### **Electronic Supporting Information**

Lihua Xie, Shunxi Dong, Qian Zhang, Xiaoming Feng, and Xiaohua Liu\*<sup>a</sup>

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.

E-mail: liuxh@scu.edu.cn

### Table of Contents

| 1.  | General information                                               | S2  |
|-----|-------------------------------------------------------------------|-----|
| 2.  | Substrates synthesis                                              | S2  |
| 3.  | Optimization of the reaction conditions                           |     |
| 4.  | Substrate scope                                                   |     |
| 5.  | Typical procedure for the cascade reaction                        |     |
| 6.  | The analytical and spectral characterization data of the products | S10 |
| 7.  | NMR spectra                                                       | S34 |
| 8.  | Mechanism studies                                                 | S77 |
| 9.  | Copies of the CD spectra of the products                          | S87 |
| 10. | References                                                        |     |

#### 1. General information

<sup>1</sup>H NMR spectra were recorded on commercial instruments (400 MHz). Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard [CDCl<sub>3</sub>,  $\delta$  = 7.26), (CD<sub>3</sub>)<sub>2</sub>SO,  $\delta = 2.50$ , MeOD,  $\delta = 2.64$ , (CD<sub>3</sub>)<sub>2</sub>CO,  $\delta = 2.05$ ]. Spectra were reported as follows: chemical shift ( $\delta$  ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets), coupling constants (Hz), integration and assignment. <sup>13</sup>C{<sup>1</sup>H} NMR spectra were collected on commercial instruments (101 MHz) with complete proton decoupling. <sup>19</sup>F{<sup>1</sup>H} NMR: chemical shifts  $\delta$  are given relative to CFCl<sub>3</sub> [external reference,  $\delta$ <sup>19</sup>F(CFCl<sub>3</sub>) = 0]. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard [CDCl<sub>3</sub>,  $\delta = 77.0$ , (CD<sub>3</sub>)<sub>2</sub>SO,  $\delta = 39.5$ , MeOD,  $\delta = 49.0$ , (CD<sub>3</sub>)<sub>2</sub>CO,  $\delta = 206.3$ ,  $\delta = 100.3$ 29.8]. Enantiomeric excesses (ee) were determined by high-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) on systems of an Agilent 1100 or 1200 series with chiral stationary phases (Chiralpak IA, Chiralpak IB, Chiralpak ADH) from Chiral Technologies Inc in the experimental procedures at 35 °C. Optical rotations were reported as follows:  $[\alpha]_D^T(c; g/100)$ mL, in solvent). The unit is deg•cm<sup>3</sup>•g<sup>-1</sup>•dm<sup>-1</sup>. IR spectra were recorded on Pierkin Elmer 100 FT/IR spectrometer, and the wave numbers of the absorption peaks are given in cm<sup>-1</sup>. High resolution mass spectra (HRMS) analyses were recorded on a Thermo Scientific LTQ Orbitrap XL with positive ion mode. HRMS was recorded on a commercial apparatus (FTMS+c ESI). Reactions were monitored by thin layer chromatography (TLC) from Merck. Column chromatography was performed using silica gel 60 (63–200 µm) from Merck. All catalytic reactions were run in dried glassware. THF, toluene and diethyl ether (Et<sub>2</sub>O) were distilled from sodium benzophenone ketyl. Ethyl acetate, CH<sub>2</sub>Cl<sub>2</sub> was distilled over CaH<sub>2</sub>. NaBAr<sup>F</sup><sub>4</sub> and NaBPh<sub>4</sub> was purchased from Alfa, used after recrystallization. Chiral guanidine catalysts was prepared according to previously reported method.<sup>1</sup>

#### 2. Substrates synthesis

### 2.1 General procedure for the synthesis of azlactones according to the literature procedure.<sup>2</sup>



#### 2.2 General procedure for the synthesis of *p*-quinols

a) Method A: *p*-quinols (1a, 1c, 1d, 1e, 1g ang 1h) were prepared by oxidative dearomatization according to the literature procedure.<sup>3</sup>



**b**) **Method B:** *p*-quinol (**1f**) was prepared according to the literature procedure.<sup>4</sup>



c) Method C: *p*-quinol (1b) was prepared according to the literature procedure.<sup>5</sup>



2.3 General procedure for the synthesis of racemic products 3



In a dry tube was charged with the racemic catalyst (10 mol%), **1** (0.10 mmol), and **2** (0.10 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) were stirred at 30 °C for 24 h. After completion, flash column chromatography provided the desired racemic products **3** (petroleum ether/ethyl acetate = 4/1 as eluent).

### 3. Optimization of the reaction conditions

**Table S1.** Screening of guanidines<sup>*a*</sup>



(Cy = Cyclohexyl)







0

HO

CHPh<sub>2</sub>

н





|       | 0.                           | BG-2           |            |
|-------|------------------------------|----------------|------------|
| entry | cat.                         | yield $(\%)^b$ | $ee(\%)^c$ |
| 1     | G-1                          | 17             | -5         |
| 2     | G-2                          | 24             | -10        |
| 3     | G-3                          | 11             | -11        |
| 4     | G-4                          | 22             | 40         |
| 5     | G-5                          | 23             | 41         |
| 6     | G-6                          | 11             | -3         |
| 7     | G-7                          | 22             | -13        |
| 8     | G-8                          | 14             | -17        |
| 9     | <b>BG-1</b>                  | 33             | 46         |
| 10    | <b>BG-2</b>                  | 31             | 6          |
| 11    | <b>BG-1</b> •HBAr $^{F}_{4}$ | 64             | 86         |

<sup>*a*</sup> The reactions were carried out with **1a** (0.10 mmol), **2a** (0.20 mmol) and **G** (10 mol%) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) at 30 °C under N<sub>2</sub> for 24 h. Dr values (>19:1) were determined by <sup>1</sup>H NMR. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> Determined by HPLC analysis on a chiral stationary phase. HBAr<sup>F</sup><sub>4</sub> = HB[3,5-(F<sub>3</sub>C)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>]<sub>4</sub>. **BG-1**•HBAr<sup>F</sup><sub>4</sub> is prepared from a mixture of **BG-1** (50%) and **BG-1**•2HBAr<sup>F</sup><sub>4</sub> (50%).

**Table S2.** Screening of the temperature<sup>*a*</sup>

|       | $ \begin{array}{c} 0 \\ Herefore \\ Me \\ 1a \end{array} $ $ \begin{array}{c} Bn \\ Herefore \\ N \\ Ph \\ Ph \\ 2a \end{array} $ | BG-1·HBAr <sup>F</sup> <sub>4</sub> (10 mol%)<br>T, CH <sub>2</sub> Cl <sub>2</sub> | A Bn O<br>N Ph<br>3aa |
|-------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------|
| entry | T ( °C)                                                                                                                           | yield $(\%)^b$                                                                      | $ee(\%)^c$            |
| 1     | 0                                                                                                                                 | 55                                                                                  | 95                    |
| 2     | -10                                                                                                                               | 42                                                                                  | 99                    |
| 3     | -20                                                                                                                               | 43                                                                                  | 99                    |
| 4     | -30                                                                                                                               | trace                                                                               | 99                    |
| 5     | -40                                                                                                                               | $\mathbf{N.R.}^{d}$                                                                 | —                     |
| 6     | -78                                                                                                                               | N.R.                                                                                | _                     |

<sup>*a*</sup> The reactions were carried out with **1a** (0.10 mmol), **2a** (0.10 mmol) and **BG-1**•HBAr<sup>F</sup><sub>4</sub> (10 mol%) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) at the indicated temperature under N<sub>2</sub> for 24 h. Dr values (>19:1) were determined by <sup>1</sup>H NMR. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> Determined by HPLC analysis on a chiral stationary phase. <sup>*d*</sup> N.R. = no reaction.

