hz, p-Mes), 142.6 (d, 2J$_{PC}$ = 11.9 Hz, o-Mes), 139.9 (dm, 3J$_{PC}$ ~ 260 Hz, C$_6$F$_3$), 137.3 (dm, 1J$_{PC}$ ~ 260 Hz, C$_6$F$_3$), 130.8 (d, 3J$_{PC}$ = 13.8 Hz, m-Mes), 121.7 (d, 2J$_{PC}$ = 91.9 Hz, i-Mes), n.o. (i-C$_6$F$_5$), 37.3 (d, 2J$_{PC}$ = 3.6 Hz, C$^{t-Bu}$), 29.9 (d, 3J$_{PC}$ = 4.9 Hz, CH$_3$$^{t-Bu}$), 22.3 (m, o-Me$_{\text{Mes}}$), 20.9 (p-Me$_{\text{Mes}}$).

11B NMR (192 MHz, CD$_2$Cl$_2$, 299 K): δ = -8.2 ($v_{1/2}$ ~ 200 Hz).

31P NMR (243 MHz, CD$_2$Cl$_2$, 299 K): δ = -138.7 ($v_{1/2}$ ~ 25 Hz).
$^{31\text{P}}{\text{^1H}}$ NMR (243 MHz, CD$_2$Cl$_2$, 299 K): $\delta = -138.7$ ($\nu_{1/2} \sim 5$ Hz).

$^{19\text{F}}$ NMR (564 MHz, CD$_2$Cl$_2$, 299 K): $\delta = -130.3$ (m, 2F, o-C$_6$F$_5$), -159.8 (t, $^3J_{PF} = 20.0$ Hz, 1F, p-C$_6$F$_5$), -165.4 (m, 2F, m-C$_6$F$_5$), [$\Delta^{19\text{F}_{m,p}} = 5.6$].

Figure S19 ^1H NMR (600 MHz, CD$_2$Cl$_2$, 299 K) spectrum of compound 8d.

Figure S20 $^{13\text{C}}{\text{^1H}}$ NMR (151 MHz, CD$_2$Cl$_2$, 299 K) spectrum of compound 8d.

Figure S21 (1) $^{11\text{B}}{\text{^1H}}$ and (2) $^{11\text{B}}$ NMR (192 MHz, CD$_2$Cl$_2$, 299 K) spectra of compound 8d.
Figure S22 (1) 31P{H} and (2) 31P NMR (243 MHz, CD$_2$Cl$_2$, 299K) spectra of compound 8d.

Figure S23 19F NMR (564 MHz, CD$_2$Cl$_2$, 299 K) spectrum of compound 8d.

Preparation of compound 8e:

Scheme S5
A solution of phosphane 1c (70.1 mg, 0.20 mmol, 1.0 eq.) in CH$_2$Cl$_2$ (1 mL) was added to a solution of bromobis(pentafluorophenyl)borane (7b) (85.0 mg, 0.20 mmol, 1.0 eq.) in CH$_2$Cl$_2$ (1 mL). After the colorless reaction mixture was stirred at room temperature overnight, all volatiles were removed in vacuo. The residue was washed with n-pentane (5 mL) and dried in
vacuo. Compound 8e was obtained as white solid (116 mg, 0.15 mmol, 75%).

Melting point: 126 °C.

Elemental Analysis calcd for C_{36}H_{31}BBrF_{10}P (775.32 g/mol): C, 55.77; H, 4.03. Found: C, 56.21; H, 4.61.

\(^1\)H NMR (600 MHz, CD\(_2\)Cl\(_2\), 299 K): \(\delta = 6.94\) (d, \(^4J_{PH} = 5.3\) Hz, 4H, \(m\)-Mes), 2.33 (s, 12H, o-Me\(_{\text{Mes}}\)), 2.31 (s, 6H, p-Me\(_{\text{Mes}}\)), 1.36 (s, 9H, t-Bu).

