Electronic Supplementary Information

Metal Free Direct C(sp2)-H Arylaminations Using Nitrosoarenes to 2-hydroxydi(het)aryl Amines as Multifunctional Aβ-aggregation Modulators

Subhra Kanti Roy,^a Anuj Tiwari,^b Mohammed Saleem,^b and Chandan K. Jana *^a

^aDepartment of Chemistry, Indian Institute of Technology Guwahati, India 780139
e-mail: ckjana@iitg.ac.in
^bDepartment of Life Sciences, National Institute of Technology, Rourkela, India – 769008

Experimental:

General: All reactions involving air- or moisture-sensitive reagents or intermediates were carried out in oven-dried glassware under an argon atmosphere. Dichloromethane (CH₂Cl₂) was freshly distilled from phosphorus (V) oxide (P₂O₅). Commercial grade xylene, benzene and toluene were distilled over CaH₂ before use. All other solvents and reagents were purified according to standard procedures or were used as received from Aldrich, Acros, Merck and Spectrochem. ¹H, ¹³C NMR spectroscopy: Varian Mercury plus 400 MHz, Bruker 600 MHz (at 298 K). Chemical shifts, δ (in ppm), are reported relative to TMS δ (¹H) 0.0 ppm, δ (¹³C) 0.0 ppm) which was used as the inner reference. Otherwise the solvents residual proton resonance and carbon resonance (CHCl₃, δ (¹H) 7.26 ppm, δ (¹³C) 77.2 ppm; CD₃OD, (¹H) 3.31 ppm, δ (¹³C) 49.0 ppm) were used for calibration. Column chromatography: Merck or Spectrochem silica gel 60-120 under gravity. IR: spectra were recorded on Perkin Elmer Instrument at normal temperature making KBr pellet grinding the sample with KBr (IR Grade). MS (ESI-HRMS): Mass spectra were recorded on an Agilent Accurate-Mass Q-TOF LC/MS 6520, and peaks are given in m/z (% of basis peak). FETEM measurements of the samples were carried out in a JEOL (JEM 2100F) microscope with an operating voltage of 200 kV. Nitrosoarene derivativesⁱ and 4-methyl-5-phenylcyclohexane-1,3dioneⁱⁱ were synthesized by literature procedures.

ThT Assay for fibrillation kinetics:

Stock solution of Amyloid β -40 was prepared in de-ionised water, aliquots of this solution were then lyophilized and stored at -20°C. For each experiment Amyloid β - 40 (A β -40) peptide concentrations were normalized to 1 μ M by further dilution using 20 mM Phosphate buffer saline (PBS) and a final concentration of 20 μ M Thioflavin T (ThT) was added in a NEST 96-well plate along with 50 μ M of the respective molecules in each well. This plate was then sealed using an opti-seal to prevent evaporation. The fibrillation kinetics were followed using a BioTek Synergy H1 fluorescence plate reader at an excitation wavelength of 440 nm and an emission wavelength of 490 nm. Readings were recorded in triplicate every 40 min for a period of 20 h. The amyloid fibrillation growth rates were calculated by fitting the initial portion of the aggregation kinetics using the equation y = A + B*exp(- kx).

Transmission Electron Microscopy

10 μ L of sample solution was added on to a carbon coated copper grid and this was left for 2 minutes, it was later wicked off with a filter paper. The grid was then rinsed with deionized water and a 5 μ L 4% uranyl acetate replacement (EMS) droplet was placed on to the grid. After a minutes this solution was wicked off and the grid was air dried. The imaging was performed on JEOL (JEM 2100F) microscope with an operating voltage of 200 kV.

	-	
° _{≥N}	OH conditions	Etooc
1	+	→ (j)
COOEt	2	3
entry	conditions	isolated yield (%)
1 ^b	NEt₃(2), DCM, 40 °C	48
2 ^c	NEt ₃ (2), DCM, 40 °C	64
3 ^d	NEt₃(2), DCM, 40 °C	76
4	NEt ₃ (2), DCM, 40 °C	85
5	NEt₃(2), DCM, rt	75
6	DCM, 40 °C	46
7	K ^t OBu, DCM, 40 [°] C	30
8	NEt₃(2), Toluene, 40 °C	79
9	ipr₂NEt (2), DCM, 40 °C	64
10	NEt₃ (2), DCE, 80 °C	53
11	K ₂ CO ₃ (2), DCM, 40 °C	36
12	NEt₃ (2), MeOH, 40 °C	69
13	NEt₃ (2), EtOH, 40 °C	45
14	THIQ, DCM, 40 °C	22
a All reaction	ware norfermed with of 2 nembthal (0	17 mmall mitroschampana (0.21 mma

Table s1:	Optin	nization	of rea	iction	conditions
-----------	-------	----------	--------	--------	------------

^aAll reactions were performed with of 2-naphthol (0.17 mmol), nitrosobenzene (0.31 mmol) in solvent (4 mL) for 24 h. ^b1 eq. , ^c1.25 eq. and ^d1.5 eq. of nitrosobenzene was used.

Figure s1: 1. ¹³C NMR of isolated imminoquinone **15**. 2. ¹³C NMR of the reaction mixture of 6-bromo-2-naphthol and ethyl 4-nitrosobenzoate in presence of NEt₃ in CD₂Cl₂ after 10 min.

Scheme s1: Reaction with 1-naphthol.

Scheme s2: Controlled experiments and detailed plausible mechanism.

Reaction with phenyl hydroxyl amine:

Detailed mechanism:

Scheme s3: Possible mechanism for the formation of 22.

Figure s2: ThT assay based screening of molecules for their potency to inhibit the fibrillation kinetics of $A\beta$ -40

Figure s3: a & b. TEM micrograph of molecule 6d & 6c, respectively, incubated with A β -40 monomers for 24 hours. (Scale bars, 100nm)

Figure s4: Changes in fibril morphology triggered by the molecule interaction observed by Transmission Electron Microscopy. a. Representative TEM micrographs for control A β -40 (untreated) **b.** Representative TEM micrographs of pre-formed A β -40 treated with molecule 6d and incubated for 24 hours showed no fibril like structures. c. Representative TEM micrographs of pre-formed $A\beta$ -40 treated with molecule 6c and incubated for 24 hours showed fibril like structures albeit the networking between them was visibly less in comparison to the control d. Representative TEM micrographs of monomeric A β -40 treated with molecule 6d and incubated for 24 hours were devoid of fibril like structures e. Representative TEM micrographs of monomeric A β -40 treated with molecule 6c and incubated for 24 hours were devoid of fibril like structures.

General procedure for the synthesis of aminated derivatives (GP-1):

Nitrosoarene (1.85 equiv) was added to a solution of naphthol/cyclohexadione/4-hydroxycumarine derivatives (0.14 - 0.34 mmol) and triethylamine (2 - 4 equiv) in dry dichloromethane or dry toluene (3 - 5 mL) and the reaction mixture was refluxed for 12 - 36 h under argon atmosphere. The reaction mixture was allowed to cool to room temperature and the solvent was evaporated under vacuum to obtain brown gummy residue which was further purified by column chromatography to afford analytically pure products.

Ethyl 4-(2-hydroxynaphthalen-1-ylamino)benzoate (3): According to GP-1: 2-naphthol (25

mg, 0.17 mmol), ethyl 4-nitrosobenzoate (57 mg, 0.31 mmol) and NEt₃ (48 μ L, 0.34 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:5) of the crude gave **3** as a brown solid (45 mg, 85%). FTIR (KBr): $\tilde{\nu} = 3299$, 2983, 1670, 1603,

1516, 1391, 1286, 1172, 769, 754 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ = 7.87 (d, *J* = 8.4 Hz, 2H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.81 (d, *J* = 9.0 Hz, 1H), 7.61 (d, *J* = 8.4 Hz, 1H), 7.41 – 7.38 (m, 1H), 7.36 – 7.33 (m, 1H), 7.32 (d, *J* = 8.4 Hz, 1H), 6.63 (d, *J* = 8.4 Hz, 2H), 6.32 (s, 1H), 5.59 (s, 1H), 4.31 (q, *J* = 7.2 Hz, 2H), 1.34 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 166.7, 152.0, 151.0, 132.0, 131.9, 129.82, 129.77, 128.9, 127.4, 123.9, 121.7, 121.5, 117.5, 117.3, 113.5, 60.7, 14.6 ppm. HRMS (ESI) exact mass calculated for C₁₉H₁₈NO₃⁺ ([M + H]⁺): 308.1281; Found: 308.1278.

1-(phenylamino)naphthalen-2-ol (6a): According to GP-1: 2-naphthol (30 mg, 0.21 mmol), nitrosobenzene (41 mg, 0.32 mmol) and NEt₃ (58 μ L, 0.42 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:10) of the crude gave 6a as a white solid (29 mg, 58%). FTIR (KBr): $\tilde{\nu} =$ 3426, 1626, 1601, 1496, 1388, 1208, 749 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ

= 7.82 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 8.8 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.39 (t, J = 7.2 Hz, 1H), 7.35 – 7.32 (m, 2H), 7.21 – 7.17 (m, 2H), 6.84 (t, J = 7.2 Hz, 1H), 6.66 (d, J = 7.8 Hz, 2H), 6.54 (s, 1H), 5.23 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 152.3$, 146.8, 132.2, 129.80, 129.77, 129.3, 128.8, 127.2, 123.6, 121.6, 119.9, 118.7, 117.0, 114.4 ppm. HRMS (ESI) exact mass calculated for C₁₆H₁₄NO⁺ ([M + H]⁺): 236.1070 ; Found: 236.1073.

Methyl 4-(2-hydroxynaphthalen-1-ylamino)benzoate (6b): According to GP-1: 2-naphthol (25

1-(4-nitrophenylamino)naphthalen-2-ol (6c): According to GP-1: 2-naphthol (35 mg, 0.24

mmol), 1-nitro-4-nitrosobenzene (68 mg, 0.45 mmol) and NEt₃ (68 μ L, 0.49 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:3) of the crude gave **6c** as a yellow solid (54 mg, 80%). FTIR (KBr): $\tilde{\nu} = 3445$, 2962, 2924, 2854, 1624, 1525, 1477, 1349, 1263, 1209, 812, 736 cm⁻¹. ¹H NMR (600 MHz,

CDCl₃) $\delta = 8.08$ (d, J = 9.0 Hz, 2H), 7.86 – 7.87 (m, 2H), 7.59(d, J = 8.4 Hz, 1H), 7.45 – 7.43 (m, 1H), 7.39 – 7.37 (m, 1H), 7.32 (d, J = 9.0 Hz, 1H), 6.64 (d, J = 7.6 Hz, 2H), 6.10 (s, 1H), 5.90 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 152.7$, 151.7, 140.4, 131.7, 130.3, 129.8, 129.0, 127.8, 126.6, 124.2, 121.3, 117.6, 116.7, 113.4 ppm. HRMS (ESI) exact mass calculated for C₁₆H₁₃N₂O₃ ([M + H]⁺): 281.0921; Found: 281.0921.