### **Table S3.** Screening of the solvents<sup>*a*</sup>

|              | $ \begin{array}{c} 0 \\ Hermitian \\ Me \\ 1a \end{array} $ $ \begin{array}{c} Bn \\ N \\ N \\ Ph \\ Ph \\ Ph \\ 2a \end{array} $ $ \begin{array}{c} BG-1 \\ -10 \\ BG-1 \\ Ph \\ -10 \\ Ph \\ BG-1 \\ Ph \\ BG-1 \\ Ph \\ Ph \\ BG-1 \\ Ph \\ Ph$ | HBAr <sup>F</sup> <sub>4</sub> (10 mol%)<br>0 °C , solvent<br>3aa | Ph          |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------|
| entry        | solvent                                                                                                                                                                                                                                                                                | yield $(\%)^b$                                                    | ee $(\%)^c$ |
| $1^d$        | Toluene                                                                                                                                                                                                                                                                                | 26                                                                | 75          |
| 2            | THF                                                                                                                                                                                                                                                                                    | N.R.                                                              | _           |
| $3^f$        | $CH_2Cl_2$                                                                                                                                                                                                                                                                             | 50                                                                | 99          |
| $4^{d,e,f}$  | $CH_2Cl_2$                                                                                                                                                                                                                                                                             | 71                                                                | 99          |
| 5            | $Et_2O$                                                                                                                                                                                                                                                                                | N.R. <sup>g</sup>                                                 | —           |
| 6            | CH <sub>3</sub> CN                                                                                                                                                                                                                                                                     | N.R.                                                              | —           |
| 7            | Ethyl acetate                                                                                                                                                                                                                                                                          | N.R.                                                              | —           |
| 8            | CHCl <sub>3</sub>                                                                                                                                                                                                                                                                      | 28                                                                | 99          |
| 9            | CCl <sub>3</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                       | 44                                                                | 96          |
| 10           | CH <sub>2</sub> ClCH <sub>2</sub> Cl                                                                                                                                                                                                                                                   | 39                                                                | 99          |
| $11^{d,e,f}$ | CH <sub>2</sub> ClCH <sub>2</sub> Cl                                                                                                                                                                                                                                                   | 50                                                                | 99          |
| 12           | CHCl <sub>2</sub> CH <sub>2</sub> Cl                                                                                                                                                                                                                                                   | 16                                                                | 98          |

<sup>*a*</sup> The reactions were carried out with **1a** (0.10 mmol), **2a** (0.10 mmol) and **BG-1**•HBAr<sup>F</sup><sub>4</sub> (10 mol%) in

solvent (1.0 mL) at -10 °C under N<sub>2</sub> for 24 h. Dr values (>19:1) were determined by <sup>1</sup>H NMR. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> Determined by HPLC analysis on a chiral stationary phase. <sup>*d*</sup> for 72 h. <sup>*e*</sup> **2a** (0.20 mmol) was used. <sup>*f*</sup> Using 10 mol% of **BG-1**•HBPh<sub>4</sub>. <sup>*g*</sup> N.R. = no reaction.

**Table S4.** Screening of the additives<sup>*a*</sup>



| entry | additive                             | yield $(\%)^b$    | ee $(\%)^{c}$ |
|-------|--------------------------------------|-------------------|---------------|
| 1     | Et <sub>3</sub> N (10 mol%)          | N.R. <sup>d</sup> | _             |
| 2     | Imidazole (10 mol%)                  | N.R.              | —             |
| 3     | Benzoic acid (10 mol%)               | N.R.              | —             |
| 4     | Pyridine (10 mol%)                   | N.R.              | —             |
| 5     | <i>tert</i> -Butanol (10 mol%)       | N.R.              | _             |
| 6     | <i>N</i> -Methylmorpholine (10 mol%) | N.R.              | —             |
| 7     | 4 Å M.S. (20 mg)                     | N.R.              | —             |
| 8     | water (10 µL)                        | 33                | 93            |
| 9     | Adamantanol (10 mol%)                | 49                | 95            |
| 10    | MgSO <sub>4</sub> (10 mol%)          | 39                | 99            |
| 11    | KBr (10 mol%)                        | 41                | 91            |
| 12    | $K_4P_2O_7$ (10 mol%)                | 52                | 99            |
| 13    | $K_2$ HPO <sub>4</sub> (10 mol%)     | 51                | 99            |

<sup>*a*</sup> The reactions were carried out with **1a** (0.10 mmol), **2a** (0.10 mmol), and **BG-1•**HBPh<sub>4</sub> (10 mol%) and dative in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) at -10 °C under N<sub>2</sub> for 24 h. Dr values (>19:1) were determined by <sup>1</sup>H NMR. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> Determined by HPLC analysis on a chiral stationary phase. <sup>*d*</sup> N.R. = no reaction.

**Schem 1.** Screening of the *p*-quinols<sup>*a*</sup>



<sup>*a*</sup> The reactions were carried out with **1** (0.10 mmol), **2a** (0.20 mmol) and **BG-1**•HBPh<sub>4</sub> (10 mol%) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) at -10 °C under N<sub>2</sub> for 72 h. Dr values (>19:1) were determined by <sup>1</sup>H NMR. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> Determined by HPLC/SFC analysis on a chiral stationary phase. <sup>*d*</sup> N.R. = no reaction.

Table S5. Screening of the amount of catalyst<sup>a</sup>

|       | О<br>  +<br>F <sub>3</sub> C ОН + | Bn<br>N<br>Ph | $\xrightarrow{\text{BG-1} \cdot \text{HBPh}_4}_{-10 \text{ °C}, CH_2Cl_2} \xrightarrow{\text{F}_3C^{\vee}}_{O} \xrightarrow{\text{N}}_{O} \xrightarrow{\text{N}}_{H} \xrightarrow{\text{Ph}}_{Ph}$ |             |
|-------|-----------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|       | 1b                                | 2a            | 3ba                                                                                                                                                                                                |             |
| entry | cat (mol%                         | %)            | yield $(\%)^b$                                                                                                                                                                                     | ee $(\%)^c$ |
| 1     | 10                                |               | 75                                                                                                                                                                                                 | 99          |
| 2     | 5                                 |               | 80                                                                                                                                                                                                 | 99          |
| 3     | 2.5                               |               | 98                                                                                                                                                                                                 | 98          |
| 4     | 1                                 |               | 50                                                                                                                                                                                                 | 97          |
| $5^d$ | 2.5                               |               | 80                                                                                                                                                                                                 | 98          |
| $6^e$ | 2.5                               |               | 94                                                                                                                                                                                                 | 98          |

<sup>*a*</sup> The reactions were carried out with **1b** (0.10 mmol), **2a** (0.20 mmol) and **BG-1**•HBPh<sub>4</sub> (10 mol%) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) at -10 °C under N<sub>2</sub> for 72 h. Dr values (>19:1) were determined by <sup>1</sup>H NMR. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> Determined by HPLC analysis on a chiral stationary phase. <sup>*d*</sup> **2a** (0.12 mmol) was used. <sup>*e*</sup> **2a** (0.15 mmol) was used.