\(^{13}\)C\(^{\{1\}H}\) NMR (151 MHz, CD\(_2\)Cl\(_2\), 299 K): \(\delta = 149.8\) (d, \(^1J_{PC} = 10.5\) Hz, t-BuC\(_\equiv\)), 147.7 (dm, \(^1J_{PC} \sim 250\) Hz, C\(_6\)F\(_5\)), 144.3 (br, BC\(_\equiv\)), 144.0 (d, \(^4J_{PC} = 3.0\) Hz, p-Mes), 142.7 (d, \(^2J_{PC} = 11.6\) Hz, o-Mes), 140.1 (dm, \(^1J_{PC} \sim 250\) Hz, C\(_6\)F\(_5\)), 137.3 (dm, \(^1J_{PC} \sim 250\) Hz, C\(_6\)F\(_5\)), 130.8 (d, \(^3J_{PC} = 13.8\) Hz, \(m\)-Mes), 121.5 (d, \(^1J_{PC} = 90.9\) Hz, \(t\)-Mes), 120.7 (br, \(t\)-C\(_6\)F\(_5\)), 37.4 (d, \(^3J_{PC} = 3.1\) Hz, C\(_{t\text{-Bu}}\)), 30.0 (d, \(^4J_{PC} = 4.1\) Hz, CH\(_3\)\(_{t\text{-Bu}}\)), 22.9 (d, \(^4J_{PC} = 7.9\) Hz, o-Me\(_{\text{Mes}}\)), 20.3 (p-Me\(_{\text{Mes}}\)).

\(^1\)B NMR (192 MHz, CD\(_2\)Cl\(_2\), 299 K): \(\delta = -11.9\) (\(\nu_{1/2} \sim 200\) Hz).

\(^{31}\)P NMR (243 MHz, CD\(_2\)Cl\(_2\), 299 K): \(\delta = -136.9\) (\(\nu_{1/2} \sim 30\) Hz).

\(^{31}\)P\(^{\{1\}H}\) NMR (243 MHz, CD\(_2\)Cl\(_2\), 299 K): \(\delta = -136.9\) (\(\nu_{1/2} \sim 20\) Hz).

\(^{19}\)F NMR (564 MHz, CD\(_2\)Cl\(_2\), 299 K): \(\delta = -128.7\) (m, 2F, o-C\(_6\)F\(_5\)), -159.5 (t, \(^3J_{FF} = 20.0\) Hz, 1F, p-C\(_6\)F\(_5\)), -165.3 (m, 2F, m-C\(_6\)F\(_5\)), \([\Delta^{19}\text{F}_{m,p} = 5.8]\).

![Image](Figure S24 \(^1\)H NMR (600 MHz, CD\(_2\)Cl\(_2\), 299K) spectrum of compound 8e.)

![Image](Figure S25 \(^{13}\)C\(^{\{1\}H}\) NMR (151 MHz, CD\(_2\)Cl\(_2\), 299K) spectrum of compound 8e.)
Figure S26 (1) 1H{$_^1$H} and (2) 1B NMR (192 MHz, CD$_2$Cl$_2$, 299 K) spectra of compound 8e.

Figure S27 (1) 31P{$_^1$H} and (2) 31P NMR (243 MHz, CD$_2$Cl$_2$, 299K) spectra of compound 8e.

Figure S28 19F NMR (564 MHz, CD$_2$Cl$_2$, 299 K) spectrum of compound 8e.
Crystals suitable for the X-ray crystal structure analysis were obtained from a saturated solution of compound 8e in toluene at -36 °C.

X-ray crystal structure analysis of compound 8e (erk9236): A colorless plate-like specimen of C_{36}H_{31}BBrF_{10}P \cdot 0.5 x C_7H_8, approximate dimensions 0.030 mm x 0.100 mm x 0.180 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 1586 frames were collected. The total exposure time was 21.94 hours. The frames were integrated with the Bruker SAINT software package using a wide-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 24093 reflections to a maximum θ angle of 66.69° (0.84 Å resolution), of which 6361 were independent (average redundancy 3.788, completeness = 97.7%, R_{int} = 4.14%, R_{sig} = 3.69%) and 5558 (87.38%) were greater than 2σ(F^2). The final cell constants of a = 9.5895(3) Å, b = 10.8563(3) Å, c = 18.7360(5) Å, α = 82.3630(10)°, β = 76.1530(10)°, γ = 76.8730(10)°, volume = 1837.99(9) Å³, are based upon the refinement of the XYZ-centroids of 9893 reflections above 20 σ(I) with 9.351° < 2θ < 133.3°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.782. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.6480 and 0.9250. The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P\tilde{1}, with Z = 2 for the formula unit, C_{36}H_{31}BBrF_{10}P \cdot 0.5 x C_7H_8. The final anisotropic full-matrix least-squares refinement on F^2 with 515 variables converged at R1 = 3.22%, for the observed data and wR2 = 8.33% for all data. The goodness-of-fit was 1.039. The largest peak in the final difference electron density synthesis was 0.360 e/Å³ and the largest hole was -0.324 e/Å³ with an RMS deviation of 0.058 e/Å³. On the basis of the final model, the calculated density was 1.484 g/cm³ and F(000), 834 e.