1-(4-(trifluoromethyl)phenylamino)naphthalen-2-ol (6d): According to GP-1: 2-naphthol (35

mg, 0.24 mmol), 1-(trifluoromethyl)-4-nitrosobenzene (79 mg, 0.45 mmol) and NEt₃ (68 µL, 0.49 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:7) of the crude gave **6d** as yellow solid (61 mg, 83%). FTIR (KBr): $\tilde{\nu} = 3466$, 3343, 2924, 1615, 1392, 1261, 1105, 816, 753 cm⁻¹. ¹H NMR (600 MHz,

 $CDCl_3$) $\delta = 7.84$ (d, J = 8.4 Hz, 1H), 7.82 (d, J = 9.0 Hz, 1H), 7.61 (d, J = 9.0 Hz, 1H), 7.43 – 7.41

(m, 3H), 7.37 - 7.36 (m, 1H), 7.32 (d, J = 9.0 Hz, 1H), 6.67 (d, J = 8.4 Hz, 2H), 6.30 (s, 1H), 5.49 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 152.1$, 149.7, 131.9, 129.9, 129.8, 128.9, 127.5, 127.22 (C3), 127.20 (C3), 127.17 (C3), 127.15 (C3), 125.7 (C1), 123.95, 123.89 (C1), 122.1 (C2), 121.9 (C2), 121.7 (C2), 121.5 (C2), 121.4, 117.6, 117.3, 113.9 ppm. HRMS (ESI) exact mass calculated for C₁₇H₁₃F₃NO⁺ ([M + H]⁺): 304.0944; Found: 304.0949.

1-(4-chlorophenylamino)naphthalen-2-ol (6e): According to GP-1: 2-naphthol (25 mg, 0.17

CI NH OH

mmol), 4-chlorobenzenamine (45 mg, 0.32 mmol), NEt₃ (48 μ L, 0.35 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:10) of the crude gave **6e** as a brown gum (24 mg, 52%). FTIR (KBr): $\tilde{\nu} = 3438$, 1632, 1262, 1092, 747 cm⁻¹. ¹H NMR (400

MHz, CDCl₃) δ = 7.81 (dd, *J* = 13.6, 8.4 Hz, 2H), 7.62 (d, *J* = 8.4 Hz, 1H), 7.42–7.40 (m, 1H), 7.38–7.30 (m, 2H), 7.13 (d, *J* = 8.8 Hz, 2H), 6.58 (d, *J* = 8.8 Hz, 2H), 6.44 (s, 1H), 5.26 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 152.2, 145.5, 132.0, 129.8, 129.7, 129.6, 128.9, 127.4, 124.7, 123.8, 121.4, 118.34, 117.1, 115.6 ppm. HRMS (ESI) exact mass calculated for C₁₆H₁₃ClNO⁺ ([M + H]⁺): 270.0680; Found: 270.0681.

4-(2-hydroxynaphthalen-1-ylamino)benzonitrile (6f): According to GP-1: 2-naphthol (35 mg, NC 0.24 mmol), 4-aminobenzonitrile (59 mg, 0.45 mmol) and NEt₃ (68 μL, 0.49 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:5) of the crude gave **6f** as a brown solid (61 mg, 97%). FTIR (KBr): $\tilde{\nu} = 3378$, 2220, 1606, 1511, 1471, 1388, 1318, 1135, 835, 822, 754 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 7.84 - 7.80$ (m, 2H), 7.59 (d, J = 8.4 Hz, 1H), 7.43 - 7.40 (m, 3H), 7.39 - 7.35 (m, 1H), 7.30 (d, J = 9.0 Hz, 1H), 6.63 (dd, J = 8.4, 2.4 Hz, 3H), 6.28 (s, 1H), 5.74 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 151.7$, 150.5, 134.1, 131.6, 123.0, 129.6, 128.8, 127.5, 123.9, 121.1, 119.7, 117.2, 116.6, 114.1, 101.9 ppm. HRMS (ESI) exact mass calculated for C₁₇H₁₃N₂O⁺ ([M + H]⁺): 261.1022 ; Found: 261.1024. 2-(2-hydroxynaphthalen-1-ylamino)benzonitrile (6g): According to GP-1: 2-naphthol (30 mg,

CN 0.21 mmol), 2-aminobenzonitrile (51 mg, 0.38 mmol) and NEt₃ (58 μL, 0.42 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:7) of the crude gave **6g** as a brown gum (28 mg, 52%). FTIR (KBr): $\tilde{v} = 3435$, 2216, 1626, 1603, 1500, 1290, 1290, 1143, 816, 749 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 7.85 - 7.82$ (m, 2H), 7.60 (d, J = 8.4 Hz, 1H), 7.56 (dd, J = 7.8 Hz, 1.2 Hz, 1H), 7.45 – 7.42 (m, 1H), 7.38 – 7.35 (m, 1H), 7.32 (d, J = 9.0 Hz, 1H), 7.25 – 7.22 (m, 1H), 6.85 – 6.83 (m, 1H), 6.28 (d, J = 8.4 Hz, 1H), 6.26 (s, 1H), 6.07 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 152.0$, 149.7, 134.8, 133.0, 131.7, 130.3, 129.8, 128.9, 127.7, 124.1, 121.2, 119.5, 117.7, 117.4, 116.5, 113.6, 97.4 ppm. HRMS (ESI) exact mass calculated for C₁₇H₁₃N₂O⁺ ([M + H]⁺): 261.1022; Found: 261.1031.

1-(3-nitrophenylamino)naphthalen-2-ol (6h): According to GP-1: 2-naphthol (35 mg, 0.24 mmol), 1-nitro-3-nitrosobenzene (68 mg, 0.45 mmol) and NEt₃ (68 μL, 0.49 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:4) of the crude gave **6h** as a yellow gum (48 mg, 70%). FTIR (KBr): $\tilde{\nu} = 3448$, 1620, 1525, 1349, 1208, 814, 735, cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 7.86 - 7.83$ (m, 2H), 7.67 - 7.65 (m, 1H), 7.60 (d, J = 8.4 Hz, 1H), 7.50 (t, J = 1.8 Hz, 1H), 7.43 - 7.40 (m, 1H), 7.37 - 7.35 (m, 1H), 7.33 (d, J = 9.0 Hz, 1H), 7.29 (t, J = 8.4 Hz, 1H), 6.88 (d, J = 9.6 Hz, 1H), 6.34 (s, 1H), 5.59 (s, 1H).ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 152.1$, 149.7, 148.1, 131.5, 130.5, 130.2, 129.9, 129.1, 127.6, 124.0, 121.2, 120.0, 117.35, 117.26, 114.7, 108.9 ppm. HRMS (ESI) exact mass calculated for C₁₆H₁₃N₂O⁺ ([M + H]⁺): 281.0921; Found: 281.0920.

1-(3-(trifluoromethyl)phenylamino)naphthalen-2-ol (6i): According to GP-1: 2-naphthol (25 mg, 0.17 mmol), 3-(trifluoromethyl)benzenamine (56 mg, 0.32 mmol) and NEt₃ (48 μL, 0.31

mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:6) of the crude gave **6i** as a white solid (41 mg, 78%). FTIR (KBr): $\tilde{\nu} = 3493$, 1614, 1522, 1470, 1330, 1105, 816, 754 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) $\delta = 7.85 - 7.81$ (m, 2H), 7.63 (d, J = 8.5 Hz, 1H), 7.43 – 7.40 (m, 1H), 7.37 – 7.33 (m, 2H), 7.27 – 7.23 (m, 1H), 7.08 (d,

J = 7.5 Hz, 1H), 6.95 (s, 1H), 6.70 (s, 1H), 6.35 (s, 1H), 5.43 (s, 1H) ppm. ¹³C NMR (151 MHz, 151 MHz)

CDCl₃) δ = 152.2, 147.3, 132.2, 132.0, 131.9, 130.4, 129.8, 129.0, 127.5, 123.9, 121.3, 117.7, 117.21, 117.17, 116.6, 116.6, 116.5, 116.5, 111.09, 111.06, 111.04, 111.01 ppm. HRMS (ESI) exact mass calculated for C₁₇H₁₃F₃NO⁺ ([M + H]⁺): 304.0944; Found: 304.0950.

1-(3-chlorophenylamino)naphthalen-2-ol (6j): According to GP-1: 2-naphthol (25 mg, 0.17 mmol), 3-chlorobenzenamine (45 mg, 0.32 mmol) and NEt₃ (48 µL, 0.35 mmol) were reacted for

24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:15) of the crude gave **6j** as a brown gum (36 mg, 76%). FTIR (KBr): $\tilde{v} =$ 3372, 2963, 1625, 1598, 1479, 1396, 1264, 1143, 1095, 816, 748, 681 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta =$ 7.83 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 9.0 Hz, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.43 – 7.40 (m, 1H), 7.36 – 7.34 (m, 1H), 7.32 (d, J

NMR (400 MHz, CDCl₃) δ = 7.81 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 9.2 Hz,

= 9.0 Hz, 1H), 7.09 (t, J = 7.8 Hz, 1H), 6.81 – 6.80 (m, 1H), 6.62 – 6.61 (m, 1H), 6.53 – 6.51 (m, 1H), 6.42 (s, 1H), 5.28 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 152.2, 148.2, 135.6, 132.0, 130.8, 129.8, 129.7, 128.9, 127.4, 123.8, 121.4, 120.0, 117.9, 117.1, 114.3, 112.6 ppm. HRMS (ESI) exact mass calculated for C₁₆H₁₃ClNO⁺ ([M + H]⁺): 270.0680; Found: 270.0679.

1-(3-methoxyphenylamino)naphthalen-2-ol (6k): According to GP-1: 2-naphthol (30 mg, 0.21 mmol), 3-methoxybenzenamine (53 mg, 0.38 mmol) and NEt₃ (58 μ L, 0.42 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:10) of the crude gave **6k** as a brown gum (34 mg, 62%). FTIR (KBr): $\tilde{v} = 3442$, 1619, 1601, 1487, 1392, 1206, 818 cm⁻¹. ¹H

1H), 7.68 (d, J = 8.4 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.34 – 7.29 (m, 2H), 7.11 – 7.07 (m, 1H), 6.52 (s, 1H), 6.41 – 6.38 (m, 1H), 6.28 (dd, J = 8.0, 2.0 Hz, 1H), 6.19 – 6.18(m, 1H), 5.26 (s, 1H), 3.70 (s, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 161.2$, 152.2, 148.3, 132.2, 130.6, 129.7, 129.3, 128.8, 127.2, 123.6, 121.6, 118.6, 117.1, 107.3, 104.9, 100.7, 55.3 ppm. HRMS (ESI) exact mass calculated for C₁₇H₁₆NO₂⁺ ([M + H]⁺): 266.1176; Found: 266.1185.

3-((2-hydroxynaphthalen-1-yl)amino)benzonitrile (6l): According to GP-1: 2-naphthol (35 mg,

0.24 mmol), 3-aminobenzonitrile (59 mg, 0.45 mmol) and NEt₃ (68 µL, 0.49 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:6) of the crude gave **6l** as a brown gum (36 mg, 58%). FTIR (KBr): $\tilde{\nu} = 3438, 2924, 2854, 2229, 1633, 1603, 1463, 1263, 680 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) <math>\delta = 7.84$ (dd, J = 12.6, 8.4 Hz, 2H), 7.58

(d, J = 8.4 Hz, 1H), 7.43 –7.41 (m, 1H), 7.36 (t, J = 7.2 Hz, 1H), 7.32 (d, J = 9.0 Hz, 1H), 7.27 – 7.25 (m, 1H), 7.10 (d, J = 7.2 Hz, 1H), 6.87 (d, J = 8.4 Hz, 1H), 6.84 (s, 1H), 5.49 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 151.9$, 147.3, 131.6, 130.4, 129.9, 129.7, 128.9, 127.4, 123.8, 123.3, 121.0, 118.9, 118.6, 117.1, 117.0, 116.9, 113.4 ppm. HRMS (ESI) exact mass calculated for C₁₇H₁₃N₂O⁺ ([M + H]⁺): 261.1022 ; Found: 261.1030.

