Index of Contents

Index of Contents..S1
I. General Information ...S2
II. Preparation of Fe₃O₄-RB/LDH composite photocatalyst ...S2
 II-1. Preparation of MgAl-LDH and Fe₃O₄ nanoparticles ..S2
 II-2. Preparation of Fe₃O₄-RB/LDH composite photocatalyst ..S3
 II-3. Characterization of Fe₃O₄-RB/LDH composite photocatalyst ...S4
 II-4. Quantification of RB loading in Fe₃O₄-RB/LDH ..S7
III. Synthesis of the substrates and general procedures for Fe₃O₄-RB/LDH photocatalysisS8
 III-1. Synthesis of the substrates ...S8
 III-2. Fe₃O₄-RB/LDH catalyzed CDC reaction of N-phenyl-tetrahydroisoquinoline derivatives and nitroalkanes ..S9
 III-3. Fe₃O₄-RB/LDH catalyzed sulfoxidation reactions ..S10
 III-4. Fe₃O₄-RB/LDH catalyzed radical addition reactions of alkenes and thiolsS10
IV. Recycle experiments ...S11
V. Proposed mechanisms for anti-Markovnikov thyl radical addition of alkenesS12
VI. ¹H and ¹³C NMR data of products³⁴ ..S12
VII. ¹H NMR and ¹³C NMR spectra ..S17
VIII. References (cited in SI) ...S35
I. General Information

All commercially available materials were purchased from Alfa Aesar or Aladdin without further purification, except for the alkenes (4-tert-butylcatechol (TBC) radical inhibitor was removed via passing through basic alumina column). All solvents used in the reactions were without distilled from appropriate drying agents. Proton and carbon NMR spectra were recorded on a Varian 400 spectrometer using CDCl$_3$ as a solvent. Chemical shifts are reported in ppm (δ) relative to internal tetramethylsilane (TMS, δ 0.0 ppm), or with the solvent reference relative to TMS employed as an internal standard (CDCl$_3$, δ 7.26 ppm). The following abbreviations were used to identify the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad and all combinations thereof can be explained by their integral parts. SEM images were measured and analyzed on a scanning electron microscope (Zeiss supra55). Powder X-ray Diffraction (XRD) patterns were recorded on a Bruker D8 diffractometer. Solid UV-vis spectra were recorded on SHIMADZU UV-2600. Zeta potential were measured with Zetasizer Nano-ZS. Green light-emitting diode (LED, 12 W), white compact fluorescent lamp (CFL, 15 W), and white light-emitting diode (LED, 15 W) were used as the visible-light source in reported photocatalytic reactions.

II. Preparation of Fe$_3$O$_4$-RB/LDH composite photocatalyst

II-1. Preparation of MgAl-LDH and Fe$_3$O$_4$ nanoparticles

II-1.1 Synthesis of MgAl-LDH51

The magnesium aluminum carbonate layered double hydroxide (designated as MgAl-LDH) was synthesized by a conventional precipitation method. A solution of 14.9760 g NaOH and 33.0690 g Na$_2$CO$_3$ in 300 mL deionized water was added dropwise to a solution of 40.0014 g of Mg(NO$_3$)$_2$·6H$_2$O and 29.2614 g of Al(NO$_3$)$_3$·9H$_2$O in 300 mL deionized water. A pH probe was inserted to the mixture
to monitor the pH change. The pH was increased from 3 to 9.7 when the addition was finished. The resulting white precipitate was aged for 24 hours at 90 °C, then filtered through a Buchner funnel. The precipitate was washed with copious water and dried at 70 °C in an oven.

II-1.1 Synthesis of Fe$_3$O$_4$ nanoparticles

Fe$_3$O$_4$ nanoparticles capped with citrate groups were prepared according to the literature. Briefly, 2.3597 g FeCl$_3$·6H$_2$O and 0.8688 g FeCl$_2$·4H$_2$O were dissolved in 40 mL of deionized water. The solution mixture was purged with Ar and heated to 80 °C under vigorous stirring. Then 5 mL of aqueous ammonia solution (28-30 wt%) was added quickly via syringe. After 30 min, the precipitates were collected by a magnet and then washed with deionic water. Later, the precipitates were redispersed into 80 mL of deionized water at 80 °C. The solution was added 5 mL 0.1g/mL citric acid solution and then kept under Ar with vigorous stirring for 2 h. The final product was collected by a magnet.