Figure S29: Crystal structure of compound 8e (thermal ellipsoids: 30% probability).
Preparation of compound 8f:

A solution of phosphane 1d (49.3 mg, 0.20 mmol, 1.0 eq.) in CH$_2$Cl$_2$ (1 mL) was added to a solution of chlorobis(pentafluorophenyl)borane 7a (76.1 mg, 0.20 mmol, 1.0 eq.) in CH$_2$Cl$_2$ (1 mL). The yellow reaction mixture was stirred at room temperature overnight then all volatiles were removed in vacuo. The obtained residue was washed with n-pentane (5 mL) and dried in vacuo. Compound 8f was obtained as a yellow solid (77.5 mg, 0.12 mmol, 62%).

Melting point: 178 °C

Elemental Analysis calcd for C$_{28}$H$_{23}$BClF$_{10}$P (626.71 g/mol): C, 53.66; H, 3.70. Found: C, 53.33; H, 3.70.

1H NMR (500 MHz, CD$_2$Cl$_2$, 299 K): δ = 7.60 (m, 2H, o-Ph), 7.53 (m, 1H, p-Ph), 7.51 (m, 2H, m-Ph), 1.42 (d, 3J$_{PH}$ = 20.0 Hz, 18H, t-Bu).

13C{[1H]} NMR (126 MHz, CD$_2$Cl$_2$, 299 K): δ = n.o. (BC=), 148.1 (dm, 1J$_{FC}$ ~ 240 Hz, C$_6$F$_5$), 139.9 (dm, 1J$_{FC}$ ~ 250 Hz, C$_6$F$_5$), 137.5 (dm, 1J$_{FC}$ ~ 251 Hz, C$_6$F$_5$), 132.02 (p-Ph), 131.98 (d, 3J$_{PC}$ = 7.2 Hz, o-Ph), 131.7 (br d, 1J$_{PC}$ = 7.2 Hz, PhC=), 129.7 (m-Ph), 125.9 (d, 2J$_{PC}$ = 6.4 Hz, i-Ph), n.o. (i-C$_6$F$_5$), 39.5 (d, 1J$_{PC}$ = 25.1 Hz, C$_t$-Bu), 29.9 (CH$_3$-Bu).

11B NMR (192 MHz, CD$_2$Cl$_2$, 299 K): δ = -8.0 (v$_{1/2}$ ~ 120 Hz).

31P NMR (202 MHz, CD$_2$Cl$_2$, 299 K): δ = -86.3 (m).

31P{[1H]} NMR (202 MHz, CD$_2$Cl$_2$, 299 K): δ = -86.3 (v$_{1/2}$ ~ 5 Hz).

19F NMR (564 MHz, CD$_2$Cl$_2$, 299 K): δ = -132.5 (m, 2F, o-C$_6$F$_5$), -159.3 (t, 3J$_{FF}$ = 20.6 Hz, 1F, p-C$_6$F$_5$), -164.8 (m, 2F, m-C$_6$F$_5$), [Δ^{19}F$_{m,p}$ = 5.5].

Figure S30 1H NMR (500 MHz, CD$_2$Cl$_2$, 299K) spectrum of compound 8f.
Figure S31 $^{13}\text{C}^{1\text{H}}$ NMR (126 MHz, CD$_2$Cl$_2$, 299K) spectrum of compound 8f.

Figure S32 (1) $^{11}\text{B}^{1\text{H}}$ and (2) ^{11}B NMR (192 MHz, CD$_2$Cl$_2$, 299 K) spectra of compound 8f.