Ethyl 4-(2-bromo-7-hydroxynaphthalen-8-ylamino)benzoate (6m): According to GP-1: 7-

bromo-2-naphthol (30 mg, 0.14 mmol), ethyl 4-nitrosobenzoate (57 mg, 0.25 mmol) and NEt₃ (38 µL, 0.27 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:5) of the crude gave **6m** as an off white solid (39 mg, 73%). FTIR (KBr): $\tilde{v} = 3421, 2924, 1662, 1604, 1442, 1262, 1107, 768 \text{ cm}^{-1}$. ¹H NMR (600

MHz, CDCl₃) δ = 7.87 (d, *J* = 9.0 Hz, 2H), 7.78 (s, 1H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.68 (d, *J* = 9.0 Hz, 1H), 7.41 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.31 (d, *J* = 9.0 Hz, 1H), 6.60 (d, *J* = 8.4 Hz, 2H), 5.61 (s, 1H), 4.31 (q, *J* = 7.2 Hz, 2H), 1.34 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 166.8, 152.8, 150.4, 133.5, 132.0, 130.5, 129.7, 128.2, 127.4, 123.8, 122.2, 121.9, 117.9, 116.9, 113.4, 60.8, 14.6 ppm. HRMS (ESI) exact mass calculated for C₁₉H₁₇BrNO₃⁺ ([M + H]⁺): 386.0386; Found: 386.0386.

Ethyl 4-(2-hydroxy-7-methoxynaphthalen-1-ylamino)benzoate (6n): According to GP-1: 7-

methoxy-2-naphthol (30 mg, 0.17 mmol), ethyl 4-nitrosobenzoate (57 mg, 0.31 mmol) and NEt₃ (48 µL, 0.34 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:5) of the crude gave **6n** as a white solid (47 mg, 80%). FTIR (KBr): $\tilde{v} = 3436, 2925, 1628, 1605, 1513, 1263, 1021, 830, 769 \text{ cm}^{-1}$. ¹H

NMR (600 MHz, CDCl₃) δ = 7.84 (d, *J* = 8.4 Hz, 2H), 7.71 (d, *J* = 4.8 Hz, 1H), 7.70 (d, *J* = 4.8 Hz, 1H), 7.14 (d, *J* = 8.4 Hz, 1H), 6.98 (d, *J* = 11.4 Hz, 1H), 6.84 (s, 1H), 6.60 (d, *J* = 7.8 Hz, 2H), 5.58 (s, 1H), 4.29 (q, *J* = 7.2 Hz, 2H), 3.68 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 166.8, 159.0, 152.6, 150.9, 133.4, 131.9, 130.5, 129.4, 125.0, 121.5, 116.9, 115.9, 114.6, 113.4, 100.7, 60.7, 55.3, 14.6 ppm. HRMS (ESI) exact mass calculated for C₂₀H₂₀NO₄⁺ ([M + H]⁺): 338.1387; Found: 338.1398.

Ethyl 4-(2-(benzyloxy)-7-hydroxynaphthalen-8-ylamino)benzoate (60): According to GP-1: 7-

(benzyloxy)-2-naphthol (40 mg, 0.16 mmol), ethyl 4nitrosobenzoate (53 mg, 0.30 mmol) and NEt₃ (45 μ L, 0.32 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:5) of the crude gave **60** as a white solid (37 mg, 56%). FTIR (KBr): $\tilde{\nu} = 3354$, 2979, 1689, 1607, 1517,

1283, 1263, 1105, 1018, 804, 767 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ = 7.85 (d, *J* = 9.0 Hz, 2H), 7.72 – 7.69 (m, 2H), 7.30 – 7.29 (m, 4H), 7.28 – 7.26 (m, 1H), 7.14 (d, *J* = 9.0 Hz, 1H), 7.06 (dd, *J* = 9.0, 2.4 Hz, 1H), 6.92 (s, 1H), 6.58 (d, *J* = 8.4 Hz, 2H), 5.46 (s, 1H), 4.95 (s, 2H), 4.32 (q, *J* = 7.2 Hz, 2H), 1.35 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 166.8, 158.2, 152.6, 150.9, 136.8, 133.4, 131.9, 130.5, 129.5, 128.7, 128.2, 127.6, 125.1, 121.6, 116.9, 116.5, 114.7, 113.4, 102.2, 70.1, 60.7, 14.6 ppm. HRMS (ESI) exact mass calculated for C₂₆H₂₄NO₄⁺ ([M + H]⁺): 414.1700 ; Found: 414.1695.

Ethyl 4-(2-bromo-6-hydroxynaphthalen-5-ylamino)benzoate (6p): According to GP-1: 6-

bromo-2-naphthol (30 mg, 0.135 mmol), ethyl 4-nitrosobenzoate (45 mg, 0.25 mmol) and NEt₃ (38 µL, 0.27 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:5) of the crude gave **6p** as a brown solid (37 mg, 71%). FTIR (KBr): $\tilde{v} = 3345$, 2985, 1685, 1633, 1600, 1515, 1281, 1173, 772 cm⁻¹. ¹H

NMR (600 MHz, CDCl₃) δ = 7.97 (s, 1H), 7.86 (d, *J* = 9.0 Hz, 2H), 7.71 (d, *J* = 9.0 Hz, 1H), 7.49 (d, *J* = 9.0 Hz, 1H), 7.44 (dd, *J* = 9.0, 1.8 Hz, 1H), 7.33 (d, *J* = 9.0 Hz, 1H), 6.59 (d, *J* = 8.4 Hz, 2H), 6.41 (s, 1H), 5.61 (s, 1H), 4.30 (q, *J* = 7.2 Hz, 2H), 1.34 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 166.7, 152.3, 150.6, 131.9, 130.9, 130.8, 130.6, 128.8, 123.5, 121.9, 118.6, 117.8, 117.7, 113.5, 60.7, 14.6 ppm. Total count of ¹³C is less than expected due to the merging of

signal in the aromatic region. HRMS (ESI) exact mass calculated for $C_{19}H_{17}BrN_3O^+$ ([M + H]⁺): 386.0386; Found: 386.0388.

Methyl 4-(2-bromo-6-hydroxynaphthalen-5-ylamino)benzoate (6q): According to GP-1: 6-

bromo-2-naphthol (35 mg, 0.16 mmol), methyl 4-nitrosobenzoate (48 mg, 0.29 mmol) and NEt₃ (44 μ L, 0.31 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:5) of the crude gave **6q** as a brown solid (42 mg, 71%). FTIR (KBr): $\tilde{v} = 3334$, 1712, 1693, 1605, 1518, 1434, 1282, 1173, 1108, 768 cm⁻¹.

¹H NMR (600 MHz, CDCl₃) δ = 7.97 (s, 1H), 7.84 (d, *J* = 9.0 Hz, 2H), 7.70 (d, *J* = 9.0 Hz, 1H), 7.49 (d, *J* = 9.0 Hz, 1H), 7.44 (d, *J* = 10.8 Hz, 1H), 7.33 (d, *J* = 9.0 Hz, 1H), 6.58 (d, *J* = 8.4 Hz, 2H), 6.43 (s, 1H), 5.63 (s, 1H), 3.84 (s, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 167.2, 152.2, 150.7, 132.0, 130.9, 130.8, 130.6, 130.6, 128.8, 123.5, 121.5, 118.7, 117.8, 117.7, 113.5, 52.0 ppm. HRMS (ESI) exact mass calculated for C₁₈H₁₅BrNO₃⁺ ([M + H]⁺): 372.0230; Found: 372.0231.

1-(4-nitrophenylamino)-6-bromonaphthalen-2-ol (6r): According to GP-1: 6-bromo- 2-

naphthol (40 mg, 0.18 mmol), 1-nitro-4-nitrosobenzene (51 mg, 0.34 mmol) and NEt₃ (50 µL, 0.36 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:3) of the crude gave **6r** as a light yellow solid (60 mg, 93%). FTIR (KBr): $\tilde{\nu} = 3370$, 1594, 1499, 1466, 1264, 1111, 840 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 8.07$

(d, J = 9.0 Hz, 2H), 8.00 (s, 1H), 7.74 (d, J = 9.0 Hz, 1H), 7.50 – 7.46 (m, 2H), 7.33 (d, J = 8.4 Hz, 1H), 6.62 (d, J = 9.0 Hz, 2H), 5.92 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 152.3$, 152.0, 140.6, 131.0, 130.9, 130.4, 129.4, 126.6, 123.2, 118.9, 118.0, 117.0, 113.6, 113.4 ppm. HRMS (ESI) exact mass calculated for C₁₆H₁₂BrN₂O₃⁺ ([M + H]⁺): 359.0026; Found: 359.0027.

4-(2-bromo-6-hydroxynaphthalen-5-ylamino)benzonitrile (**6s**): According to GP-1: 6-bromo-NC 2-naphthol (35 mg, 0.16 mmol), 4-aminobenzonitrile (38 mg, 0.29 mmol) and NEt₃ (44 μ L, 0.31 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:5) of the crude gave **6s** as a brown solid (49 mg, 91%). FTIR (KBr): $\tilde{\nu} = 3436$, 2213, 1607, 1515, 1361, 1172, 819 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 7.99$ (s, 1H), 7.72 (d, J = 9.0 Hz, 1H), 7.47

- 7.46 (m, 2H), 7.43 (d, J = 9.0 Hz, 2H), 7.32 (d, J = 9.0 Hz, 1H), 6.62 (d, J = 8.4 Hz, 2H), 5.73

(s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 152.2, 150.4, 134.3, 130.9, 130.8, 130.4, 129.2, 123.3, 119.8, 118.7, 117.9, 117.1, 114.3, 102.3 ppm Total count of ¹³C is less than expected due to the merging of signal in the aromatic region. HRMS (ESI) exact mass calculated for C₁₇H₁₂BrN₂O⁺ ([M + H]⁺): 339.0128; Found: 339.0124.

1-(3-nitrophenylamino)-6-bromonaphthalen-2-ol (6t): According to GP-1: 6-bromo-2-naphthol

(35 mg, 0.16 mmol), 1-nitro-3-nitrosobenzene (44 mg, 0.29 mmol) and NEt₃ (44 μ L, 0.32 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc: Hexane, 1:4) of the crude gave **6t** as a yellow solid (41 mg, 73%). FTIR (KBr): $\tilde{\nu} = 3437$, 1620, 1600, 1472, 1349, 735 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 7.99$ (s, 1H), 7.73 (d, J = 9.0 Hz,

1H), 7.67 (dd, J = 8.4, 1.8 Hz, 1H), 7.47 – 7.46 (m, 3H), 7.34 (d, J = 9.0 Hz, 1H), 7.31 – 7.29 (m, 1H), 6.85 (dd, J = 8.4, 1.8 Hz, 1H), 6.38 (s, 1H), 5.58 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 152.4$, 149.7, 147.8, 131.0, 130.9, 130.6, 130.4, 129.2, 123.2, 119.9, 118.7, 117.8, 117.6, 114.9, 108.9 ppm. Total count of ¹³C is less than expected due to the merging of signal in the aromatic region. HRMS (ESI) exact mass calculated for C₁₆H₁₂BrN₂O₃⁺ ([M + H]⁺): 359.0026; Found: 359.0026.