#### 4. Substrate scope

### **Table S6.** Substrate scope with azlactones $2^{a}$

|       | o<br>U              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |
|-------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
|       | F <sub>3</sub> C OH | + $N \xrightarrow{R^2} C^{N} \xrightarrow{BG-1 \cdot HBPh_4} F_3 C^{N} \xrightarrow{R^2} F_3 C^{N} \xrightarrow{R^2} $ |                 |              |
| entry | cat. (mol%)         | $R^1, R^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | yield $(\%)^b$  | $ee(\%)^{c}$ |
| 1     | 2.5                 | Bn, C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>3ba</b> , 94 | 98           |
| 2     | 10                  | Phenethyl, $C_6H_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>3bb,</b> 75  | 99           |
| 3     | 10                  | Methyl, C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>3bc,</b> 76  | 93           |
| 4     | 10                  | Isobutyl, C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>3bd,</b> 77  | 99           |
| 5     | 10                  | 2-(Methylthio)ethyl, C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>3be,</b> 67  | 94           |
| 6     | 10                  | 1H-indol-3-yl, C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>3bf,</b> 91  | 94           |
| 7     | 5                   | 4-chlorobenzyl, C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>3bg</b> , 99 | 99           |
| 8     | 5                   | 4-bromobenzyl, C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>3bh,</b> 83  | 99           |
| 9     | 5                   | 4-methylbenzyl, C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>3bi,</b> 66  | 99           |
| 10    | 5                   | 3-methylbenzyl, C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>3bj,</b> 73  | 99           |
| 11    | 5                   | 3-methoxybenzyl, C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>3bk,</b> 64  | 98           |
| 12    | 5                   | Bn, 4-EtC <sub>6</sub> H <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>3bl,</b> 82  | 99           |
| 13    | 2.5                 | Bn, 4-MeC <sub>6</sub> H <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>3bm,</b> 87  | 99           |
| 14    | 2.5                 | Bn, 4-BrC <sub>6</sub> H <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>3bn,</b> 90  | 95           |
| 15    | 2.5                 | Bn, 4-ClC <sub>6</sub> H <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>3bo,</b> 86  | 97           |
| 16    | 5                   | Bn, 4-MeOC <sub>6</sub> H <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>3bp,</b> 74  | 99           |
| 17    | 5                   | Bn, 3,5-(Me) <sub>2</sub> C <sub>6</sub> H <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>3bq,</b> 77  | 97           |

| 18 | 10 | Bn, 2-naphthyl  | <b>3br,</b> 73 | 99 |
|----|----|-----------------|----------------|----|
| 19 | 10 | Bn, 1-adamantyl | <b>3bs,</b> 72 | 99 |
| 20 | 10 | Bn, 2-furyl     | <b>3bt,</b> 72 | 99 |
| 21 | 10 | Bn, 2-thienyl   | <b>3bu,</b> 67 | 99 |
| 22 | 10 | Bn, cyclopentyl | <b>3bv,</b> 57 | 99 |
| 23 | 10 | Bn, cyclohexyl  | <b>3bw,</b> 60 | 99 |

<sup>*a*</sup> Unless otherwise noted, the reactions were carried out **BG-1**•HBPh<sub>4</sub>(10 mol%), **1b** (0.10 mmol) and **2** (0.15 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) at -10 °C for 72 h. Dr values (>19:1) were determined by <sup>1</sup>H NMR. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> Determined by HPLC/SFC analysis on a chiral stationary phase.

**Schem 2.** Substrate scope with *p*-quinols<sup>*a*</sup>



<sup>*a*</sup> Unless otherwise noted, the reactions were carried out **BG-1**•HBPh<sub>4</sub> (10 mol%), **1** (0.10 mmol) and **2a** (0.15 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) at 30 °C for 72 h. Dr values (>19:1) were determined by <sup>1</sup>H NMR. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> Determined by SFC analysis on a chiral stationary phase.

### 5. Typical procedure for the asymmetric reaction



### 5.1. Representative experimental procedure for the asymmetric reaction of p-quinols with azlactones

A dry tube was charged with **BG-1**•HBPh<sub>4</sub> (2.9 mg, 0.0025 mmol, 2.5 mol%) and **1b** (17.8 mg, 0.1 mmol). Under N<sub>2</sub> atmosphere, CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) was added. The mixture was stirred at 30 °C for 30 min and then cooled to -10 °C. Then azlactone **2a** (37.7 mg, 0.15 mmol) was added under stirring and the mixture continued stirring at -10 °C for 72 h. After completion, flash column chromatography provided the desired product **3ba** (petroleum ether/ethyl acetate = 4/1 as eluent). The product **3ba** was obtained in 94% yield (40.4 mg). The enantiomeric excess (ee) was determined by HPLC with Daicel Chiralcel **IB** (98% ee).

#### 5.2. Typical experimental procedure for the scale-up reaction

A dry round-bottom flask was charged with **BG-1**•HBPh<sub>4</sub> (72.5 mg, 0.0625 mmol, 2.5 mol%) and **1b** (445.3 mg, 2.5 mmol). Under N<sub>2</sub> atmosphere, CH<sub>2</sub>Cl<sub>2</sub> (25.0 mL) was added. The mixture was stirred at 30 °C for 30 min and then cooled to -10 °C. Then azlactone **2a** (942.5 mg, 3.75 mmol) was added under stirring and the mixture continued stirring at -10 °C for 72 h. After completion, flash column chromatography provided the desired product **3ba** (petroleum ether/ethyl acetate = 4/1 as eluent). The product **3ba** was obtained in 92% yield (987.6 mg). The enantiomeric excess (ee) was determined by HPLC with Daicel Chiralcel **IB** (98% ee).

#### 6. The analytical and spectral characterization data of the products

### *N*-[(3*R*,3a*S*,7a*S*)-3-Benzyl-7a-methyl-2,5-dioxo-2,3,3a,4,5,7a-hexahydrobenzofuran-3-yl]benzami de



The compound **3aa** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 2/1) to afford a white solid in 71% yield. **HPLC** (Daicel Chiralcel **IA**, *n*-hexane/<sup>*i*</sup>PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda$  = 254 nm), t (major) = 9.05 min, t (minor) =10.98 min, ee = 99%. dr >19:1 (by <sup>1</sup>H NMR). mp 98–100 °C.  $[\alpha]^{21}_{D}$  = -64.2 (*c*: 0.746,  $\lambda$  = 589 nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.51 – 7.43 (m, 2H), 7.42 –7.36 (m, 4H), 7.35 – 7.29 (m, 2H), 7.28 –7.20 (m, 2H), 6.84 – 6.67 (m, 2H), 5.74 (d, *J* = 10.4 Hz, 1H), 3.35 –

3.23 (dd, J = 18.4 Hz, 13.2 Hz,2H), 3.05 (m, 1H), 2.67 –2.45 (m, 1H), 2.56 – 2.44 (m, 1H), 1.42 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  195.2, 173.4, 166.6, 148.3, 133.9, 132.9, 131.9, 130.5, 129.2, 128.5, 128.2, 127.8, 127.0, 79.3, 62.3, 47.3, 44.3, 34.0, 26.5. **IR** (neat) 3327, 1757, 1668, 1531, 1483, 1028 cm<sup>-1</sup>. **HRMS** (FTMS+c ESI) caled for C<sub>23</sub>H<sub>22</sub>NO<sub>4</sub> [(M+H<sup>+</sup>)] = 376.1543, Found 376.1546.