Figure S33 (1) $^{31}\text{P}^{1\text{H}}$ and (2) ^{31}P NMR (202 MHz, CD$_2$Cl$_2$, 299 K) spectra of compound 8f.
Crystals suitable for the X-ray crystal structure analysis were obtained from a saturated solution of compound 8f in n-pentane at -36 °C.

X-ray crystal structure analysis of compound 8f (erk9235): formula C₂₈H₂₃BClF₁₀P, \(M = 626.69 \), colourless crystal, 0.18 x 0.06 x 0.03 mm, \(a = 9.2115(2) \) Å, \(b = 22.0031(5) \) Å, \(c = 14.1968(4) \) Å, \(\beta = 97.690(1)^\circ \), \(V = 2851.55(12) \) Å³, \(\rho_{\text{calc}} = 1.460 \) g cm⁻³, \(\mu = 0.273 \) mm⁻¹, empirical absorption correction (0.953 ≤ \(T \) ≤ 0.992), \(Z = 4 \), monoclinic, space group \(P2\bar{1}/n \) (No. 14), \(\lambda = 0.71073 \) Å, \(T = 173(2) \) K, \(\omega \) and \(\varphi \) scans, 13796 reflections collected (±\(h \), ±\(k \), ±\(l \)), 4909 independent (\(R_{\text{int}} = 0.057 \)) and 3453 observed reflections \(|I|>2\sigma(I) \), 476 refined parameters, \(R = 0.079 \), \(wR^2 = 0.160 \), max. (min.) residual electron density 0.34 (-0.28) e Å⁻³, hydrogen atoms were calculated and refined as riding atoms.

Figure S35: Crystal structure of compound 8f (thermal ellipsoids: 15% probability).
Preparation of compound 8g:

A solution of phosphane 1d (49.3 mg, 0.20 mmol, 1.0 eq.) in CH$_2$Cl$_2$ (1 mL) was added to a solution of bromobis(pentafluorophenyl)borane 7b (85.0 mg, 0.20 mmol, 1.0 eq.) in CH$_2$Cl$_2$ (1 mL). The colorless reaction mixture was stirred at room temperature overnight then all volatiles were removed in vacuo. The resulting residue was washed with n-pentane (5 mL) and dried in vacuo. Compound 8g was obtained as white solid (101 mg, 0.15 mmol, 75%).

Melting point: 168 °C

Elemental Analysis calcd for C$_{28}$H$_{23}$BBrF$_{10}$P (671.16 g/mol): C, 50.11; H, 3.45. Found: C, 49.83; H, 3.51.

1H NMR (500 MHz, CD$_2$Cl$_2$, 299 K): $\delta =$ 7.62 (m, 2H, o-Ph), 7.54 (m, 1H, p-Ph), 7.51 (m, 2H, m-Ph), 1.44 (d, 3J$_{PH} = 20.0$ Hz, 18H, t-Bu).

13C$[^1$H] NMR (126 MHz, CD$_2$Cl$_2$, 299 K): $\delta =$ n.o. (BC=), 148.0 (dm, 1J$_{FC} \sim 240$ Hz, C$_6$F$_5$), 140.1 (dm, 1J$_{FC} \sim 250$ Hz, C$_6$F$_5$), 137.6 (dm, 1J$_{FC} \sim 250$ Hz, C$_6$F$_5$), 132.21 (br d, 1J$_{FC} = 6.5$ Hz, PhC=), 132.11 (d, 3J$_{FC} = 7.5$ Hz, o-Ph), 132.08 (p-Ph), 129.7 (m-Ph), 125.9 (d, 2J$_{FC} = 6.7$ Hz, i-Ph), 120.1 (br, i-C$_6$F$_5$), 39.7 (d, 1J$_{PC} = 24.3$ Hz, Ct-Bu}), 29.9 (CH$_3^{t$-Bu}).

11B NMR (192 MHz, CD$_2$Cl$_2$, 299 K): $\delta =$ -11.6 (v$_{1/2} \sim 200$ Hz).

31P NMR (202 MHz, CD$_2$Cl$_2$, 299 K): $\delta =$ -85.4 (m).