Ethyl 4-(2-bromo-3-hydroxynaphthalen-4-ylamino)benzoate (6u): According to GP-1: 3-

bromo-2-naphthol (40 mg, 0.18 mmol), ethyl 4-nitrosobenzoate (60 mg, 0.34 mmol) and NEt₃ (50 µL, 0.36 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:5) of the crude gave **6u** as a brown solid (53 mg, 76%). FTIR (KBr): $\tilde{\nu} =$ 3446, 1629, 1604, 1310, 1276, 1172, 748 cm⁻¹. ¹H NMR (400 MHz,

CDCl₃) $\delta = 8.07$ (s, 1H), 7.87 (d, J = 8.8 Hz, 2H), 7.75 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 9.2 Hz, 1H), 7.43 – 7.35 (m, 2H), 6.62 (d, J = 8.8 Hz, 2H), 6.40 (s, 1H), 5.81 (s, 1H), 4.31 (q, J = 7.2 Hz, 2H), 1.34 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta = 166.7$, 150.5, 147.9, 131.8, 131.2, 131.1, 129.8, 127.9, 127.6, 125.0, 122.4, 122.1, 119.8, 113.9, 111.4, 60.7, 14.6 ppm. HRMS (ESI) exact mass calculated for C₁₉H₁₇BrN₃O⁺ ([M + H]⁺): 386.0386; Found: 386.0392.

Methyl 4-(2-bromo-3-hydroxynaphthalen-4-ylamino)benzoate (6v): According to GP-1: 3-

bromo-2-naphthol (35 mg, 0.16 mmol), methyl 4-nitrosobenzoate (48 mg, 0.29 mmol) and NEt₃ (44 μ L, 0.31 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc: Hexane, 1:4) of the crude gave **6v** as a yellow solid (41 mg, 70%). FTIR (KBr): $\tilde{v} = 3355$, 1681, 1603, 1582, 1457, 1432, 1175, 1134, 768, 755 cm⁻¹.

¹H NMR (600 MHz, DMSO-*d*₆) δ = 8.37 (s, 1H), 8.21 (s, 1H), 7.84 (d, *J* = 8.4 Hz, 1H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.60 (d, *J* = 8.4 Hz, 1H), 7.43 – 7.40 (m, 1H), 7.35 – 7.32 (m, 1H), 6.51 – 6.45 (m, 2H), 3.73 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ = 166.4, 152.0, 148.9, 131.2, 131.0, 130.5, 128.9, 127.5, 127.0, 124.2, 122.3, 120.1, 117.8, 113.1, 112.7, 51.5 ppm. HRMS (ESI) exact mass calculated for C₁₈H₁₅BrNO₃⁺ ([M + H]⁺): 372.0230; Found: 372.0230.

Ethyl 4-(2-hydroxy-3-methoxynaphthalen-1-ylamino)benzoate (6w): According to GP-1: 3-

methoxy-2-naphthol (35 mg, 0.20 mmol), ethyl 4-nitrosobenzoate (66 mg, 0.37 mmol) and NEt₃ (56 µL, 0.40 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:5) of the crude gave **6w** as a brown solid (55 mg, 82%). FTIR (KBr): $\tilde{v} = 3377, 2978, 1697, 1605, 1518, 1478, 1277, 1173, 1107, 770 cm⁻¹.$

¹H NMR (600 MHz, CDCl₃) δ = 7.85 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 7.8 Hz, 1H), 7.67 (d, *J* = 8.4 Hz, 1H), 7.30 (t, *J* = 7.2 Hz, 1H), 7.13 (s, 1H), 6.60 (d, *J* = 8.4 Hz, 2H), 6.25 (s, 1H), 5.90 (s, 1H), 4.30 (q, *J* = 7.2 Hz, 2H), 4.03 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 166.9, 150.9, 147.7, 142.1, 131.5, 128.8, 127.3, 127.0, 124.8, 124.6, 122.4, 120.8, 119.3, 113.7, 105.1, 60.5, 56.2, 14.6 ppm. HRMS (ESI) exact mass calculated for C₂₀H₂₀NO₄⁺ ([M + H]⁺): 338.1387; Found: 338.1389.

Methyl 4-(2-hydroxy-3-methoxynaphthalen-1-ylamino)benzoate (6x): According to GP-1: 3-MeOOC methoxy-2-naphthol (35 mg, 0.20 mmol), methyl 4-nitrosobenzoate (61 mg, 0.37 mmol) and NEt₃ (56 μ L, 0.40 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:4) of the crude gave 6x as a orange yellow solid (61 mg, 95%). FTIR (KBr): $\tilde{v} = 3360$, 1683, 1604, 1517, 1287, 1174, 1115,

770 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ = 7.84 (d, J = 9.0 Hz, 2H), 7.74 (d, J = 7.8 Hz, 1H), 7.68

(d, J = 8.4 Hz, 1H), 7.37 – 7.35 (m, 1H), 7.32 – 7.30 (m, 1H), 7.14 (s, 1H), 6.61 (d, J = 9.0 Hz, 2H), 6.21 (s, 1H), 5.89 (s, 1H), 4.05 (s, 3H), 3.83 (s, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 167.4$, 151.0, 147.7, 142.1, 131.6, 128.8, 127.3, 127.0, 124.9, 124.6, 122.4, 120.5, 119.2, 113.7, 105.1, 56.3, 51.8 ppm. HRMS (ESI) exact mass calculated for C₁₉H₁₈NO₄⁺ ([M + H]⁺): 324.1230; Found: 324.1229.

7-methoxy-1-(phenylamino)naphthalen-2-ol (6y): According to GP-1: 7-methoxy-2-naphthol

(30 mg, 0.17 mmol), nitrosobenzene (34 mg, 0.32 mmol) and NEt₃ (48 μ L, 0.34 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:10) of the crude gave **6y** as a white solid (26 mg, 56%). FTIR (KBr): $\tilde{\nu} = 3443$, 1632, 1496, 1266, 1224,

749 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ = 7.72 – 7.69 (m, 2H), 7.19 – 7.15 (m, 3H), 6.97 (dd, *J* = 9.0, 2.4 Hz, 1H), 6.92 (s, 1H), 6.83 (t, *J* = 7.2 Hz, 1H), 6.66 (d, *J* = 7.8 Hz, 2H), 6.57 (s, 1H), 5.16 (s, 1H), 3.71 (s, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 158.9, 152.9, 146.7, 133.6, 130.4, 129.8, 129.0, 125.0, 119.9, 118.1, 115.7, 114.4, 114.3, 100.8, 55.3 ppm. HRMS (ESI) exact mass calculated for C₁₇H₁₆NO₂⁺ ([M + H]⁺): 266.1176 ; Found: 266.1178.

Methyl 4-(2-hydroxy-7-methoxynaphthalen-1-ylamino)benzoate (6z): According to GP-1: 7-

methoxy-2-naphthol (35 mg, 0.20 mmol), methyl 4-nitrosobenzoate (61 mg, 0.37 mmol) and NEt₃ (56 μ L, 0.40 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:5) of the crude gave **6z** as a brown solid (57 mg, 88%).

FTIR (KBr): $\tilde{v} = 3373$, 1681, 1603, 1514, 1287, 1142, 808, 768 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 7.84$ (d, J = 9.0 Hz, 2H), 7.72 (d, J = 3.6 Hz, 1H), 7.70 (d, J = 3.6 Hz, 1H), 7.15 (d, J = 8.4 Hz, 1H), 6.99 (dd, J = 9.0, 2.4 Hz, 1H), 6.84 (s, 1H), 6.61 (d, J = 8.4 Hz, 2H), 5.56 (s, 1H), 3.84 (s, 3H), 3.69 (s, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 167.2$, 159.1, 152.6, 150.9, 133.4, 131.9, 130.5, 129.5, 125.0, 121.3, 116.8, 116.0, 114.6, 113.5, 100.7, 55.4, 52.0 ppm. HRMS (ESI) exact mass calculated for C₁₉H₁₈NO₄⁺ ([M + H]⁺): 324.123; Found: 324.1222.

Ethyl 4-(2,7-dihydroxynaphthalen-8-ylamino)benzoate (6aa): According to GP-1: 7-hydroxy-

2-naphthol (40 mg, 0.25 mmol), ethyl 4-nitrosobenzoate (83 mg, 0.46 mmol) and NEt₃ (69 μ L, 0.50 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:2) of the crude gave **6aa** as a brown solid (54 mg, 67%). FTIR (KBr): $\tilde{\nu} = 3368$,

2980, 1686, 1605, 1510, 1282, 1178, 1109, 830, 769 cm⁻¹. ¹H NMR (600 MHz, CD₃OD) δ = 7.75 (d, *J* = 9.0 Hz, 2H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.60 (d, *J* = 9.0 Hz, 1H), 7.00 (d, *J* = 8.4 Hz, 2H), 6.86 (dd, *J* = 9.0, 2.4 Hz, 1H), 6.55 (d, *J* = 8.4 Hz, 2H), 4.26 (q, *J* = 7.2 Hz, 2H), 1.33 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (151 MHz, CD₃OD) δ = 168.9, 157.3, 154.1, 153.2, 135.5, 132.2, 131.0, 129.0, 125.6, 119.3, 118.5, 116.3, 116.0, 113.7, 105.2, 61.3, 14.7 ppm. HRMS (ESI) exact mass calculated for C₁₉H₁₈NO₄⁺ ([M + H]⁺): 324.1230; Found: 324.1236.

Ethyl 4-(6-hydroxyquinolin-5-ylamino)benzoate (7a): According to GP-1: 6-hydroxy-quinoline

(35 mg, 0.21 mmol), ethyl 4-nitrosobenzoate (68 mg, 0.38 mmol) and NEt₃ (59 µL, 0.41 mmol) were reacted for 36 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:1) of the crude gave **7a** as a brown solid (45 mg, 70%). FTIR (KBr): $\tilde{\nu} = 3403$, 2965, 1904, 1689, 1606, 1479, 1369, 1204, 1134, 838, 807, 763 cm⁻¹. ¹H NMR

(600 MHz, CD₃OD) $\delta = 8.64$ (dd, J = 4.2, 1.2 Hz, 1H), 8.20 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 9.0 Hz, 1H), 7.76 (d, J = 9.0 Hz, 2H), 7.52 (d, J = 9.0 Hz, 1H), 7.40 (dd, J = 8.4, 4.2 Hz, 1H), 6.55 (d, J = 8.4 Hz, 2H), 4.26 (q, J = 7.2 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (151 MHz, CD₃OD) $\delta = 168.6$, 153.5, 153.4, 148.0, 144.6, 133.0, 132.3, 129.1, 128.8, 123.6, 122.5, 120.1, 119.9, 113.8, 61.4, 14.7 ppm. HRMS (ESI) exact mass calculated for C₁₈H₁₇N₂O₃⁺ ([M + H]⁺): 309.1234; Found: 309.1236.