|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 9.046          | 1980701 | 99.91  |
| 2 | 10.983         | 1870    | 0.09   |

### *N*-[(3*R*,3a*S*,7a*S*)-3-Benzyl-2,5-dioxo-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenzofuran-3-yl ]benzamide



The compound **3ba** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4/1) to afford a white solid in 94% yield. **HPLC** (Daicel Chiralcel **IB**, *n*-hexane/<sup>i</sup>PrOH = 80/20, 1.0 mL/min,  $\lambda = 254$  nm), t (major) = 9.96 min, t (minor) = 13.29 min, ee = 98%. dr >19:1 (by <sup>1</sup>H NMR). mp 190–192 °C.  $[\alpha]^{19}_{D} = +37.4$  (*c*: 0.882,  $\lambda = 589$  nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.53–7.42 (m, 6H), 7.41–7.35 (m, 2H), 7.31 (d, *J* = 6.9 Hz, 2H), 6.81

(d, J = 10.5 Hz, 1H), 6.37 (s, 1H), 6.21 (d, J = 10.4 Hz, 1H), 3.55 (d, J = 8.3 Hz, 1H), 3.32–3.20 (m, 2H), 2.67–2.57 (m, 1H), 2.20 (d, J = 17.9 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.2, 171.4, 166.4, 137.1, 134.0, 132.7, 132.6, 129.9, 129.9, 129.0, 128.9, 126.9, 126.9, 123.4 (q, J = 284.8 Hz, 1C), 77.9 (q, J = 32.3 Hz, 1C), 60.6, 45.1, 41.2, 34.2. <sup>19</sup>F{1H} NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  –80.0. IR (neat) 3339, 1803, 1663, 1393, 1196, 1175 cm<sup>-1</sup>. HRMS (FTMS+c ESI) caled for C<sub>23</sub>H<sub>19</sub>F<sub>3</sub>NO<sub>4</sub> [(M+H<sup>+</sup>)] = 430.1261, Found 430.1264.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 9.959          | 4352550 | 98.92  |
| 2 | 13.287         | 47405   | 1.08   |

*N*-[(*3R*,3a*S*,7a*S*)-2,5-Dioxo-3-phenethyl-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenzofuran-3-yl]benzamide



The compound **3bb** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4/1) to afford a white solid in 75% yield. **HPLC** (Daicel Chiralcel **IB**, *n*-hexane/<sup>*i*</sup>PrOH = 80/20, 1.0 mL/min,  $\lambda = 254$  nm), t (major) = 8.65 min, t (minor) = 13.62 min, ee = 99%. dr >19:1 (by <sup>1</sup>H NMR). mp 72–74 °C.  $[\alpha]^{18}_{D} = +106.1$  (*c*: 0.390,  $\lambda = 589$  nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.45 – 7.40 (m, 1H), 7.38 –7.33 (m, 2H), 7.33 – 7.25 (m, 5H), 7.20 – 7.14 (m, 2H), 6.80 (d, *J* = 12 Hz, 1H), 6.35 (s, 1H), 6.30 (d, *J* = 10.5 Hz, 1H), 3.36 (m, 1H),

2.99 (m, 1H), 2.85 (m, 1H), 2.75 (m, 1H), 2.63 (m, 1H), 2.39 (m, 1H), 2.22 (m, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.1, 171.6, 167.1, 139.6, 136.4, 134.1, 132.4, 131.5, 129.3, 128.5, 128.5, 127.0, 127.0, 123.7(q, J = 287.9, 1C), 77.6(q, J = 32.3, 1C), 61.8, 41.2, 39.8, 33.9, 29.7. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -80.2. **IR** (thin film, NaCl) 3298, 1799, 1691, 1647, 1528, 1309, 1188 cm<sup>-1</sup>. **HRMS** (FTMS+c ESI) caled for C<sub>24</sub>H<sub>21</sub>F<sub>3</sub>NO<sub>4</sub> [(M+H<sup>+</sup>)] = 444.1417. Found 444.1408.



# *N*-[(*3R*,3a*S*,7a*S*)-3-Methyl-2,5-dioxo-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenzofuran-3-y l]benzamide



The compound **3bc** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 3/1) to afford a white solid in 76% yield. **SFC** (Daicel Chiralcel **IA**, scCO<sub>2</sub>/MeOH = 90/10, 1.5 mL/min,  $\lambda$  = 254nm), t (major) = 2.69 min, t (minor) = 3.28 min, ee = 93%. dr >19:1 (by <sup>1</sup>H NMR). mp 124—126 °C. [ $\alpha$ ]<sup>23</sup> = +113.0 (*c*: 0.554,  $\lambda$  = 589 nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.57 – 7.50 (m, 2H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.32 (t, *J* = 7.7

Hz, 2H), 6.82 (d, J = 10.5 Hz, 1H), 6.70 (s, 1H), 6.22 (d, J = 10.5 Hz, 1H), 3.22 – 3.15 (m, 1H), 2.79 – 2.60 (m, 2H), 1.62 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.4, 172.4, 167.5, 136.5, 134.2, 132.5, 132.0, 128.7, 127.2, 123.5 (q, J = 283.8 Hz, 1C), 77.7 (q, J = 32.3 Hz, 1C), 58.5, 43.5, 33.7, 26.4. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  –80.2. IR (thin film, NaCl) 3303, 1802, 1692, 1648, 1530, 1316, 1182cm<sup>-1</sup>. HRMS (FTMS+c ESI) calcd for C<sub>17</sub>H<sub>14</sub>F<sub>3</sub>NO<sub>4</sub> [(M+H<sup>+</sup>)] = 354.0948. Found 354.0942.



*N*-[(*3R*,3a*S*,7a*S*)-3-Isobutyl-2,5-dioxo-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenzofuran-3-yl]benzamide



The compound **3bd** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4/1) to afford a white solid in 77% yield. **HPLC** (Daicel Chiralcel. **IA**, *n*-hexane <sup>*i*</sup>PrOH = 98/2, 1.0 mL/min,  $\lambda = 254$ nm), t (major) = 15.90 min, t (minor) = 17.66 min, ee = 99%. dr >19:1 (by <sup>1</sup>H NMR). mp 144—146 °C. [ $\alpha$ ]<sup>16</sup> = +413.3 (*c*: 0.620,  $\lambda = 589$  nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.61 – 7.53 (m, 2H), 7.52 – 7.47 (m, 1H), 7.38 (t, *J* = 7.6 Hz, 2H), 6.82 (d, *J* = 10.5 Hz, 1H), 6.37 (s, 1H), 6.28 (d, *J* = 10.5 Hz, 1H), 3.41 – 3.30 (m, 1H),