II-2. Preparation of Fe$_3$O$_4$-RB/LDH composite photocatalyst

MgAl-LDH water suspension (160 mg in 40 mL of demi-water) was subjected to ultrasonication for 1 h. The resulted dispersion was then added with citrate acid capped Fe$_3$O$_4$ NPs dispersion in different mass ratio (MgAl-LDH: Fe$_3$O$_4$ = 1:0.1, 1:0.2, 1:0.3, 1:0.4, and 1:0.5). The mixture was ultrasonicated for 0.5 h. After that, a
water solution of Rose Bengal (80 mg/mL) was added to the mixture and the three components were further ultrasonicated for 1 h. The suspension was stood still overnight and the three components' self-assembly was collected by a magnet. The supernatant was examined by UV-Vis spectroscopy to determine the loading of RB in Fe₃O₄-RB/LDH and the self-assembly collected was dried in the oven to afford Fe₃O₄-RB/LDH.

II-3. Characterization of Fe₃O₄-RB/LDH composite photocatalyst

The red color of Fe₃O₄-RB/LDH indicates the existence of Rose Bengal on MgAl-LDH support (Figure S1 A). Fe₃O₄-RB/LDH can be attracted to an extra magnetic field, suggesting the existence of Fe₃O₄ on MgAl-LDH support (Figure S1 B, C).

Rose Bengal disodium salt was subjected to powder XRD diffractometer, but no analyzable pattern was observed (Figure S2).
Figure S3. SEM image of (A) MgAl-LDH; (B) Fe$_3$O$_4$-RB/LDH composite.
Figure S4. (A) XRD spectra of samples, i: Fe$_3$O$_4$ NPs, ii: Fe$_3$O$_4$-RB/LDH composite, iii: MgAl-LDH; (B) Solid state UV-Vis spectra of samples, i: Rose Bengal, ii: Fe$_3$O$_4$-RB/LDH composite, iii: MgAl-LDH.

Energy-dispersive X-ray spectroscopy (EDS) was employed for quantitative analysis. The results shown in Figure S5 suggests that the elements C, O, Cl, I, Mg, Al, and Fe are homogeneously spread on the surface of Fe$_3$O$_4$-RB/LDH.
Figure S5. SEM of Fe₃O₄-RB/LDH and quantitative EDS mapping of C, O, Cl, I, Mg, Al, and Fe.
II-4. Quantification of RB loading in Fe$_3$O$_4$-RB/LDH

A calibration curve was built by measuring series of Rose Bengal water solutions with different concentration. Then the supernatants from the reparation of Fe$_3$O$_4$-RB/LDH composite with different ratio of Fe$_3$O$_4$ were examined by UV-Vis spectroscopy. By determining the amount of Rose Bengal in the supernatant, we can estimate the loading of Rose Bengal in Fe$_3$O$_4$-RB/LDH, and the results are summarized in Table S1.

Table S1. Rose Bengal loading in Fe$_3$O$_4$-RB/LDH

<table>
<thead>
<tr>
<th>Mass Ratio (Fe$_3$O$_4$/MgAl-LDH)</th>
<th>Rose Bengal Loading (µmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>149.8</td>
</tr>
<tr>
<td>0.2</td>
<td>140.0</td>
</tr>
<tr>
<td>0.3</td>
<td>117.6</td>
</tr>
<tr>
<td>0.4</td>
<td>44.4</td>
</tr>
<tr>
<td>0.5</td>
<td>31.0</td>
</tr>
</tbody>
</table>

As shown in Table 1, the amount of Rose Bengal loaded on MgAl-LDH was decreased when increasing the amount of Fe$_3$O$_4$ NPs in the self-assembly mixture. This is reasonable, as the zeta potential of the surface of MgAl-LDH is decreased when negatively charged Fe$_3$O$_4$ NPs was adsorbed. Therefore, increasing amount of Fe$_3$O$_4$ NPs in the system will further reduce the zeta potential and thus decrease the adsorption of negatively charged Rose Bengal.