5-(4-nitrophenylamino)quinolin-6-ol (7b): According to GP-1: 6-hydroxyquinoline (30 mg, O_2N 0.21 mmol), 1-nitro-4-nitrosobenzene (58 mg, 0.38 mmol) and NEt₃ (57 µL, 0.41 mmol) were reacted for 36 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:1) of the crude gave **7b** as a brown solid (39 mg, 68%). FTIR (KBr): $\tilde{v} = 3366$, 2962, 2206, 1605, 1513, 1469, 1261, 1081, 818, 805 cm⁻¹. ¹H NMR (600 MHz, DMSO-*d*₆) $\delta = 10.31$ (s, 1H), 9.00 (s, 1H), 8.72 (d, J = 5.4 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 8.01 (d, J = 9.0 Hz, 2H), 7.92 (d, J = 9.6 Hz, 1H), 7.55 (d, J = 9.0 Hz, 1H), 7.44 (dd, J = 8.4, 4.2 Hz, 1H), 6.63 – 6.45 (m, 2H) ppm. ¹³C NMR (151 MHz, DMSO- d_6) $\delta = 153.8$, 151.3, 147.5, 143.5, 137.0, 130.2, 129.1, 126.9, 126.1, 122.3, 121.8, 117.0, 112.4 ppm. HRMS (ESI) exact mass calculated for C₁₅H₁₂N₃O₃⁺ ([M + H]⁺): 282.0873; Found: 282.0884.

4-(6-hydroxyquinolin-5-ylamino)benzonitrile (7c): According to GP-1: 6-hydroxyquinoline (30

mg, 0.21 mmol), 4-aminobenzonitrile (50 mg, 0.38 mmol) and NEt₃ (57 μ L, 0.41 mmol) were reacted for 36 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:1) of the crude gave **7c** as a brown solid (45 mg, 84%). FTIR (KBr): $\tilde{\nu} = 3366, 2962, 2206, 1605, 1513, 1469, 1261, 1081, 818, 805 cm⁻¹. ¹H NMR (600 MHz, CD₃OD) <math>\delta = 8.65$

 $(dd, J = 4.2, 1.8 Hz, 1H), 8.20 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 9.6 Hz, 1H), 7.52 (d, J = 9.0 Hz, 1H), 7.42 - 7.39 (m, 3H), 6.59 (d, J = 8.4 Hz, 2H) ppm. ¹³C NMR (151 MHz, CD₃OD) <math>\delta$ = 153.4, 153.1, 148.1, 144.5, 134.6, 132.7, 129.10, 129.08, 123.6, 122.7, 121.2, 119.2, 114.7, 99.9 ppm. HRMS (ESI) exact mass calculated for C₁₆H₁₂N₃O⁺ ([M + H]⁺): 262.0975; Found: 262.0975.

5-(3-nitrophenylamino)quinolin-6-ol (7d): According to GP-1: 6-hydroxy-quinoline (50 mg,

0.34 mmol), 1-nitro-3-nitrosobenzene (96 mg, 0.63 mmol) and NEt₃ (95 μ L, 0.68 mmol) were reacted for 36 h in dry DCM (5 mL). Column chromatography (silica; EtOAc : Hexane, 1:1) of the crude gave **7d** as a brown solid (65 mg, 68%). FTIR (KBr): $\tilde{v} = 3403$, 2964, 1689, 1606, 1515, 1282, 1262, 1174, 807, 763 cm⁻¹. ¹H NMR (600 MHz, DMSO-*d*₆) $\delta = 10.24$ (s, 1H), 8.70 (d, J = 5.4 Hz, 1H), 8.33 (s, 1H), 8.16 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 9.6

Hz, 1H), 7.55 (d, J = 9.0 Hz, 1H), 7.45 – 7.42 (m, 2H), 7.34 (t, J = 8.4 Hz, 1H), 7.24 (s, 1H), 6.90 (d, J = 7.8 Hz, 1H) ppm. ¹³C NMR (151 MHz, DMSO- d_6) $\delta = 151.2$, 148.84, 148.79, 147.6, 143.6, 130.6, 130.2, 128.5, 127.1, 122.4, 121.7, 119.8, 118.3, 111.5, 106.9 ppm. HRMS (ESI) exact mass calculated for C₁₅H₁₂N₃O₃⁺ ([M + H]⁺): 282.0873; Found: 282.0876.

Ethyl 4-(1,4-dihydro-2-hydroxy-1,4-dioxonaphthalen-3-ylamino)benzoate (9a): According to

GP-1: 2-hydroxy-1,4-naphthoquinone (35 mg, 0.20 mmol), ethyl 4nitrosobenzoate (67 mg, 0.37 mmol) and NEt₃ (56 μ L, 0.40 mmol) were reacted for 36 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 2:1) of the crude gave **9a** as a light violet solid (46 mg, 67%). FTIR (KBr): $\tilde{\nu} = 3304$, 2987, 1709, 1645, 1606, 1267, 1178, 1063, 765, 717 cm⁻¹.

COOEt ¹H NMR (600 MHz, DMSO-*d*₆) δ = 8.46 (s, 1H), 7.98 (t, *J* = 7.8 Hz, 2H), 7.80 – 7.78 (m, 2H), 7.74 (d, *J* = 8.4 Hz, 2H), 6.85 (d, *J* = 7.8 Hz, 2H), 4.24 (q, *J* = 7.2 Hz, 2H), 1.28 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (151 MHz, DMSO-*d*₆) δ = 181.8, 178.0, 165.7, 146.7, 145.0, 134.0, 133.7, 131.0, 130.5, 129.5, 125.8, 125.6, 124.0, 120.1, 117.3, 60.0, 14.4 ppm. HRMS (ESI) exact mass calculated for C₁₉H₁₆NO₅⁺ ([M + H]⁺): 338.1023; Found: 338.1026.

Methyl 4-(1,4-dihydro-2-hydroxy-1,4-dioxonaphthalen-3-ylamino)benzoate (9b): According

to GP-1: 2-hydroxy-1,4-naphthoquinone (35 mg, 0.20 mmol), methyl 4nitrosobenzoate (61 mg, 0.37 mmol) and NEt₃ (56 µL, 0.40 mmol) were reacted for 36 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 2:1) of the crude gave **9b** as a light violet solid (36 mg, 55%). FTIR (KBr): $\tilde{v} = 3307$, 2963, 1721, 1713, 1646, 1625, 1262, 1097, 1020, 800, 764 cm⁻¹. ¹H NMR (600 MHz, DMSO-*d*₆) $\delta = 8.43$ (s, 1H), 7.99

-7.96 (m, 2H), 7.80 -7.78 (m, 2H), 7.74 (d, *J* = 9.0 Hz, 2H), 6.85 (d, *J* = 9.0 Hz, 2H), 5.74 (s, 1H), 3.77 (s, 3H) ppm. ¹³C NMR (151 MHz, DMSO-*d*₆) δ = 181.9, 180.0, 166.3, 146.8, 145.1, 134.0, 133.8, 131.1, 130.5, 129.6, 125.9, 125.6, 124.0, 119.8, 117.3, 51.6 ppm. HRMS (ESI) exact mass calculated for C₁₈H₁₂NO₄⁻ ([M – H]⁻): 322.0721; Found: 322.0726.

2-(4-nitrophenylamino)-3-hydroxynaphthalene-1,4-dione (9c): According to GP-1: 2-hydroxy-1,4-naphthoquinone (35 mg, 0.20 mmol), 1-nitro-4-nitrosobenzene (57 mg, 0.37 mmol) and NEt₃ (56 µL, 0.40 mmol) were reacted for 36 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:1) of the crude gave **9c** as a light violet foam (37 mg, 59%). FTIR (KBr): $\tilde{v} = 3302$, 2924, 1675, 1645, 1587, 1487, 1337, 1272, 1112, 1059, 719 cm⁻¹. ¹H NMR (400 MHz, NO₂ DMSO-*d*₆) $\delta = 8.88$ (s, 1H), 8.04 (d, J = 9.2 Hz, 2H), 8.02 – 7.99 (m, 2H), 7.83

-7.81(m, 2H), 6.87 (d, J = 9.2 Hz, 2H) ppm. ¹³C NMR (151 MHz, DMSO- d_6) $\delta = 181.9$, 180.8,

149.9, 148.0, 138.9, 134.7, 134.1, 131.6, 130.8, 126.3, 126.1, 125.1, 123.1, 116.8 ppm. HRMS (ESI) exact mass calculated for $C_{16}H_{11}N_2O_5^+$ ([M + H]⁺): 311.0662; Found: 311.0663.

4-(1,4-dihydro-2-hydroxy-1,4-dioxonaphthalen-3-ylamino)benzonitrile (**9d**): According to GP-1: 2-hydroxy-1,4-naphthoquinone (40 mg, 0.23 mmol), 4-aminobenzonitrile (56 mg, 42 mmol) and NEt₃ (64 μL, 0.46 mmol) were reacted for 36 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:1) of the crude gave **9d** as a violet solid (51 mg, 77%). FTIR (KBr): $\tilde{v} = 3301$, 2220, 1645, 1604, 1579, 1326, 1267, 1237, 718 cm⁻¹. ¹H NMR (600 MHz, DMSO-*d*₆) $\delta = 8.57$ (s, 1H), 8.00 – 7.97 (m, 2H), 7.80 – 7.79 (m, 2H), 7.56 (d, *J* = 9.0 Hz, 2H), 6.88 (d, *J* = 8.4 Hz, 2H) ppm. ¹³C NMR (151 MHz, DMSO-*d*₆) $\delta = 181.7$, 180.2, 146.7, 146.2, 134.1, 133.7, 132.3, 131.2, 130.5, 125.8, 125.6, 123.3, 120.1, 117.7, 99.8 ppm. HRMS (ESI) exact mass calculated for C₁₇H₉N₂O₃⁻([M – H]⁻): 289.0619; Found: 289.0629.

2-(3-nitrophenylamino)-3-hydroxynaphthalene-1,4-dione (9e): According to GP-1: 2-

hydroxy-1,4-naphthoquinone (35 mg, 0.20 mmol), 1-nitro-3nitrosobenzene (57 mg, 0.37 mmol) and NEt₃ (56 μL, 0.40 mmol) were reacted for 36 h in dry DCM (4 mL). Column chromatography (silica; EtOAc : Hexane, 1:1) of the crude gave **9e** as a purple solid (32 mg, 52%). FTIR (KBr): \tilde{v} = 3300, 1649, 1625, 1533, 1350, 1331, 1263, 1232, 1097, 801, 718 cm⁻¹. ¹H NMR (600 MHz, DMSO-*d*₆) δ = 8.50 (s, 1H), 8.00 –

7.97 (m, 2H), 7.80 – 7.79 (m, 2H), 7.64 – 7.63 (m, 2H), 7.44 – 7.41 (m, 1H), 7.24 (d, J = 9.0 Hz, 1H) ppm. ¹³C NMR (151 MHz, DMSO- d_6) $\delta = 181.8$, 180.0, 147.8, 144.1, 143.2, 133.9, 133.7, 131.0, 130.5, 128.9, 125.8, 125.6, 124.7, 124.2, 114.0, 112.4 ppm. HRMS (ESI) exact mass calculated for C₁₆H₁₁N₂O_{5⁺} ([M + H]⁺): 311.0662; Found: 311.0660.