2.73 (m, 1H), 2.65 (m, 1H), 1.86 (m, 3H), 1.09 (d, J = 6.1 Hz, 3H), 1.03 (d, J = 6.3 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} **NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.2, 171.7, 167.1, 136.8, 134.0, 132.5, 132.1, 128.8, 127.1, 123.7(q, J = 284.8, 1C), 77.7 (q, J = 32.3, 1C), 61.5, 46.9, 40.4, 33.9, 24.6, 24.5, 23.7. <sup>19</sup>F NMR{<sup>1</sup>H} (376 MHz, CDCl<sub>3</sub>)  $\delta$  –80.0. **IR** (thin film, NaCl) 3335, 1811, 1695, 1655, 1528, 1315, 1188, 1080 cm<sup>-1</sup>. **HRMS** (FTMS+c ESI) calcd for C<sub>20</sub>H<sub>21</sub>F<sub>3</sub>NO<sub>4</sub> [(M+H<sup>+</sup>)] = 396.1417. Found 396.1420.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 15.899         | 8375510 | 99.75  |
| 2 | 17.350         | 21355   | 0.25   |

 $N-\{(3R,3aS,7aS)-3-[2-(Methylthio)ethyl]-2,5-dioxo-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenzofuran-3-yl\} benzamide$ 



The compound **3be** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4/1) to afford a white solid in 67% yield. **SFC** (Daicel Chiralcel **IA**, scCO<sub>2</sub>/MeOH = 90/10, 1.5 mL/min,  $\lambda$  = 254nm), t (major) = 3.00 min, t (minor) = 3.67 min, ee = 94%. dr >19:1 (by <sup>1</sup>H NMR). mp 40-42 °C. [ $\alpha$ ]<sup>16</sup> = +124.5 (*c*: 0.430,  $\lambda$  = 589 nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 (s, 1H), 7.72 – 7.64 (m, 2H), 7.56 – 7.47 (m, 1H), 7.40 (td, *J* = 7.7, 1.5 Hz, 2H), 6.79 (d, *J* = 10.5 Hz, 1H), 6.30 (dd, *J* = 10.5, 1.4 Hz, 1H),

3.28 – 3.22 (m, 1H), 2.95 – 2.86 (m, 1H), 2.80 – 2.64 (m, 3H), 2.37 – 2.28 (m, 1H), 2.20 (d, J = 1.5 Hz, 3H), 2.16 – 2.08 (m, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ 192.8, 171.4, 167.2, 136.3, 134.2, 132.6, 131.6, 128.8, 127.3, 123.6 (q, J = 284.8, 1C), 77.6 (q, J = 32.3, 1C), 61.7, 42.1, 36.8, 34.1, 28.1, 15.7, 15.7. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>) δ -80.2. IR (thin film, NaCl) 3319, 1798, 1692, 1660, 1526, 1316, 1185, 1090cm<sup>-1</sup>. HRMS (FTMS+c ESI) calcd for C<sub>19</sub>H<sub>18</sub>F<sub>3</sub>NO<sub>4</sub>S [(M+H<sup>+</sup>)]= 414.0981. Found 414.0993.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 2.979          | 2733262 | 49.43  |
| 2 | 3.543          | 2795885 | 50.57  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 2.997          | 11643832 | 96.99  |
| 2 | 3.673          | 361544   | 3.01   |

N-((3R,3aS,7aS)-3-(3a,7a-Dihydro-1H-indol-3-yl)-2,5-dioxo-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenzofuran-3-yl) benzamide



The compound **3bf** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 3/1) to afford a white solid in 91% yield. **SFC** (Daicel Chiralcel **IA**, scCO<sub>2</sub>/MeOH = 85/15, 1.5 mL/min,  $\lambda$  = 254nm), t (major) = 4.68 min, t (minor) = 8.53 min, ee = 94%. dr >19:1 (by <sup>1</sup>H NMR). mp 86-88 °C. [ $\alpha$ ]<sup>26</sup> = +130.3(*c*: 0.122,  $\lambda$  = 405 nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.82 (s, 1H), 7.61 – 7.58 (m, 1H), 7.46 – 7.38 (m, 4H), 7.30 – 7.24 (s, 2H), 7.20 – 7.13 (m, 2H), 6.85 (s, 1H), 6.74 (d, *J* = 10.5 Hz, 1H), 6.16 (d, *J* =

10.5 Hz, 1H), 3.61 - 3.50 (m, 1H), 3.36 - 3.25 (m, 1H), 2.58 - 2.46 (m, 8.4 Hz, 1H), 2.31 - 2.21 (m, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.4, 171.8, 166.5, 137.0, 136.4, 134.1, 132.5, 131.7, 128.7, 127.1, 124.1, 123.3, 121.4 (q, J = 245.4, 1C), 121.1, 117.5, 112.3, 106.6, 77.8 (q, J = 32.3, 1C), 61.4, 41.9, 35.4, 34.4. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -80.1. IR (thin film, NaCl) 3319, 1731, 1680, 1482, 1466, 1245, 1178, 1138cm<sup>-1</sup>. HRMS (FTMS+c ESI) calcd for C<sub>24</sub>H<sub>19</sub>F<sub>3</sub>N<sub>2</sub>O<sub>4</sub> [(M+H<sup>+</sup>)] = 457.1370. Found 457.1370.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 4.675          | 14652433 | 96.85  |

| 2 | 8.534 | 476948 | 3.15 |
|---|-------|--------|------|
|---|-------|--------|------|

# $\label{eq:stars} N-[(3R,3aS,7aS)-3-(4-Chlorobenzyl)-2,5-dioxo-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenzon of uran-3-yl] benzamide$



The compound **3bg** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4/1) to afford a white solid in 99% yield. **HPLC** (Daicel Chiralcel. **IB**, *n*-hexane/<sup>*i*</sup>PrOH = 80/20, 1.0 mL/min,  $\lambda = 254$  nm), t (major) = 15.02 min, t (minor) = 19.95 min, ee = 99%. dr >19:1 (by <sup>1</sup>H NMR). mp 196–198 °C.  $[\alpha]^{14}_{D} = -156.9$  (*c*: 0.378,  $\lambda = 405$  nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.46 – 7.36 (m, 5H), 7.29 – 7.24 (m, 4H), 6.91 (d, *J* = 10.5 Hz, 1H), 6.73 (s, 1H), 6.17 (d, *J* = 10.5 Hz, 1H), 3.45 (dt, *J* = 8.1, 1.6

Hz, 1H), 3.24 (q, J = 13.7 Hz, 2H), 2.69 (dd, J = 18.0, 8.0 Hz, 1H), 2.55 (d, J = 17.9 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.4, 171.3, 167.1, 137.4, 134.9, 134.1, 132.5, 131.9, 131.7, 131.2, 129.7, 128.7, 127.0, 123.2 (q, J = 280.0 Hz, 1C), 78.0 (q, J = 32.3 Hz, 1C), 61.5, 43.3, 40.3, 33.8. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -80.0. IR (thin film, NaCl) 3302, 1803, 1691, 1655, 1535, 1491, 1193 cm<sup>-1</sup>. HRMS (FTMS+c ESI) caled for C<sub>23</sub>H<sub>18</sub>CIF<sub>3</sub>NO<sub>4</sub> [(M+H<sup>+</sup>)] = 464.0871, 466.0841 Found 464.0876, 466.0856.