To maximize the catalytic activity one would prefer higher loading of Rose Bengal in Fe$_3$O$_4$-RB/LDH composite photocatalyst. On the other hand, the amount of Fe$_3$O$_4$ decides the magnetism of Fe$_3$O$_4$-RB/LDH. In a compromise of catalytic activity and magnetism, we chose mass ratio of 0.2 for preparation of Fe$_3$O$_4$-RB/LDH in our study.
III. Synthesis of the substrates and general procedures for Fe₃O₄-RB/LDH photocatalysis

III-1. Synthesis of the substrates

The substrates 1a-e were synthesized according to literature procedures. A typical procedure is described as following for the synthesis of 1c:

Copper (I) iodide (1.0 mmol, 200 mg) and potassium phosphate (20.0 mmol, 4.25 g) were added to a Schlenk tube. The tube was then evacuated and back filled with nitrogen for three times. After that, 2-propanol (10.0 mL), ethylene glycol (20.0 mmol, 1.1 mL), 1,2,3,4-tetrahydroisoquinoline (15 mmol, 2.0 mL), and 4-iodotoluene (10.0 mmol, 1.2 mL) were added successively via syringe at room temperature. The reaction mixture was heated at 85 °C and kept for 24 h and then allowed to cool to room temperature. Diethyl ether (20 mL) and water (20 mL) were added into the reaction mixture, and the aqueous layer was extracted by diethyl ether (2 × 20 mL). The combined organic phases were washed with brine and dried over magnesium sulfate. The solvent was removed via rotary evaporation, and the remaining residue was purified via column chromatography on silica gel (hexane/ethyl acetate=20:1) to give the desired product.
III-2. Fe_3O_4-RB/LDH catalyzed CDC reaction of N-phenyl-tetrahydroisoquinoline derivatives and nitroalkanes

To a 10 mL test tube equipped with a magnetic stirring bar was charged with N-phenyl-tetrahydroisoquinoline 1c (0.1 mmol), nitromethane (1.0 mmol), 2 mol% Fe_3O_4-RB/LDH and 5 mL H_2O. A needle was employed to connect the reaction system with atmosphere. The reaction mixture was stirred at room temperature with the irradiation of a 12 W green LEDs for 24 h. A magnet was used to separate the Fe_3O_4-RB/LDH from the reaction system. The recovered Fe_3O_4-RB/LDH was washed with ethanol for three times to extract the possible adsorbed product. The EtOH solution was combined with reaction solution and transferred to a 50 mL round bottom flask for evaporation to dry the solvent. The remaining residue was purified by Biotage medium pressure liquid chromatography (MPLC) to give the desired product, using a silica column.
III-3. Fe_3O_4-RB/LDH catalyzed sulfoxidation reactions

![Homemade visible light photoreactor using a CFL bulb as the light source](image)

To a 10 mL test tube equipped with a magnetic stir bar was charged with thioethers (0.5 mmol), Fe_3O_4-RB/LDH (2 mol %), and 5 mL H$_2$O. A needle was employed to connect the reaction system with atmosphere. The solution was stirred at room temperature with the irradiation of a 15 W CFL. After completion of the reaction, a magnet was used to separate the Fe_3O_4-RB/LDH from the reaction system. The recovered Fe_3O_4-RB/LDH was washed with ethanol for three times to extract the possible adsorbed product. The EtOH solution was combined with reaction solution and transferred to a 50 mL round bottom flask for evaporation to dry the solvent. The remaining residue was purified by Biotage medium pressure liquid chromatography (MPLC) to give the desired product, using a basic alumina column.

III-4. Fe_3O_4-RB/LDH catalyzed radical addition reactions of alkenes and thiols

![Homemade visible light photoreactor using a LED bulb as the light source](image)
To a 10 mL test tube equipped with a magnetic stirring bar was charged with alkenes (0.2 mmol), thiols (0.3 mmol), 5 mol% Fe$_3$O$_4$-RB/LDH, and 5 mL H$_2$O. A needle was employed to connect the reaction system with atmosphere. The solution was stirred at room temperature with the irradiation of a 15 W white LED bulb for 2 h. A magnet was used to separate the Fe$_3$O$_4$-RB/LDH from the reaction system after the completion of the reaction. The recovered Fe$_3$O$_4$-RB/LDH was washed with ethanol for three times to extract the possible adsorbed product. The EtOH solution was combined with reaction solution and transferred to a 50 mL round bottom flask for evaporation to dry the solvent. The remaining residue was purified by Biotage medium pressure liquid chromatography (MPLC) to give the desired product, using a silica column.