Triethylammonium 3-((4-nitrophenyl)amino)-2-oxo-2H-chromen-4-olate (11a): According to

GP-1: 4-hydroxycumarine (40 mg, 0.25 mmol), 1-nitro-4nitrosobenzene (75 mg, 0.45 mmol) and NEt₃ (0.14 mL, 0.98 mmol) were reacted at 50 $^{\circ}$ C for 12 h in dry toluene (4 mL) and orange precipitate was obtained. The precipitate was filtered and

washed with ethylacetate-hexane (1:2) to give **11a** as orange solid (65 mg, 66%). FTIR (KBr): $\tilde{\nu}$ = 3254, 1655, 1599, 1524, 1326, 1498, 1117, 1076, 759 cm⁻¹. ¹H NMR (600 MHz, CD₃OD) δ =

8.01 – 8.00 (m, 3H), 7.53 – 7.50 (m, 1H), 7.28 (d, J = 7.8 Hz, 2H), 6.62 (d, J = 9.0 Hz, 2H), 3.19 (q, J = 7.2 Hz, 6H), 1.29 (t, J = 7.2 Hz, 9H) ppm. ¹³C NMR (151 MHz, CD₃OD) $\delta = 173.3, 166.8, 123$ 155.9, 154.2, 138.2, 132.0, 126.8, 125.9, 124.3, 123.7, 117.2, 113.4, 102.9, 47.9, 9.2 ppm. HRMS (ESI) exact mass calculated for $C_{15}H_{11}N_2O_5^+$ ($[M + H]^+$): 299.0662; Found: 299.0667.

Triethylammonium 6-methyl-3-((4-nitrophenyl)amino)-2-oxo-2H-chromen-4-olate (11b):

OH

According to GP-1: 6-methyl-4-hydroxycumarine (40 mg, 0.23 mmol), 1-nitro-4-nitrosobenzene (64 mg, 0.42 mmol) and NEt₃ (0.13 mL, 0.98 mmol) were reacted at 50 °C for 12 h in dry toluene (4 mL) and orange precipitate was obtained. The

precipitate was filtered and washed with ethyl acetate-hexane (1:2) to give 11b as orange solid (60 mg, 63%). FTIR (KBr): $\tilde{\nu} = 3386, 1632, 1600, 1515, 1478, 1343, 1261, 1107, 804 \text{ cm}^{-1}$. ¹H NMR $(600 \text{ MHz}, \text{CD}_3\text{OD}) \delta = 8.00 \text{ (d, } J = 9.0 \text{ Hz}, 2\text{H}), 7.80 \text{ (s, 1H)}, 7.34 \text{ (dd, } J = 8.4, 2.4 \text{ Hz}, 1\text{H}), 7.17$ (d, J = 7.8 Hz, 1H), 6.61 (d, J = 9.0 Hz, 2H), 3.16 (q, J = 7.2 Hz, 6H), 2.41 (s, 3H), 1.27 (t, J = 7.2 Hz, 6H), 2.41 (s, 3H), 1.27 (t, J = 7.2 Hz, 6H), 3.16 (q, J = 7.2 Hz, Hz, 9H) ppm. ¹³C NMR (151 MHz, CD₃OD) δ = 173.4, 166.9, 155.9, 152.3, 138.1, 134.1, 133.0, 126.8, 125.6, 123.4, 117.1, 113.4, 102.9, 47.8, 21.0, 9.2 ppm. HRMS (APCI) exact mass calculated for $C_{16}H_{13}N_2O_5^+$ ([M + H]⁺): 313.0819; Found: 313.0821.

Ethyl 4-(2,6-dihydroxyphenylamino)benzoate (13a): According to GP-1: cyclohexane-1,3dione (35 mg, 0.31 mmol), ethyl 4-nitrosobenzoate (0.10 g, 0.58 mmol) OH Н and NEt₃ (86 µL, 0.62 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (neutral alumina; EtOAc: Hexane, 1:1) of the COOEt crude gave **13a** as a colorless gum (39 mg, 46%). FTIR (KBr): $\tilde{\nu} = 3448, 1675, 1604, 1518, 1466,$ 1283, 1174, 1017, 770 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ = 7.83 (d, J = 9.0 Hz, 2H), 7.11 – 7.08 (m, 1H), 6.62 (d, J = 9.0 Hz, 2H), 6.57 (d, J = 8.4 Hz, 2H), 5.41 (s, 1H), 4.30 (q, J = 7.2 Hz, 2H), 1.34 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 167.2, 154.2, 150.4, 131.8, 129.1,$ 121.7, 113.9, 113.6, 107.8, 60.9, 14.6 ppm. HRMS (ESI) exact mass calculated for C₁₅H₁₆NO₄⁺ $([M + H]^{+})$: 274.1074; Found: 274.1075.

2-(4-nitrophenylamino)benzene-1,3-diol (13b): According to GP-1: cyclohexane-1,3- dione (30 mg, 0.27 mmol), 1-nitro-4-nitrosobenzene (75 mg, 0.49 mmol) and NEt₃ HN (74 µL, 0.53 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (neutral alumina; EtOAc : Hexane, 1:1) of the crude gave NO₂ OH

13b as a light yellow gum (29 mg, 44%). FTIR (KBr): $\tilde{\nu} = 3403$, 2924, 1596, 1498, 1480, 1306, 1260, 1113, 1013, 776 cm⁻¹. ¹H NMR (600 MHz, CD₃OD) $\delta = 8.02$ (d, J = 9.0 Hz, 2H), 6.97 – 6.94 (m, 1H), 6.61 (d, J = 9.6 Hz, 2H), 6.43 (d, J = 8.4 Hz, 2H), 5.50 (s, 1H), 4.64 (s, 1H) ppm. ¹³C NMR (151 MHz, CD₃OD) $\delta = 155.7$, 155.3, 139.0, 128.5, 126.6, 115.5, 113.8, 108.1 ppm. HRMS (ESI) exact mass calculated for C₁₂H₁₁N₂O₄⁺ ([M + H]⁺): 247.0713; Found: 247.0718.

Ethyl 4-((3,5-dihydroxy-[1,1'-biphenyl]-4-yl)amino)benzoate (13c): According to GP-1: 5-

phenyl-1,3-cyclohexanedione (35 mg, 0.18 mmol), ethyl 4-nitrosobenzoate (62 mg, 0.34 mmol) and NEt₃ (52 μL, 0.37
t mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (neutral alumina; EtOAc : Hexane, 1:2) of the

crude gave **13c** as a colourless gum (30 mg, 46%). FTIR (KBr): $\tilde{\nu} = 3435$, 2961, 2925, 1676, 1604, 1279, 1173, 1106, 1048, 800, 767 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 7.86$ (d, J = 8.4 Hz, 2H), 7.56 (d, J = 7.2 Hz, 2H), 7.43 – 7.41 (m, 2H), 7.36 – 7.39 (m, 1H), 6.83 (s, 2H), 6.67 (d, J = 9.0 Hz, 2H), 5.44 (s, 1H), 4.30 (q, J = 7.2 Hz, 2H), 1.34 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 167.1$, 154.2, 150.3, 142.3, 140.4, 131.8, 129.0, 127.9, 127.1, 121.8, 113.6, 113.1, 106.7, 60.9, 14.6 ppm. HRMS (ESI) exact mass calculated for C₂₁H₂₀NO₄⁺ ([M + H]⁺): 350.1387; Found: 350.1391.

Ethyl 4-((3,5-dihydroxy-2-methyl-[1,1'-biphenyl]-4-yl)amino)benzoate (13d): According to

GP-1: 4-Methyl-5-phenyl-1,3-cyclohexanedione² (35 mg, 0.17 mmol), ethyl 4-nitrosobenzoate (57 mg, 0.32 mmol) and NEt₃ (48 μ L, 0.35 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (neutral alumina; EtOAc : Hexane,

1:1) of the crude gave **13d** as a colourless gum (26 mg, 38%). FTIR (KBr): $\tilde{\nu} = 3448$, 2924, 2854, 1637, 1461, 1275, 1258, 750 cm⁻¹. ¹H NMR (400 MHz, CD₃OD) $\delta = 7.80$ (d, J = 8.8 Hz, 2H), 7.42 –7.38 (t, J = 7.2 Hz, 2H), 7.33 – 7.29 (m, 3H), 6.65 (d, J = 8.8 Hz, 2H), 6.35 (s, 1H), 4.29 (q, J = 7.2 Hz, 2H), 2.04 (s, 3H), 1.35 (t, J = 7.2 Hz, 3H). ppm. ¹³C NMR (101 MHz, CD₃OD) $\delta = 168.9$, 154.1, 153.7, 152.8, 143.5, 142.9, 132.0, 130.2, 129.0, 127.8, 120.1, 115.0, 114.6, 114.2, 109.4, 61.4, 14.7, 13.4 ppm. HRMS (ESI) exact mass calculated for C₂₂H₂₂NO₄⁺ ([M + H]⁺): 364.1543; Found: 364.1544.

2-(3-nitrophenylamino)benzene-1,3-diol (13e): According to GP-1: cyclohexane-1,3- dione (30

mg, 0.27 mmol), 1-nitro-3-nitrosobenzene (75 mg, 0.49 mmol) and NEt₃ (74 μ L, 0.53 mmol) were reacted for 24 h in dry DCM (4 mL). Column chromatography (neutral alumina; EtOAc : Hexane, 1:3) of the crude gave

13e as a light yellow gum (32 mg, 49%). FTIR (KBr): $\tilde{\nu} = 3402$, 2924, 1595, 1480, 1331, 1317, 1013, 839, 751 cm⁻¹. ¹H NMR (600 MHz, CD₃OD) $\delta = 7.29$ (dd, J = 7.8, 2.4 Hz, 1H), 7.18 – 7.17 (m, 1H), 7.08 – 7.06 (m, 1H), 6.78 – 6.77 (m, 1H), 6.75 – 6.72 (m, 1H), 6.24 (d, J = 8.4 Hz, 2H) ppm. ¹³C NMR (151 MHz, CD₃OD) $\delta = 155.5$, 150.5, 150.2, 130.2, 127.9, 121.2, 116.6, 112.9, 109.0, 108.1 ppm. HRMS (ESI) exact mass calculated for C₁₂H₁₁N₂O₄⁺ ([M + H]⁺): 247.0713; Found: 247.0719.

(4E)-ethyl 4-(6-bromo-2-oxonaphthalen-1(2H)-ylideneamino)benzoate (15): Ethyl 4-

nitrosobenzoate (30 mg, 0.17 mmol) was added to a solution of 6-bromo-2-naphthol (20 mg, 0.09 mmol) and triethylamine (25 μ L, 0.18 mmol) in dry dichloromethane (3 mL). The reaction mixture was stirred at room temperature under argon atmosphere. After 10 mins the solvent was immediately evaporated under vacuum at 30 °C to obtain green gum

residue which was immediately purified by preparative TLC (ethyl acetate: hexane, 1:5) to afford **15** as green gum (18 mg, 52%). FTIR (KBr): $\tilde{v} = 2924$, 1634, 1605, 1517, 1280, 1104, 767 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 8.13$ (d, J = 8.4 Hz, 1H), 8.08 (d, J = 8.4 Hz, 2H), 7.66 (dd, J = 8.4, 1.8 Hz, 1H), 7.56 (s, 1H), 7.40 (d, J = 9.6 Hz, 1H), 6.76 (d, J = 8.4 Hz, 2H), 6.31 (d, J = 10.2 Hz, 1H), 4.39 (q, J = 7.2 Hz, 2H), 1.41 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 179.2$, 166.7, 156.9, 150.5, 143.5, 133.9, 133.6, 132.2, 132.1, 131.2, 129.9, 129.3, 127.3, 125.6, 115.5, 60.9, 14.6 ppm. HRMS (ESI) exact mass calculated for C₁₉H₁₅BrNO₃⁺ ([M + H]⁺): 384.0230; Found: 384.0246.