31P$[^1$H] NMR (202 MHz, CD$_2$Cl$_2$, 299 K): $\delta =$ -85.4 (v$_{1/2} \sim 5$ Hz).

19F NMR (564 MHz, CD$_2$Cl$_2$, 299 K): $\delta =$ -131.5 (m, 2F, o-C$_6$F$_5$), -159.1 (t, 3J$_{FF} = 20.1$ Hz, 1F, p-C$_6$F$_5$), -164.6 (m, 2F, m-C$_6$F$_5$), $[\Delta ^{19}$F$_{m,p} = 5.5]$.

Figure S36 1H NMR (500 MHz, CD$_2$Cl$_2$, 299 K) spectrum of compound 8g.
Figure S37 13C(1H) NMR (126 MHz, CD$_2$Cl$_2$, 299 K) spectrum of compound 8g.

Figure S38 (1) 11B(1H) and (2) 11B NMR (192 MHz, CD$_2$Cl$_2$, 299 K) spectra of compound 8g.

Figure S39 (1) 31P(1H) and (2) 31P NMR (202 MHz, CD$_2$Cl$_2$, 299 K) spectra of compound 8g.
Figure S40 19F NMR (564 MHz, CD$_2$Cl$_2$, 299 K) spectrum of compound 8g.

Crystals suitable for the X-ray crystal structure analysis were obtained by slow diffusion of n-pentane into a saturated solution of compound 8g in CH$_2$Cl$_2$ at -36 °C.

X-ray crystal structure analysis of compound 8g (erk9221): A colorless needle-like specimen of C$_{28}$H$_{23}$BBrF$_{10}$P, approximate dimensions 0.046 mm x 0.055 mm x 0.168 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 1908 frames were collected. The total exposure time was 28.37 hours. The frames were integrated with the Bruker SAINT software package using a wide-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 46108 reflections to a maximum θ angle of 72.39° (0.81 Å resolution), of which 5453 were independent (average redundancy 8.456, completeness = 99.5%, R$_{int}$ = 5.81%, R$_{free}$ = 3.10%) and 4799 (88.01%) were greater than 2σ(F2). The final cell constants of a = 8.9577(2) Å, b = 18.6647(5) Å, c = 16.5940(4) Å, β = 91.4580(10)°, volume = 2773.50(12) Å3, are based upon the refinement of the XYZ-centroids of 9794 reflections above 20 σ(I) with 7.129° < 2θ < 144.2°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.855. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.6030 and 0.8610. The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group $P2_1/n$, with Z = 4 for the formula unit, C$_{28}$H$_{23}$BBrF$_{10}$P. The final anisotropic full-matrix least-squares refinement on F2 with 376 variables converged at R1 = 3.48%, for the observed data and wR2 = 7.92% for all data. The goodness-of-fit was 1.105. The largest peak in the final difference electron density synthesis was 0.378 e/Å3 and the largest hole was -0.419 e/Å3 with an RMS deviation of 0.062 e/Å3. On the basis of the final model, the calculated density was 1.607 g/cm3 and F(000), 1344 e$^-$.

S24
Heating of compound 8a:

Scheme S8

A solution of the phosphirenium 8a (ca. 25.0 mg) in toluene (0.5 mL) was sealed in a NMR tube. Subsequently, it was heated to 70 °C (4 h) and 100 °C (2 h). Each temperature step was monitored by NMR experiments.
Figure S42 1H NMR (600 MHz, toluene-d_8) spectra of compound 8a at (1) at 100 °C for 2 h, (2) at 70 °C for 4 h, and (3) at room temperature.

Heating of compound 8b

![Diagram of 8b](image)

A solution of the phosphirenium 8b (ca. 25.0 mg) in toluene (0.5 mL) was sealed in a NMR tube. Subsequently, it was heated to 70 °C (4 h) and 100 °C (2 h). Each temperature step was monitored by NMR experiments.
Figure S43 1H NMR (600 MHz, toluene-d_8) spectra of compound 8b (1) at 100 °C for 2 h, (2) at 70 °C for 4 h, and (3) at room temperature.