IV. Recycling experiments

The reaction mixture of N-phenyl-tetrahydroisoquinoline (0.1 mmol), nitromethane (1.0 mmol), 4 mol % Fe$_3$O$_4$-RB/LDH and 5 mL H$_2$O was irradiated with a 12 W green LEDs for 24 h. After completion of the reaction, a magnet was used to separate the Fe$_3$O$_4$-RB/LDH from the reaction system. The recovered Fe$_3$O$_4$-RB/LDH was washed with ethanol for three times to extract the possible adsorbed product. The EtOH solution was combined with reaction solution and transferred to a 50 mL round bottom flask for evaporation to dry the solvent. The remaining residue was mixed with internal standard and the mixture was subjected for 1H NMR quantification. The washed Fe$_3$O$_4$-RB/LDH was then dried in an oven and used for the next round of photocatalysis. The catalyst can be reused for 6 times without significant loss of the catalytic activity. The reduction of catalytic activity can be attributed to the leaching of Rose Bengal during the reaction since it is immobilized on MgAl-LDH through non-covalent interaction.
V. Proposed mechanisms for anti-Markovnikov thiol radical addition of alkenes

In the proposed mechanism, the Rose Bengal anchored on MgAl-LDH (RB) was converted into the excited state (RB*). RB* is able to abstract an electron from thiol to form a thiol radical cation via single electron transfer (SET), and change into RB radical anion. RB radical anion can go back to the ground state RB by converting dioxygen into dioxygen radical anion, which further reacts with thiol radical cation to produce thiy radical. The thiy radical can go radical addition with alkene to form the final anti-Markovnikov addition product.

VI. ¹H and ¹³C NMR data of products

2-(4-bromophenyl)-1-(nitromethyl)-1,2,3,4-tetrahydroisoquinoline (3a): Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.13 (m, 6H), 6.86 – 6.84 (d, J = 8.2 Hz, 2H), 5.51 – 5.47 (t, J = 7.2 Hz, 1H), 4.86 – 4.81 (dd, J = 12.0, 8.1 Hz, 1H), 4.59 – 4.54 (dd, J = 12.0, 6.4 Hz, 1H), 3.63 – 3.59 (m, 2H), 3.10
- 3.03 (m, 1H), 2.82 – 2.75 (dt, \(J = 16.4, 4.8 \text{ Hz}, 1H \)). \(^{13}\text{C}\) NMR (100 MHz, CDCl\(_3\)) \(\delta \) 147.33, 134.89, 132.27, 132.05, 129.13, 128.12, 126.81, 126.66, 116.59, 111.34, 78.43, 57.93, 41.88, 26.00.

\[
\begin{align*}
&3b
\end{align*}
\]

2-(4-chlorophenyl)-1-(nitromethyl)-1,2,3,4-tetrahydroisoquinoline (3b): Yellow oil. \(^1\text{H}\) NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.27 – 7.12 (m, 6H), 6.89 – 6.87 (d, \(J = 9.0 \text{ Hz}, 2H \)), 5.49 – 5.46 (t, \(J = 7.1 \text{ Hz}, 1H \)), 4.85 – 4.80 (dd, \(J = 8.2, 12.0 \text{ Hz}, 1H \)), 4.58 – 4.53 (dd, \(J = 6.3, 12.0 \text{ Hz}, 1H \)), 3.62 – 3.01 (m, 1H), 2.80 – 2.73 (dt, \(J = 16.4, 4.7 \text{ Hz}, 1H \)). \(^{13}\text{C}\) NMR (100 MHz, CDCl\(_3\)) \(\delta \) 146.95, 134.92, 132.29, 129.14, 128.09, 126.81, 126.65, 124.16, 116.31, 78.47, 58.04, 41.98, 25.96.

\[
\begin{align*}
&3c
\end{align*}
\]

1-(1-nitroethyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (3c): Yellow oil. Isolated diastereomeric ratio = 1.63:1; \(^1\text{H}\) NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.34 – 7.13 (m, 6 H), 7.06 – 7.02 (m, 2 H), 6.88 – 6.84 (m, 1 H), 5.31 – 5.26 (m, 1 H), 5.12 – 5.05 (m, 0.69 H, major isomers), 4.97 – 4.89 (m, 0.36 H, minor isomer), 3.91 – 3.84 (m, 0.71 H), 3.66 – 3.55 (m, 1.45 H), 3.13 – 3.05 (m, 1 H), 2.98 – 2.88 (m, 1 H), 1.75 – 1.73 (d, \(J = 6.8 \text{ Hz}, 1.12 \text{ H, minor isomer} \)), 1.59 – 1.57 (d, \(J = 6.6 \text{ Hz}, 2.12 \text{ H, major isomer} \)). \(^{13}\text{C}\) NMR (100 MHz, CDCl\(_3\), minor isomer marked *) \(\delta \) 149.02*, 148.74, 135.48, 134.65*, 133.68*, 131.88, 129.30*, 129.18 (major and minor isomers), 128.98*, 128.59*, 128.22, 128.07, 127.12*, 126.46*, 126.00, 119.19, 118.64*, 115.27, 114.34*, 88.82*, 85.30, 62.60, 61.01*, 43.41*, 42.52, 26.61*, 26.24, 17.29*, 16.26.