1-(diphenylamino)naphthalen-2-ol (21): Iodobenzene (38 μ L, 0.34 mmol) was added to a solution of 6a (40 mg, 017 mmol), Cs₂CO₃ (111 mg, 0.34 mmol) and CuI (6 mg, 0.034 mmol) in dry DMF (2 mL) under argon atmosphere. The mixture was stirred at 110 °C for 24 h. After completion of the reaction the solvent was removed under reduced pressure and the resulting mixture was extracted with

dichloromethane (3×20 mL) and washed with NaHCO₃ (3×15 mL). The organic layers were dried

over Na₂SO₄ and concentrated under reduced pressure. The crude was purified by column chromatography (silica, EtOAc: hexane, 1:20) to give **21** as a brown solid (35 mg, 66%). FTIR (KBr): $\tilde{\nu} = 3449$, 2961, 2921, 2851, 1632, 1492, 1467, 1261, 1023, 798, 748 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.82 - 7.79$ (m, 2H), 7.72 - 7.70 (m, 1H), 7.35 - 7.28 (m, 3H), 7.23 - 7.19 (m, 4H), 7.12 - 7.10 (m, 4H), 6.96 - 6.93 (m, 2H), 5.88 (s, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta = 152.0$, 146.1, 132.7, 130.4, 129.8, 129.7, 128.7, 127.4, 124.0, 123.9, 122.8, 122.4, 120.4, 118.2 ppm. HRMS (ESI) exact mass calculated for C₂₂H₁₈NO⁺ ([M + H]⁺): 312.1400; Found: 312.1409.

12,12a-dihydrobenzo[a]phenoxazin-5-one (22): K₂CO₃ (47 mg, 0.34 mmol) was added to a

solution of **6a** (40 mg, 0.17 mmol) in toluene (3 mL) and the mixture was stirred at 100 °C for 72 h. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (silica; EtOAc: Hexane, 1:10) gave **22** as light yellow solid (18 mg, 42%). FTIR (KBr): $\tilde{v} = 2959$, 2923,

 $"_0$ 2853, 1736, 1637, 1596, 1457, 1306, 1261, 1102, 1024, 855, 760 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 8.63 (d, *J* = 8.0 Hz, 1H), 8.21 (dd, *J* = 7.4, 1.6 Hz, 1H), 7.74 (d, *J* = 7.8 Hz, 1H), 7.71 – 7.64 (m, 2H), 7.40 (t, *J* = 7.8 Hz, 1H), 7.27 (t, *J* = 8.4 Hz, 1H), 7.20 (d, *J* = 9.2 Hz, 1H), 6.34 (s, 1H) ppm.¹³C NMR (151 MHz, CDCl₃) δ = 184.2, 151.5, 147.6, 144.3, 133.0, 132.4, 132.3, 132.1, 131.8, 131.5, 130.1, 126.1, 125.5, 124.9, 116.1, 107.6 ppm. HRMS (ESI) exact mass calculated for C₁₆H₁₀NO₂⁺ ([M + H]⁺): 248.0700; Found: 248.0708.

Ethyl 4-(2-methoxynaphthalen-1-ylamino)benzoate (23a): Methyl iodide (24 µL, 0.39 mmol)

was added to solution of **3** (40 mg, 0.13 mmol) and K₂CO₃ (90 mg, 0.65 mmol) in acetone (3 mL) and the mixture was stirred at 60 °C for 4 h. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (silica; EtOAc: Hexane, 1:5) gave **23a** as a brown solid (33 mg, 79%). FTIR (KBr): $\tilde{v} = 3322, 2979$,

1687, 1600, 1580, 1365, 1287, 1169, 1097, 802, 750 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) = 7.86 – 7.83 (m, 3H), 7.81 – 7.78 (m, 2H), 7.43 – 7.34 (m, 3H), 6.59 (d, J = 8.8 Hz, 2H), 6.10 (s, 1H), 4.31 (q, J = 7.2 Hz, 2H), 3.92 (s, 3H), 1.35 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 166.9, 151.7, 151.2, 131.3, 131.0, 129.4, 128.4, 127.4, 126.8, 124.1, 123.3, 122.3, 120.5, 113.9, 113.5, 60.4, 56.6, 14.6 ppm. HRMS (ESI) exact mass calculated for C₂₀H₂₀NO₃⁺ ([M + H]⁺): 322.1438; Found: 322.1433.

6-methoxy-N-(3-nitrophenyl)quinolin-5-amine (23b): Methyl iodide (33 µL, 0.53 mmol) was

added to solution of **7d** (50 mg, 0.18 mmol) and K₂CO₃ (0.12 g, 0.89 mmol) in acetone (4 mL) and the mixture was stirred at 60 °C for 4 h. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (silica; EtOAc: Hexane, 1:2) gave **23b** as a brown solid (30 mg, 57%). FTIR (KBr): $\tilde{\nu} = 3399$, 3376, 2924, 2852, 1618, 1590,

1526, 1356, 1319, 1264, 1097, 1060, 807, 733 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 8.83 (dd, *J* = 4.0, 1.2 Hz, 1H), 8.12 – 8.09 (m, 2H), 7.64 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.60 (d, *J* = 9.2 Hz, 1H), 7.43 – 7.42 (m, 1H), 7.33 (dd, *J* = 8.4, 4.0 Hz, 1H), 7.28 – 7.24 (m, 1H), 6.85 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.07 (s, 1H), 3.97 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 151.7, 149.5, 148.9, 148.1, 144.2, 131.4, 130.0, 129.0, 126.1, 121.8, 121.7, 120.5, 116.6, 114.2, 109.4, 56.7 ppm. HRMS (ESI) exact mass calculated for C₁₆H₁₄N₃O₃⁺ ([M + H]⁺): 296.1030; Found: 296.1033.

1-(4-(ethoxycarbonyl)phenylamino)naphthalen-2-yl trifluoromethanesulfonate (24):

Trifluoromethanesulfonic anhydride (26 μ L, 0.16 mmol) was added to a solution of **3** (40 mg, 0.13 mmol) in pyridine (0.5 mL) at 0 °C and the reaction mixture was stirred for 18 h at room temperature. Aq. NH₄OH solution (10 mL) and 2 N HCl (0.2 mL) were added to the reaction mixture and extracted with dichloromethane (3×15 mL). The organic

layers were dried over Na₂SO₄ and concentrated under reduced pressure. The crude was purified by column chromatography (silica, EtOAc: hexane, 1:5) to give **24** as a colorless solid (35 mg, 61%). FTIR (KBr): $\tilde{\nu} = 3307$, 1688, 1606, 1583, 1510, 1466, 1423, 1290, 1259, 1142, 829, 753 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 7.96 - 7.94$ (m, 2H), 7.89 - 7.87 (m, 3H), 7.61 - 7.58 (m, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.46 (d, J = 9.0 Hz, 1H), 6.61 (d, J = 9.0 Hz, 2H), 6.16 (s, 1H), 4.32 (q, J = 7.2 Hz, 2H), 1.35 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 166.7$, 149.4, 143.0, 133.7, 131.5, 131.3, 128.9, 128.8, 128.7, 128.0, 127.7, 124.4, 121.8, 120.0, 119.8, 117.7, 113.9, 60.7, 14.6 ppm. HRMS (ESI) exact mass calculated for C₂₀H₁₇F₃NO₅S⁺ ([M + H]⁺): 440.0774; Found: 440.0774.

Gram scale synthesis:

Ethyl 4-nitrosobenzoate (2.3 g, 12.85 mmol) was added to a solution of 2-naphthol (1 g, 6.95 mmol) and triethylamine (1.93 mL, 13.9 mmol) in dry dichloromethane (100 mL) and the reaction

mixture was refluxed for 24 h under argon atmosphere. The reaction mixture was allowed to cool to room temperature and dichloromethane was evaporated under vacuum to obtain brown solid residue which was further purified by column chromatography (silica, EtOAc: hexane, 1:5) to afford **3** as a brown solid (1.53 g, 71%).

EtOOC NH OH	the second
Empirical formula	C ₁₉ H ₁₇ N O ₃
Formula weight	61.47
Crystal habit, colour	Block, Brown
Crystal size, mm ³	0.38X 0.33X 0.31
Temperature, T	296(2)
Wavelength, $\lambda(A)$	0.71073
Crystal system	monoclinic
Space group	P 2I/c
Unit cell dimensions	a = 11.7960(11)A
	b = 11.9194(12)A
	c = 11.1919(10) $a = 00^{\circ} R = 00.881(6)^{\circ} n = 00^{\circ}$
Volume $V(Å^3)$	$\alpha = 90, p = 90.881(0), \gamma = 90,$
Z	20
Σ	1 297
Absorption coefficient $u(mm^{-1})$	0.088
F(000)	648
A range for data collection	1 727° to 25 046°
Limiting indices	$-14 \le h \le 13$, $-14 \le k \le 13$, $-13 \le l \le 13$
Reflection collected / unique	16900/1943 [R(int) = 0.0361]
Completeness to θ	$97.6\% (\theta = 25.242^{\circ})$
Refinement method	SHELXL-2013 (Sheldrick, 2013)
Data / restraints / parameters	1943/0/214
Goodness–of–fit on F^2	1.050
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0500, wR2 = 0.1290
<i>R</i> indices (all data)	R1 = 0.0721, wR2 = 0.1432
Largest diff. peak and hole	0.287 and -0.221e·Å ⁻³

Crystal of **3** (CCDC 1866324):

Crystal **6b** (CCDC 1866321):

MeOOC NH OH	tt.
Empirical formula	C ₁₈ H ₁₅ N O ₃
Formula weight	40.46
Crystal habit, colour	Needle, Brown
Crystal size, mm ³	0.31 X 0.26 X 0.21
Temperature, T	296(2)
Wavelength, $\lambda(A)$	0.71073
Crystal system	orthorhombic
Space group	P b c a r = 12 co2(2) Å
Unit cell dimensions	a = 13.092(3) A b = 0.810(2) Å
	b = 9.810(2) A a = 21.438(5) Å
	$\alpha = 90^{\circ} \beta = 90^{\circ} \eta = 90^{\circ}$
Volume $V(Å^3)$	28794(11)
Z	58
Calculated density, $Mg \cdot m^{-3}$	1.353
Absorption coefficient, $\mu(\text{mm}^{-1})$	0.093
<i>F</i> (000)	1232
θ range for data collection	1.90 ° to 25.05 °
Limiting indices	$-14 \le h \le 16, -11 \le k \le 11, -25 \le l \le 20$
Reflection collected / unique	17752/1819 [<i>R</i> (int) = 0.0476]
Completeness to θ	97.4% (θ=25.242°)
Refinement method	SHELXL-2013 (Sheldrick, 2013)
Data / restraints / parameters	1819 / 0 / 205
Goodness–of–fit on F^2	1.053
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0463, wR2 = 0.1193
<i>R</i> indices (all data)	R1 = 0.0661, wR2 = 0.1312
Largest diff. peak and hole	0.209 and -0.184e·Å ⁻³

Crystal of **6c** (CCDC 1866312):

