Supplementary Information

Visualization of Inhomogeneous Current Distribution on ZrO₂-Coated LiCoO₂ Thin-Film Electrodes using Scanning Electrochemical Cell Microscopy

Hirotaka Inomata¹, Yasufumi Takahashi^{2, 3*}, Daiko Takamatsu⁴, Akichika Kumatani^{1,5}, Hiroki Ida,¹ Hitoshi Shiku⁶, Tomokazu Matsue^{1, 5*}

1. Graduate School of Environmental Studies, Tohoku University, 6-6-11-604, Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan

2. Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

3. Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan

4. Research&Development Group, Hitachi, Ltd., Hitachi-shi, Ibaraki 319-1292, Japan

5. WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1-509, Katahira, Aoba-ku, Sendai 980-8577, Japan

6. Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan

Tel: (+81)-076-234-4866

*Corresponding author: <u>yasufumi@se.kanazawa-u.ac.jp</u>, <u>matsue@bioinfo.che.tohoku.ac.jp</u>

SECCM setup

SECCM uses a moveable nanopipette probe (radius of 50 nm) usually containing 3 M LiCl electrolyte solution and an Ag/AgCl quasi-reference counter electrode (QRCE).¹ The nanopipette was brought into close contact with a sample electrode surface via a liquid meniscus at the nanopipette end. When the meniscus just made contact with the surface, a small anodic current flowed and a set point of 2 pA triggered the nanopipette to stop approaching. During imaging, the tip height position at this point was recorded, enabling the topography of the surface to be tracked.

Sample preparation and Characterization

LiCoO₂ thin-films were deposited on platinum coated Silicon substrates by the PLD. The laser ablation was performed using an Nd:YAG laser of 266 nm with a power of 200 mW. LiCoO₂ was deposited for 60 min under an oxygen pressure of 0.01 Pa at a temperature of 873 K.² After preparing the LiCoO₂ thin-films, ZrO_2 was deposited on the LiCoO₂ films by the PLD for different preparation periods (30 s and 180 s) at room temperature (RT).

The thickness of the deposited ZrO₂ on the LiCoO₂ films were confirmed by scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectrometry (EDX). The samples for STEM-EDX analysis were prepared by focused ion beam milling.

Cyclic voltammograms

In order to characterize the ZrO_2 coating effect on the electrochemical properties of the LiCoO₂ thin-film electrode, cyclic voltammetry is carried out using SECCM for the uncoated LiCoO₂ electrode and the ZrO_2 -coated LiCoO₂ electrodes. Figures S1a and 1b show the cyclic voltammograms (CVs) of the uncoated and 180 s ZrO_2 -coated LiCoO₂ electrodes. CV measurements are performed from 0.2 to 1.0 V vs. Ag/AgCl at a scan rate of 10 mV/s and 2 μ m radius micropipette is used to create a large electrochemical cell for obtaining a stable electrochemical response. The uncoated LiCoO₂ electrode shows sharp anodic and cathodic current peaks at around 0.93 V corresponding to Li⁺ deintercalation/intercalation associated with a first-order phase transition between two different hexagonal phases of LiCoO₂. On the other hand, the 180 s ZrO₂-coated LiCoO₂ electrode shows broader peaks with a large peak separation. The thick ZrO₂ layer increases the diffusion resistance of the lithium ions in the ZrO₂ layer.

Figures S1c shows the cyclic voltammograms (CVs) of the 30 s ZrO_2 -coated LiCoO₂ electrodes. CV measurements are performed from 0.2 to 1.0 V vs. Ag/AgCl at a scan rate of 10 mV/s and used 50 nm radius nanopipette. Two different types of typical current responses are observed. One shows relatively sharp peaks, similar to those of the uncoated LiCoO₂ electrode, and the other shows a mixture of sharp and broader peaks. The appearance of the relatively sharp peaks is the result of Li⁺ deintercalation/intercalation at the relatively thinner regions of the ZrO₂-coated layer. The broad reduction peak appearing at less positive potential in the reverse scan originates from intercalation at the relatively thicker regions of the ZrO₂-coated layer.

Figure S1. Local cyclic voltamogram using SECCM of (a) $LiCoO_2$ thin film electrode, (b) 180 sec ZrO_2 -coated $LiCoO_2$ thin film electrode. (c) 30 s ZrO_2 -coated (red) and ZrO_2 non-coated (blue) $LiCoO_2$ thin film electrode. Scan rate was 10 mV/s. The pipette radius of (a,b) and (c) were 2 µm and 50 nm, respectively.

- Y. Takahashi, A. Kumatani, H. Munakata, H. Inomata, K. Ito, K. Ino, H. Shiku, P. R. Unwin, Y. E. Korchev, K. Kanamura and T. Matsue, *Nat Commun*, 2014, 5, 5450.
- D. Takamatsu, S. Mori, Y. Orikasa, T. Nakatsutsumi, Y. Koyama, H. Tanida, H. Arai,
 Y. Uchimoto and Z. Ogumi, *J. Electrochem. Soc.*, 2013, 160, A3054-A3060.