\[
\begin{align*}
&3d
\end{align*}
\]

1-(1-nitropropyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (3d): Yellow oil. Isolated diastereomeric ratio = 1.37:1; \(^1\text{H}\) NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.33 – 7.16 (m, 6 H), 7.03 – 6.96 (m, 2 H), 6.87-6.80 (m, 1 H), 5.29 – 5.26 (d, \(J = 9.3 \text{ Hz}, 0.59 \text{ H, major isomer} \)), 5.18 – 5.15 (d, \(J = 9.5 \text{ Hz}, 0.43 \text{ H, minor isomer} \)), 4.93 – 4.87 (m, 0.43 H, minor isomer), 4.74 – 4.68 (m, 0.59 H, major isomer), 3.92 – 3.85 (m, 0.44 H, minor isomer), 3.73 – 3.52 (m, 2 H), 3.15-3.06 (m, 1 H), 2.97-2.87 (m, 1 H), 2.30 – 2.08 (m, 1.67 H), 1.91 – 1.81 (m, 0.45 H), 0.99-0.95 (m, 3 H). \(^{13}\text{C}\) NMR (100 MHz, CDCl\(_3\), minor isomer marked *) \(\delta \) 148.96*, 148.87, 135.45*, 134.58, 133.80, 132.44*, 129.31, 129.22, 129.07 (major and minor isomers), 128.58*, 128.49, 128.12, 128.07*, 127.11, 126.52, 125.79 (major and minor isomers), 119.28*, 118.45, 115.71*, 114.00, 96.05, 92.94*, 62.07*, 60.59, 43.42, 42.19*, 26.72, 25.60*, 24.89, 24.51*, 10.57.
1-(nitromethyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (3e): Yellow oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.19 – 7.02 (m, 6H), 6.89 – 6.87 (d, $J = 8.0$ Hz, 2H), 6.76 – 6.73 (t, $J = 7.3$ Hz, 1H), 5.46 – 5.43 (t, $J = 7.2$ Hz, 1H), 4.79 – 4.74 (dd, $J = 11.8$, 7.8 Hz, 1H), 4.48 – 4.43 (dd, $J = 11.8$, 6.6 Hz, 1H), 3.59 – 3.47 (m, 2H), 3.02 – 2.94 (m, 1H), 2.72 – 2.65 (dt, $J = 16.3$, 5.0 Hz, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 148.30, 135.16, 132.79, 129.39, 129.07, 128.00, 126.88, 126.58, 119.30, 114.97, 78.65, 58.07, 41.93, 26.32.

1-(nitromethyl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (3f): Yellow oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.25 – 7.05 (m, 6H), 6.89 – 6.86 (d, $J = 8.6$ Hz, 2H), 5.50 – 5.46 (t, $J = 7.3$ Hz, 1H), 4.85 – 4.80 (dd, $J = 11.8$, 8.1 Hz, 1H), 4.55 – 4.51 (dd, $J = 11.8$, 6.3 Hz, 1H), 3.65 – 3.52 (m, 2H), 3.08 (s, 3H), 2.76 – 2.69 (dt, $J = 16.4$, 4.4 Hz, 1H), 2.25 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 146.22, 135.19, 132.77, 129.81, 129.12, 128.91, 127.83, 126.81, 126.45, 115.72, 78.64, 58.22, 42.10, 26.02, 20.20.