# *N*-[(*3R*,3a*S*,7a*S*)-3-(4-Bromobenzyl)-2,5-dioxo-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenzo furan-3-yl]benzamide



The compound **3bh** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4/1) to afford a white solid in 83% yield. **HPLC** (Daicel Chiralcel. **IB**, *n*-hexane/<sup>*i*</sup>PrOH = 80/20, 1.0 mL/min,  $\lambda = 254$  nm), t (major) =17.30 min, t (minor) =21.62 min, ee = 99%. dr >19:1 (by <sup>1</sup>H NMR). mp 124 -126 °C. [ $\alpha$ ]<sup>14</sup><sub>D</sub> = -423.5 (*c*: 0.370,  $\lambda = 405$  nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (d, *J* = 7.8 Hz, 2H), 7.47 - 7.36 (m, 3H), 7.31 - 7.17 (m,

4H), 6.99 - 6.62 (m, 2H), 6.17 (dd, J = 10.5, 3.3 Hz, 1H), 3.45 (dd, J = 8.2, 1.6 Hz, 1H), 3.32 - 3.16 (m, 2H), 2.76 - 2.48 (m, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.5, 171.3, 167.3, 137.4, 134.1, 132.6, 132.4, 132.2, 131.9, 131.8, 128.7, 127.0, 123.2 (q, J = 283.8 Hz, 1C), 122.9, 77.9 (q, J = 32.3 Hz, 1C), 61.7, 43.0, 40.0, 33.7. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -79.9. IR (thin film, NaCl) 3298, 1800, 1691, 1605, 1524, 1491, 1196 cm<sup>-1</sup>. HRMS (FTMS+c ESI) caled for C<sub>23</sub>H<sub>18</sub>BrF<sub>3</sub>NO<sub>4</sub> [(M+H<sup>+</sup>)] = 508.0366, 510.0345. Found 508.0372, 510.0351.



# *N*-[(3*R*,3a*S*,7a*S*)-3-(4-Methylbenzyl)-2,5-dioxo-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenz ofuran-3-yl]benzamide



The compound **3bi** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4/1) to afford a white solid in 66% yield. **HPLC** (Daicel Chiralcel. **IB**, *n*-hexane/<sup>i</sup>PrOH = 80/20, 1.0 mL/min,  $\lambda = 254$  nm), t (major) = 10.39 min, t (minor) = 14.85 min, ee = 99%. dr >19:1 (by <sup>1</sup>H NMR). mp 89—91 °C.  $[\alpha]^{18}_{D} = -29.3$  (*c*: 0.478,  $\lambda = 589$  nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H **NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$ 7.53 – 7.44 (m, 3H), 7.36 (t, *J* = 7.8 Hz, 2H), 7.26 (d, *J* = 6.0 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 6.88 – 6.77 (m, 1H), 6.45 (s, 1H), 6.20 (d, *J* = 10.5 Hz,

1H), 3.55 (d, J = 8.0 Hz, 1H), 3.21 (q, J = 13.8 Hz, 2H), 2.69 – 2.54 (m, 1H), 2.40 (s, 3H), 2.20 (d, J = 18.0 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.3, 171.5, 166.4, 138.9, 137.2, 134.0, 132.5, 131.9, 130.6, 129.8, 129.5, 128.9, 127.0, 123.5 (q, J = 283.8 Hz, 1C), 77.9 (q, J = 32.3 Hz, 1C), 60.5, 44.8, 41.3, 34.2, 21.2. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  –80.0. IR (thin film, NaCl) 3302, 1800, 1691, 1655, 1528, 1182 cm<sup>-1</sup>. HRMS (FTMS+c ESI) caled for C<sub>24</sub>H<sub>21</sub>F<sub>3</sub>NO<sub>4</sub> [(M+H<sup>+</sup>)] = 444.1417, Found 444.1422.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 9.756          | 4062084 | 50.11  |
| 2 | 14.254         | 4044101 | 49.89  |



*N*-[(3*R*,3a*S*,7a*S*)-3-(3-Methylbenzyl)-2,5-dioxo-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenz ofuran-3-yl]benzamide



The compound **3bj** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4/1) to afford a white solid in 73% yield. **HPLC** (Daicel Chiralcel. **IA**, *n*-hexane/<sup>*i*</sup>PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm), t (major) = 9.88 min, t (minor) = 12.58 min, ee = 99%. dr >19:1 (by <sup>1</sup>H NMR). mp 185 -187 °C. [ $\alpha$ ]<sup>15</sup><sub>D</sub> = -53.3 (*c*: 0.242,  $\lambda = 405$  nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.52 - 7.46 (m, 3H), 7.39 - 7.31 (m, 3H), 7.24 (d, *J* = 7.6 Hz, 1H), 7.12 - 7.06 (m, 2H), 6.82 (dd, *J* = 10.5, 1.3 Hz, 1H), 6.48 (s, 1H), 6.19 (d,

J = 10.5 Hz, 1H), 3.55 (dt, J = 8.4, 1.6 Hz, 1H), 3.21 (q, J = 13.7 Hz, 2H), 2.67 – 2.57 (m, 1H), 2.40 (s, 3H), 2.21 (d, J = 18.0 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.3, 171.5, 166.3, 139.8, 137.2, 134.0, 132.7, 132.5, 131.9, 130.6, 129.7, 129.7, 128.9, 127.0, 126.9, 123.5 (q, J = 277.8 Hz, 1C), 77.9 (q, J = 32.3 Hz, 1C), 60.5, 45.2, 41.4, 34.2, 21.5, 21.5. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  –80.0. IR (thin film, NaCl) 3302, 1800, 1688, 1659, 1528, 1196 cm<sup>-1</sup>. HRMS (FTMS+c ESI) caled for C<sub>24</sub>H<sub>21</sub>F<sub>3</sub>NO<sub>4</sub> [(M+H<sup>+</sup>)] = 444.1417, Found 444.1417.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 5.440          | 2725789  | 2.46   |
| 2 | 6.216          | 2886640  | 2.60   |
| 3 | 9.667          | 48291641 | 43.54  |
| 4 | 12.722         | 47940243 | 43.22  |
| 5 | 15.250         | 4834777  | 4.36   |
| 6 | 16.851         | 4238692  | 3.82   |



| N-[(3R, 3aS, 7aS)-3-(3-Methoxybenzyl)-2, 5-dioxo-7a-(trifluoromethyl)-2, 3, 3a, 4, 5, 7a-hexahydrolog, and a start of the start of th | oen |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| zofuran-3-yl]benzamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |

1960

2

12.583



The compound **3bk** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4/1) to afford a white solid in 64% yield. **SFC** (Daicel Chiralcel **IA**, scCO<sub>2</sub>/MeOH = 80/20, 1.5 mL/min,  $\lambda$  = 254 nm), t (major) = 2.13 min, t (minor) = 3.16 min, ee = 98%. dr >19:1 (by <sup>1</sup>H NMR). mp 73-75 °C. [ $\alpha$ ]<sup>15</sup><sub>D</sub> = -31.7 (*c*: 0.334,  $\lambda$  = 589 nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.51 – 7.39 (m, 3H), 7.32 – 7.27 (m, 2H), 7.27 – 7.23 (m, 1H), 7.08 (dd, *J* = 2.6, 1.6 Hz, 1H), 7.05 – 6.95 (m, 2H),