Heating of compound 8d:

A solution of the phosphirenium 8d (ca. 25.0 mg) in CD$_2$Cl$_2$ (1 mL) was sealed in a NMR tube. Subsequently, it was heated in an autoclave to 70 °C (1 h), 100 °C (1 h), 120 °C (24 h). Each temperature step was monitored by NMR experiments.
Figure S44 1H NMR (600 MHz, CD$_2$Cl$_2$, 299 K) spectra of compound 8d (1) at 120 °C for 24 h, (2) at 100 °C for 1 h, (3) at 70 °C for 1 h, and (5) at room temperature

Heating of compound 8e:

A solution of the phosphirenium 8e (ca. 25.0 mg) in CD$_2$Cl$_2$ (1 mL) was sealed in a NMR tube. Subsequently, it was heated in an autoclave to 70 °C (1 h), 100 °C (1 h), 120 °C (24 h). Each temperature step was monitored by NMR experiments.
Figure S45 1H NMR (600 MHz, CD$_2$Cl$_2$, 299 K) spectra of compound 8e (1) at 120 °C for 24 h, (2) at 100 °C for 1 h, (3) at 70 °C for 1 h, and (5) at room temperature.

Heating of compound 8f:

A solution of the phosphirenium 8f (ca. 25.0 mg) in CD$_2$Cl$_2$ (1 mL) was sealed in a NMR tube. Subsequently, it was heated in an autoclave to 70 °C (1 h), 100 °C (1 h, 12 h), 120 °C (12 h) and 170 °C (24 h). Each temperature step was monitored by NMR experiments.
Figure S46 1H NMR (600 MHz, CD$_2$Cl$_2$) spectra of compound $8f$ (1) at 170 °C for 24 h, (2) at 120 °C for 12 h, (3) at 100 °C for 12 h, (4) at 100 °C for 1 h, (5) at 70 °C for 1 h, and (6) at room temperature.

Heating of compound 8g:

![Scheme S13](image)

A solution of the phosphirenium $8g$ (ca. 25.0 mg) in CD$_2$Cl$_2$ (1 mL) was sealed in a NMR tube. Subsequently, it was heated in an autoclave to 70 °C (1 h), 100 °C (1 h, 12 h), 120 °C (12 h) and 170 °C (24 h). Each temperature step was monitored by NMR experiments.
Figure S47 1H NMR (600 MHz, CD$_2$Cl$_2$) spectra of compound 8g (1) at 170 °C for 24 h, (2) at 120 °C for 12 h, (3) at 100 °C for 12 h, (4) at 100 °C for 1 h, (5) at 70 °C for 1 h, and (6) at room temperature.

Preparation of compound 13a

Scheme S14

I^{st} Step: A mixture of compound 8a (74.6 mg, 0.10 mmol) and triethylsilane (32 μL, 0.20 mmol) in C$_6$D$_6$ (1 mL) was stirred for 15 hours at room temperature. Then the obtained reaction mixture was characterized by NMR experiments. [Comment: the obtained NMR data are in good agreement with the reported data of compound 13a [A. Ueno, X. Tao, C. G. Daniliuc, G. Kehr, G. Erker, *Organometallics*, 2018, **37**, 2665].]
Figure S48 1H NMR (600 MHz, C$_6$D$_6$, 299 K) spectrum of the obtained reaction mixture [δH: 3.87 (m, 1J$_{SiH}$ = 177.5 Hz, HSi)]

Figure S49 11B NMR (192 MHz, C$_6$D$_6$, 299 K) spectrum of the obtained reaction mixture.
Figure S50 ¹H NMR (600 MHz, C₆D₆, 299 K) spectra of (1) the obtained reaction mixture and (2) the compound 13a.

2nd Step: Then, all volatiles were removed in vacuo. The remaining pale yellow solid was collected and washed with n-pentane (2×2 mL) to finally give compound 13a as a white powder (65.3 mg, 0.091 mmol, 91%).

The obtained NMR data are consistent with those published in the literature: A. Ueno, X. Tao, C. G. Daniliuc, G. Kehr, G. Erker, Organometallics, 2018, 37, 2665.