2-(4-methoxyphenyl)-1-(nitromethyl)-1,2,3,4-tetrahydroisoquinoline (3g): Yellow oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.24 – 7.12 (m, 4H), 6.92 – 6.89 (d, $J = 9.1$ Hz, 2H), 6.81 – 6.79 (d, $J = 9.1$ Hz, 2H), 5.39 – 5.36 (m, 1H), 4.84 – 4.79 (dd, $J = 11.9$, 8.6 Hz, 1H), 4.57 – 4.53 (dd, $J = 11.9$, 5.8 Hz, 1H), 3.74 (s, 3H), 3.57 – 3.53 (m, 2H), 3.04 – 2.96 (m, 1H), 2.71 – 2.65 (dt, $J = 16.6$, 4.0 Hz, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 153.86, 142.94, 135.32, 132.76, 129.34, 127.78, 126.80, 126.50, 118.74, 114.58, 78.84, 58.79, 55.47, 43.02, 25.67.

methylsulfinylbenzene (5a): White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.58-7.39 (m, 2H), 7.47-7.39 (m, 3H), 2.64 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 145.37, 130.73, 129.05, 123.17, 43.64.
ethylsulfinylbenzene (5b): White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.45-7.42 (dd, $J = 7.9$ Hz, 1.84 Hz, 2H), 7.36-7.28 (m, 3H), 2.77-2.69 (m, 1H), 2.62-2.54 (m, 1H), 1.02-0.99 (t, $J = 7.4$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 142.75, 130.38, 128.60, 123.60, 49.66, 5.37.

sulfinyldibenzene (5c): White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.58-7.56 (m, 2H), 7.35-7.31 (m, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 145.16, 130.67, 128.93, 124.31.

1-methyl-4-(methylsulfinyl)benzene (5d): Yellow gummy solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.50-7.48 (d, $J = 8.0$ Hz, 2H), 7.29-7.27 (d, $J = 7.9$ Hz, 2H), 2.65 (s, 3H), 2.36 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 142.22, 141.22, 129.76, 123.27, 43.70, 21.10.

1-chloro-4-(methylsulfinyl)benzene (5e): Colorless solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.54-7.52 (d, $J = 8.5$ Hz, 2H), 7.46-7.44 (d, $J = 8.5$ Hz, 2H), 2.66 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 144.10, 137.00, 129.42, 124.77, 43.88.

1-bromo-4-(methylsulfinyl)benzene (5f): White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.59-7.57 (d, $J = 8.5$ Hz, 2H), 7.46-7.43 (d, $J = 8.5$ Hz, 2H), 2.64 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 144.66, 132.34, 125.22, 124.94, 43.74.
1-bromo-2-(methylsulfinyl)benzene (5g): Colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.95-7.92 (dd, $J = 7.8, 1.6$ Hz, 1H), 7.57-7.54 (m, 2H), 7.39-7.35 (m, 1H), 2.81 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 144.89, 132.47, 131.87, 128.29, 125.19, 117.96, 41.47.

phenethyl(p-tolyl)sulfane (8a): Colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.31-7.10 (m, 9H), 3.14-3.10 (t, $J = 7.5$ Hz, 2H), 2.92-2.88 (t, $J = 8.4$ Hz, 2H), 2.32 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 140.24, 136.11, 132.39, 130.03, 129.62, 128.40, 128.37, 126.28, 35.74, 35.67, 20.90.

phenethyl(p-chlorophenyl)sulfane (8b): Colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.30 – 7.15 (m, 9H), 3.13-3.09 (t, $J = 7.4$ Hz, 2H), 2.90-2.87 (t, $J = 8.2$ Hz, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 139.77, 134.82, 131.79, 130.40, 128.88, 128.39, 128.34, 126.39, 35.37, 35.21.

(4-chlorophenethyl)(p-tolyl)sulfane (8c): Yellow oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.26 – 7.21 (m, 4H), 7.10 – 7.06 (m, 4H), 3.08 – 3.04 (t, $J = 7.4$ Hz, 2H), 2.85-2.81 (t, $J = 8.2$ Hz, 2H), 2.31 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 138.51, 136.19, 132.01, 131.96, 130.11, 129.73, 129.60, 128.38, 35.56, 34.83, 20.86.

(4-methoxyphenethyl)(p-tolyl)sulfane (8d): Colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.27-7.25 (d, $J = 8.1$ Hz, 2H), 7.10-7.07 (m, 4H), 6.82-6.80 (d, $J = 8.5$ Hz, 2H), 3.75 (s, 3H), 3.09-3.05 (t, $J = 7.3$ Hz, 2H), 2.85-2.81 (t, $J = 8.3$ Hz, 2H), 2.30 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 158.01, 135.88, 132.46, 132.23, 129.84, 129.52, 129.28, 113.71, 55.02, 35.87, 34.67, 20.82.
VII. 1H NMR and 13C NMR spectra
VIII. References (cited in SI)