0.05

6.82 (dd, J = 10.5, 1.3 Hz, 1H), 6.42 (s, 1H), 6.23 (d, J = 10.5 Hz, 1H), 3.78 (s, 3H), 3.53 (dt, J = 8.4, 1.6 Hz, 1H), 3.25 (d, J = 2.4 Hz, 2H), 2.72 – 2.57 (m, 1H), 2.23 (d, J = 18.0 Hz, 1H).<sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ 193.2, 166.4, 159.9, 137.1, 134.0, 133.3, 132.7, 130.0, 129.9, 129.8, 128.9, 123.6 (q, J = 236.3 Hz, 1C), 118.9, 118.5, 112.2, 77.9 (q, J = 32.3 Hz, 1C), 60.7, 45.0, 41.1.<sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>) δ -80.0. **IR** (thin film, NaCl) 3285, 1803, 1691, 1651, 1522, 1184 cm<sup>-1</sup>. **HRMS** (FTMS+c ESI) caled for C<sub>24</sub>H<sub>21</sub>F<sub>3</sub>NO<sub>5</sub> [(M+H<sup>+</sup>)] = 460.1366, Found 460.1368.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 2.140          | 1407750 | 45.48  |
| 2 | 3.123          | 1394853 | 45.07  |
| 3 | 9.553          | 155557  | 5.03   |
| 4 | 11.088         | 136935  | 4.42   |

|       |                                                                           | +    |                  | 11.000                      | 150755                    | 4.42                  |                                                                                                   |
|-------|---------------------------------------------------------------------------|------|------------------|-----------------------------|---------------------------|-----------------------|---------------------------------------------------------------------------------------------------|
|       |                                                                           |      |                  |                             |                           |                       | -                                                                                                 |
| 0.30  | Å                                                                         |      |                  |                             |                           |                       |                                                                                                   |
| 025   |                                                                           |      |                  |                             |                           |                       |                                                                                                   |
| 020   | 1 1                                                                       |      |                  |                             |                           |                       |                                                                                                   |
| 20.15 | 1                                                                         |      |                  |                             |                           |                       |                                                                                                   |
| 0.10  | 1 1                                                                       | -    |                  |                             |                           |                       |                                                                                                   |
| 0.05  | I . /\                                                                    | 3.16 |                  |                             |                           |                       |                                                                                                   |
| 0.00  |                                                                           | +    |                  |                             |                           |                       | ****                                                                                              |
| 0     | 00 020 040 060 080 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 | 3203 | 40 3.60 380 4.00 | 0 4 20 4 40 460 4 80 500 52 | 0 540 560 580 600 620 640 | 660 680 7.00 720 7.40 | 760 7.80 8.00 820 8.40 860 880 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 |
|       |                                                                           |      |                  |                             | Mitutes                   |                       |                                                                                                   |

|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 2.127          | 2371673 | 99.13  |
| 2 | 3.161          | 20832   | 0.87   |

# *N*-[(3*R*,3a*S*,7a*S*)-3-Benzyl-2,5-dioxo-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenzofuran-3-yl ]-4-ethylbenzamide



The compound **3bl** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4/1) to afford a white solid in 82% yield. **HPLC** (Daicel Chiralcel. **IB**, *n*-hexane/<sup>*i*</sup>PrOH = 80/20, 1.0 mL/min,  $\lambda = 254$  nm), t (major) = 9.08 min, t (minor) = 12.10 min, ee = 99%. dr >19:1 (by <sup>1</sup>H NMR). mp 130–132 °C.  $[\alpha]^{17}_{D} = -20.5$  (*c*: 0.650,  $\lambda = 589$  nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H **NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.50 – 7.40 (m, 5H), 7.32 – 7.27 (m, 2H), 7.24 – 7.18 (m, 2H), 6.78 (d, J = 10.5

Hz, 1H), 6.28 (s, 1H), 6.20 (d, J = 10.5 Hz, 1H), 3.59 - 3.49 (m, 1H), 3.35 - 3.18 (m, 2H), 2.74 - 2.50 (m, 3H), 2.15 (d, J = 18.0 Hz, 1H), 1.22 (t, J = 7.6 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ 193.4, 171.5, 166.6, 149.3, 137.2, 134.0, 132.9, 130.1, 129.7, 129.3, 128.8, 128.3, 127.1, 123.4(q, J = 284.8 HZ, 1C), 78.0(q, J = 32.3 HZ, 1C), 60.9, 44.7, 40.8, 28.8, 15.1. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>) δ -80.1. IR (thin film, NaCl) 3294, 1796, 1680, 1531, 1315, 1188, 1088 cm<sup>-1</sup>. HRMS (FTMS+c ESI) calcd for  $C_{25}H_{23}F_3NO_4$  [(M+H<sup>+</sup>)] = 458.1574. Found 458.1570.



| N-[(3R,3aS,7aS)-3-Benzyl-2,5-dioxo-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenzofuran-3-y |
|-----------------------------------------------------------------------------------------------|
| ]-4-methylbenzamide                                                                           |

274

2

12.100



The compound **3bm** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4/1) to afford a white solid in 87% yield. **HPLC** (Daicel Chiralcel. **IB**, *n*-hexane/<sup>*i*</sup>PrOH = 80/20, 1.0 mL/min,  $\lambda = 254$  nm), t (major) = 10.34 min, t (minor) = 12.95 min, ee = 99%. dr >19:1 (by <sup>1</sup>H NMR). mp 165–167 °C.  $[\alpha]_{D}^{15} = -273.2$  (*c*:

0.00

0.444,  $\lambda = 405$  nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.47–7.41 (m, 3H), 7.36 (d, J = 8.1 Hz, 2H), 7.33 – 7.29 (m, 2H), 7.11 (d, J = 7.9 Hz, 2H), 6.84 (dd, J = 10.5, 1.3 Hz, 1H), 6.54 (s, 1H), 6.18 (d, J = 10.5 Hz, 1H), 3.53 (dt, J = 8.3, 1.6 Hz, 1H), 3.30 – 3.21 (m, 2H), 2.67–2.57 (m, 1H), 2.33 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.4, 171.5, 166.6, 143.1, 137.3, 134.0, 132.9, 130.1, 129.7, 129.4, 129.1, 128.8, 127.0, 123.4 (q, J = 284.8 Hz, 1C), 77.9 (q, J = 32.3 Hz, 1C), 60.8, 44.7, 40.9, 34.0, 21.5. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  –80.0. IR (thin film, NaCl) 3323, 1803, 1688, 1531, 1182 cm<sup>-1</sup>. HRMS (FTMS+c ESI) caled for C<sub>24</sub>H<sub>21</sub>F<sub>3</sub>NO<sub>4</sub> [(M+H<sup>+</sup>)] = 444.1237, Found 444.1237.