Generation of compound 13e (NMR scale, in situ reaction)

Scheme S15

The mixture of 8e (38.0 mg, 0.05 mmol) and triethylsilane (24 μL, 0.15 mmol) in C₆D₆ (0.5 mL) was stirred for 15 hours at room temperature. The reaction was monitored by NMR analysis.
Figure S51 1H NMR (600 MHz, C$_6$D$_6$, 299 K) spectra of (1) compound 8e and (2) after treatment with HSiEt$_3$.

Figure S52 1H NMR (600 MHz, C$_6$D$_6$, 299 K) spectra of (1) compound 8e and (2) after treatment with HSiEt$_3$ (0.4 to 2.3 ppm).
Figure S53 11B NMR (192 MHz, C$_6$D$_6$, 299 K) spectra of (1) compound 8e and (2) after treatment with HSiEt$_3$.

Figure S54 31P{$_1^1$H} NMR (243 MHz, C$_6$D$_6$, 299 K) spectra of (1) compound 8e and (2) after treatment with HSiEt$_3$.

Figure S55 29Si{$_1^1$H} DEPT (119 MHz, C$_6$D$_6$, 299 K) spectrum of the reaction mixture.
Preparation of compound 13e

![Scheme S16](image)

The mixture of 8e (119 mg, 0.15 mmol) and triethylsilane (49 µL, 0.30 mmol) in C₆D₆ (1 mL) was stirred for 15 hours at room temperature. Then, all volatiles were removed in vacuo and the oily orange material was collected and washed with n-pentane (2×2 mL). The white precipitate was dried in vacuo to give compound 13e as a white powder (61 mg, 0.089 mmol, 58%).

1H NMR (600 MHz, 299 K, C₆D₆): δ = 8.06 (d, 3J_PH = 106.6 Hz, 1H, BCH=), 6.44 (d, 3J_PH = 2.0 Hz, 4H, m-Mes), 2.13 (s, 12H, o-CH₃Mes), 1.92 (s, 6H, p-CH₃Mes), 0.97 (m, t-Bu).

13C{¹H} NMR (151 MHz, 299 K, C₆D₆): δ = 166.1 (br, BCH=), 147.8 (dm, 1J_PC ~ 243 Hz, C₆F₅), 141.1 (d, 2J_PC = 8.4 Hz, o-Mes), 140.7 (d, 4J_PC = 2.7 Hz, p-Mes), 140.3 (dm, 1J_PC ~ 250 Hz, C₆F₅), 137.2 (dm, 1J_PC ~ 248 Hz, C₆F₅), 131.0 (d, 3J_PC = 8.2 Hz, m-Mes), 125.8 (d, 1J_PC = 27.9 Hz, i-Mes), 36.3 (d, 2J_PC = 3.3 Hz, C₃Bu), 23.5 (d, 3J_PC = 5.8, o-CH₃Mes), 20.5 (p-CH₃Mes).

11B{¹H} NMR (192 MHz, 299 K, C₆D₆): δ = 0.7 (ν1/2 ~ 330 Hz).

11B NMR (192 MHz, 299 K, C₆D₆): δ = 0.7 (ν1/2 ~ 340 Hz).

3¹P NMR (243 MHz, 299 K, C₆D₆): δ = 20.2 (d, 3J_PH ~ 106 Hz).

3¹P{¹H} NMR (243 MHz, 299 K, C₆D₆): δ = 20.2 (ν1/2 ~ 30 Hz).

19F NMR (564 MHz, 299 K, C₆D₆): δ = [-124.8, -133.4] (each br, each 1F, o-C₆F₅), -158.2 (t, 3J_FF = 20.4 Hz, 1F, p-C₆F₅), -164.1 (m, 2F, m-C₆F₅), [Δδ¹⁹F_m,p = 5.9].
Figure S56 1H NMR (600 MHz, C₆D₆, 299K) spectrum of compound 13e.

Figure S57 13C1H NMR (151 MHz, C₆D₆, 299K) spectrum of compound 13e.
Figure S58 (1) 1H{1H} and (2) 1B NMR (192 MHz, C$_6$D$_6$, 299 K) spectra of compound 13e.

Figure S59 (1) 31P{1H} and (2) 31P NMR (243 MHz, C$_6$D$_6$, 299K) spectra of compound 13e.

Figure S60 19F NMR (564 MHz, C$_6$D$_6$, 299 K) spectrum of compound 13e.