Crystal habit, colour	Needle, yellow
Crystal size, mm ³	0.35 X 0.28X 0.23
Temperature, T	293(2)
Wavelength, $\lambda(\text{\AA})$	0.71073
Crystal system	monoclinic
Space group	P 21/c
Unit cell dimensions	a = 5.4752(8) Å
	b = 17.649(2)Å
	c = 13.8907(17) Å
	$\alpha = 90^{\circ}, \beta = 94.311(15)^{\circ}, \gamma = 90^{\circ},$
Volume, $V(Å^3)$	1338.5(3)
Ζ	4
Calculated density, Mg·m ⁻³	1.391
Absorption coefficient, $\mu(\text{mm}^{-1})$	0.098
<i>F</i> (000)	584
θ range for data collection	2.94 ° to 25.00°
Limiting indices	$-3 \le h \le 6, -20 \le k \le 18, -16 \le l \le 16$
Reflection collected / unique	4555 / 1208 [R(int) = 0.0412]
Completeness to θ	97.8% (θ=25.00 °)
Refinement method	SHELXL-97 (Sheldrick, 1997)
Data / restraints / parameters	1208 / 0 / 196
Goodness-of-fit on F^2	0.963
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0775, wR2 = 0.1733
<i>R</i> indices (all data)	R1 = 0.1361, wR2 = 0.2356
Largest diff. peak and hole	$0.242 \text{ and } -0.225 \text{e} \cdot \text{Å}^{-3}$
- 1	

Crystal of **6u** (CCDC 1866323):

EtOOC NH OH Br	the second secon
Empirical formula	C ₁₉ H ₁₆ Br N O ₃
Formula weight	386.24
Crystal habit, colour	Block, Brown
Crystal size, mm ³	0.41 X 0.36 X 0.31
Temperature, T	293(2)
Wavelength, $\lambda(\text{\AA})$	0.71073
Crystal system	monoclinic
Space group	<i>P 21/c</i>
Unit cell dimensions	a = 11.6484(7)Å
	b = 13.0417(5) Å
	c = 11.0000(6) Å
	$\alpha = 90^{\circ}, \beta = 91.035(5)^{\circ}, \nu = 90^{\circ},$
Volume, $V(Å^3)$	1670.79(15)
Z	4

Calculated density, Mg·m ⁻³	1.535
Absorption coefficient, $\mu(\text{mm}^{-1})$	2.477
<i>F</i> (000)	784
θ range for data collection	2.97 ° to 25.00°
Limiting indices	$-12 \le h \le 13, -15 \le k \le 15, -13 \le l \le 12$
Reflection collected / unique	$6195/2030 \ [R(int) = 0.0423]$
Completeness to θ	98.5% ($\theta = 25.00^{\circ}$)
Refinement method	'SHELXL-97 (Sheldrick, 1997)
Data / restraints / parameters	2030 / 0 / 223
Goodness–of–fit on F^2	1.060
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0501, wR2 = 0.1238
<i>R</i> indices (all data)	R1 = 0.0819, wR2 = 0.1489
Largest diff. peak and hole	$0.302 \text{ and } -0.622 \cdot \text{\AA}^{-3}$

Crystal of **11b** (CCDC 1866300):

$\bigcup_{OH \bullet NEt_3} N$	the the
Empirical formula	C ₂₂ H ₂₇ N ₃ O ₅
Formula weight	413.47
Crystal habit, colour	Needle, Orange
Crystal size, mm ³	0.28 X 0.25 X 0.22
Temperature, T	293(2)
Wavelength, $\lambda(A)$	0.71073
Crystal system	monoclinic
Space group	<i>P 21/c</i>
Unit cell dimensions	a = 19.306(3)A
	b = 10.033(2)A
	c = 11.1506(14)A
XX 1 XX 8 3	$\alpha = 90^{\circ}, \beta = 93.091(13)^{\circ}, \gamma = 90^{\circ},$
Volume, $V(A^3)$	2156.7(6)
	4
Calculated density, Mg·m ⁻³	1.273
Absorption coefficient, $\mu(\text{mm}^{-1})$	0.091
F(000)	880
θ range for data collection	2.89° to 25.00 °
Limiting indices	$-22 \le h \le 22, -11 \le k \le 11, -12 \le l \le 13$
Reflection collected / unique	15558 / 2079 [R(int) = 0.1142]
Completeness to θ	99.3% ($\theta = 25.00^{\circ}$)
Refinement method	SHELXL-97 (Sheldrick, 1997)
Data / restraints / parameters	2070/0/276
Goodness–of–fit on F^2	1./95
Final R indices $[I>2$ sigma (I)]	R1 = 0.2241, wR2 = 0.5229
<i>R</i> indices (all data)	R1 = 0.2791, wR2 = 0.5529

Largest diff. peak and hole	$1.048 \text{ and} - 0.522 \text{ Å}^{-3}$

Crystal of **21** (CCDC 1866322):

OH OH	A A A A A A A A A A A A A A A A A A A
Empirical formula	C ₂₂ H ₁₇ N O
Formula weight	311.37
Crystal habit, colour	Needle, brown
Crystal size, mm ³	0.34 X 0.28X 0.24
Temperature, T	293(2)
Wavelength, $\lambda(A)$	0.71073
Crystal system	orthorhombic
Space group	
Unit cell dimensions	a = 10.4148(15) A
	b = 10.5315(9) A
	c = 15.0526(18)A
X7.1	$\alpha = 90^{\circ}, \beta = 90^{\circ}, \gamma = 90^{\circ},$
volume, $V(A^2)$	1051.0(5)
\mathcal{L}	4
Absorption coefficient w(num=1)	0.076
Absorption coefficient, $\mu(\text{mm}^{-})$	656
$\frac{\Gamma(000)}{\Omega_{\rm max}} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{10000000000000000000000000000000000$	
l imiting indices	$5.55 10 \ 24.99^{-5}$ 10 < 12 < A 12 < b < 11 17 < l < 10
Reflection collected / unique	$\begin{bmatrix} -12 \ge 12 \ge 4, -12 \ge k \ge 11, -1/\ge l \ge 10 \\ 4179 / 1282 [R(int) = 0.0432] \end{bmatrix}$
Completeness to A	$(1/2)$ $(1/2)$ $[\Lambda(111) - 0.0432]$ 00 604 $(2 - 24.00^{\circ})$
Refinement method	77.070 (0 - 24.37) SHFI XI -07 (Sheldrick 1997)
Data / restraints / narameters	4179 / 0 / 218
Goodness-of-fit on F^2	1 004
Final R indices $[I > 2 \text{ sigma}(I)]$	$R1 = 0.0669 \ wR2 = 0.0983$
<i>R</i> indices (all data)	$R_1 = 0.1505, wR_2 = 0.1412$
Largest diff. peak and hole	$0.166 \text{ and } -0.165 \text{\AA}^{-3}$
6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	

Crystal of **22** (CCDC 1866319):

Empirical formula	C ₁₆ H ₉ N O ₂
Formula weight	247.24
Crystal habit, colour	Needle, yellow
Crystal size, mm ³	0.36 X 0.34X 0.32
Temperature, I	296(2)
Crystal system	monoclinic
Space group	P 21/n
Unit cell dimensions	a = 3.9089(13) Å
	b = 23.323(8) Å
	c = 12.350(4) Å
9 a	$\alpha = 90^{\circ}, \beta = 94.388(4)^{\circ}, \gamma = 90^{\circ},$
Volume, $V(A^3)$	1122.6(6)
Z	4
Calculated density, Mg·m ⁻³	1.463
Absorption coefficient, $\mu(\text{mm}^{-1})$	0.098
F(000)	512
<i>H</i> range for data collection	$1./40^{\circ}$ to 24.99/°
Reflection collected / unique	$-4 \le n \le 4, -27 \le k \le 27, -14 \le t \le 14$ 25762/1531 [R(int) = 0.0584]
Completeness to A	2570271551 [A(IIII) = 0.0504] 97 5% (θ - 25 242°)
Refinement method	SHELXL-2013 (Sheldrick, 2013)
Data / restraints / parameters	1531 / 0 / 172
Goodness–of–fit on F^2	1.051
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0416, wR2 = 0.0972
<i>R</i> indices (all data)	R1 = 0.0587, wR2 = 0.1112
Largest diff. peak and hole	$0.146 \text{ and } -0.164 \cdot \text{\AA}^{-3}$

References

32

ⁱ (a) B. Priewisch, K. Rück-Braun, J. Org. Chem., 2005, **70**, 2350.

⁽b) B. Priewisch, K. Rück-Braun, Science of Synthesis, 2007, **31b**, 1321.

⁽c) E. Ishow, A. Brosseau, G. Clavier, K. Nakatani, R.B. Pansu, J.-J. Vachon, P. Tauc, D.Chauvat[,] C. R. Mendonça, E. Piovesan, *J. Am. Chem. Soc.*, 2007, **129**, 8970.

- (d) J. L. Jeffrey, S. P. McClintock, M. M. Haley, J. Org. Chem., 2008, 73, 3288.
- (e) M. Min, G. S. Bang, H. Lee, B.-C. Yu, Chem. Commun., 2010, 46, 5232.
- (f) D. Takamatsu, K. Fukui, S. Aroua, Y. Yamakoshi, Org. Biomol. Chem., 2010, 8, 3655.
- (g) A. Yanagisawa, T. Fujinami, Y. Oyokawa, T. Sugita, K. Yoshida, Org. Lett., 2012, 14, 2434.
- (f) X. Tian, C. Zhang, Q. Xu, Z. Li, X. Shao, Org. Biomol. Chem., 2017, 15, 3320.
- (e) A.Purkait, S.K.Roy, H. K.r Srivastava, C. K. Jana, Org. Lett., 2017, 19, 2540.
- (f) W. Hu, Q. Zheng, S.Sun, J.Cheng, Chem. Commun., 2017, 53, 6263.
- "T. Ishikawa, R. Kadoya, M. Arai, H. Takahashi, Y. Kaisi, T. Mizuta, K. Yoshikai, S. Saito,

J. Org. Chem., 2001, 66, 8000.

6a

----5.233

-----5.643

6b

6c

6e

----5.263

6f

6h

Т 110 100 f1 (ppm) :00

6i

		, , , ,	1	· · · ·	1	· · · ·	T	· · · ·	· · · ·	· · · ·	· · · ·			1	'	·			· · · ·
200	190	180	170	160	150	140	130	120	110 f1 (r	100 (mag	90	80	70	60	50	40	30	20	10

6j

Т

f1 (ppm)

--5.612

6m

----5.610

60

6р

6r

6u

					 153.52 153.38 148.04 		∠132.98 ∠132.27 √129.13 128.81	123.60 122.51 120.09 119.92	113.84					61.43					
		EtOOC、	~																
				н Сон															
			7a																
949.114.194.194.194.194.194.194.194.194.	าศตระห์การจากการ	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		1969591964,007154,007154,00715		Vestigner-provider-provider		minimum		1 /1491/1011/1-1011/10164/101	atan waxaa ka ayaa ka ayaa ka ayaa ayaa ayaa a	าสูงสารีสารสารเรียง	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	anna an		Menty and A deal Annual Ann	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	90,000,000,000,000,000,000,000,000,000,	lannar an
					· · · · ·	· · · · ·		· · · ·		, ,	· · · · ·				· I	· · · ·			
200	190	180	170	160	150	140	130	120	110 f1 (p	100 opm)	90	80	70	60	50	40	30	20	10

7c

water in DMSO- d_6

13a

----5.438

13c

23a

----3.970

23b