*N*-[(*3R*,3a*S*,7a*S*)-3-Benzyl-2,5-dioxo-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenzofuran-3-y l]-4-bromobenzamide



The compound **3bn** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4/1) to afford a white solid in 90% yield. **HPLC** (Daicel Chiralcel. **IB**, *n*-hexane/<sup>*i*</sup>PrOH = 80/20, 1.0 mL/min,  $\lambda = 254$  nm), t (major) = 11.44 min, t (minor) = 15.93 min, ee = 99%. dr >19:1 (by <sup>1</sup>H NMR). mp 118–120 °C.  $[\alpha]^{17}_{D} = -53.2$  (*c*: 0.728,  $\lambda = 589$  nm, in CH<sub>2</sub>Cl<sub>2</sub>).<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.48 –

7.41 (m, 5H), 7.34 – 7.27 (m, 4H), 6.85 (dd, J = 10.5, 1.4 Hz, 1H), 6.58 (s, 1H), 6.20 (d, J = 10.5 Hz, 1H), 3.54 (dt, J = 8.3, 1.6 Hz, 1H), 3.26 (s, 2H), 2.66 (m, 1H), 2.34 (d, J = 17.9 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H}NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.5, 171.3, 165.9, 137.2, 134.1, 132.6, 132.1, 130.7, 130.1, 129.8, 128.9, 128.5, 127.4, 123.3 (q, J = 284.8 Hz, 1C), 78.0 (q, J = 32.3 Hz, 1C), 61.1, 44.6, 40.9, 34.1. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -80.0. IR (thin film, NaCl) 3323, 1790, 1676, 1528, 1188 cm<sup>-1</sup>. HRMS (FTMS+c ESI) caled for C<sub>23</sub>H<sub>18</sub>BrF<sub>3</sub>NO<sub>4</sub> [(M+H<sup>+</sup>)] = 508.0366, 510.0345. Found 508.0377, 510.0357.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 11.438         | 27498785 | 97.37  |
| 2 | 15.931         | 741658   | 2.63   |

*N*-[(*3R*,3a*S*,7a*S*)-3-Benzyl-2,5-dioxo-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenzofuran-3-yl ]-4-chlorobenzamide



The compound **3bo** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4/1) to afford a white solid in 86% yield. **HPLC** (Daicel Chiralcel. **IB**, *n*-hexane/<sup>*i*</sup>PrOH = 80/20, 1.0 mL/min,  $\lambda$  = 254 nm), t (major) = 10.89 min, t (minor) = 15.39 min, ee = 97%. dr >19:1 (by <sup>1</sup>H NMR). mp 172–174 °C. [ $\alpha$ ]<sup>17</sup><sub>D</sub> = -31.1 (*c*: 0.626,  $\lambda$  = 589 nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.49 – 7.38 (m, 5H), 7.35 – 7.27 (m, 4H), 6.82 (dd, *J* = 10.5, 1.3 Hz, 1H), 6.46 (s, 1H), 6.21

(d, J = 10.5 Hz, 1H), 3.55 (dt, J = 8.3, 1.6 Hz, 1H), 3.26 (s, 2H), 2.65 (dd, J = 17.9, 8.3 Hz, 1H), 2.27 (d, J = 17.9 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H}NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.4, 171.3, 165.6, 138.9, 137.2, 134.1, 132.6, 130.3, 130.0, 129.9, 129.1, 129.0, 128.4, 123.3 (q, J = 284.8 Hz, 1C), 78.0 (q, J = 32.3 Hz, 1C), 60.9, 44.8, 41.1, 34.2. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -80.0. IR (thin film, NaCl) 3323, 1780, 1680, 1531, 1188 cm<sup>-1</sup>. HRMS (FTMS+c ESI) caled for C<sub>23</sub>H<sub>18</sub>ClF<sub>3</sub>NO<sub>4</sub> [(M+H<sup>+</sup>)] = 464.0871, 466.0841 Found 464.0879, 466.0850.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 10.538         | 8047701 | 49.86  |
| 2 | 15.042         | 8092129 | 50.14  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 10.889         | 22688914 | 98.55  |
| 2 | 15.390         | 333792   | 1.45   |

*N*-[(*3R*,3a*S*,7a*S*)-3-Benzyl-2,5-dioxo-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenzofuran-3-y l]-4-methoxybenzamide



The compound **3bp** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 3/1) to afford a white solid in 74% yield. **HPLC** (Daicel Chiralcel. **ADH**, *n*-hexane/<sup>i</sup>PrOH = 80/20, 1.0 mL/min,  $\lambda$  = 254nm), t (major) = 6.19 min, t (minor) = 8.97 min, ee = 99%. dr >19:1 (by <sup>1</sup>H NMR). mp decomposed at 183 °C.  $[\alpha]_{D}^{17} = -47.6$  (*c*: 0.636,  $\lambda$  = 405 nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.49 –

7.39 (m, 5H), 7.36 – 7.27 (m, 2H), 6.81 (dd, J = 9.0, 2.2 Hz, 2H), 6.45 (s, 1H), 6.19 (d, J = 10.5 Hz, 1H), 3.80 (s, 3H), 3.53 (dt, J = 8.3, 1.6 Hz, 1H), 3.26 (d, J = 2.6 Hz, 2H), 2.62 (m, 1H), 2.28 (d, J = 17.9 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.4, 171.6, 166.0, 162.9, 137.2, 134.0, 132.9, 130.0, 129.7, 129.0, 128.8, 123.9,124.0, 123.0 (q, J = 282.8 Hz, 1C), 78.0 (q, J = 32.3 Hz, 1C), 60.7, 55.4, 55.4, 44.8, 41.0, 34.1. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -80.0. **IR** (neat) 3408, 1796, 1684, 1606, 1495, 1306, 1261, 1182, 1028 cm<sup>-1</sup>. **HRMS** (FTMS+cESI) caled for C<sub>24</sub>H<sub>21</sub>F<sub>3</sub>NO<sub>5</sub> [(**M**+**H**<sup>+</sup>)] = 460.1366, Found 460.1369.



 $\label{eq:stars} N-[(3R,3aS,7aS)-3-Benzyl-2,5-dioxo-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenzofuran-3-yl]-3,5-dimethylbenzamide$ 



The compound **3bq** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4/1) to afford a white solid in 77% yield. **HPLC** (Daicel Chiralcel. **IB**, *n*-hexane/<sup>*i*</sup>PrOH = 80/20, 1.0 mL/min,  $\lambda$  = 254 nm), t (major) = 8.65 min, t (minor) = 10.34 min, ee = 97%. dr >19:1 (by <sup>1</sup>H NMR). mp decomposed at 192 °C. [ $\alpha$ ]<sup>17</sup><sub>D</sub> = -239.7 (*c*: 0.292,  $\lambda$  = 405 nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.45 (tt, *J* = 4.2, 2.2 Hz, 3H), 7.33 – 7.28 (m, 2H), 7.12 (d, *J* = 8.5 Hz, 3H), 6.78

(dd, J = 10.5, 1.3 Hz, 1H), 6.29 (d, J = 3.0 Hz, 1H), 6.21 (d, J = 10.5 Hz, 1H), 3.53 (dt, J = 8.5, 1.6 Hz, 1H), 3.25 (s, 2H), 2.70 – 2.52 (m, 1H), 2.30 (s, 6H), 2.21 (d, J = 18.1 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.2, 171.5, 166.8, 138.6, 137.1, 134.2, 134.0, 132.8, 131.8, 130.0, 129.7, 129.0, 124.9, 123.4 (q, J = 284.8 Hz, 1C), 77.9 (q, J = 32.3 Hz, 1C), 60.8, 45.0, 40.9, 34.0, 21.2, 21.2. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  –80.0. IR (thin film, NaCl) 3314, 1800, 1695, 1651, 1531, 1188 cm<sup>-1</sup>.HRMS (FTMS+c ESI) caled for C<sub>25</sub>H<sub>23</sub>F<sub>3</sub>NO<sub>4</sub> [(M+H<sup>+</sup>)] = 458.1574. Found 458.1567.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 8.649          | 5070643 | 98.58  |
| 2 | 10.344         | 73110   | 1.42   |

# $\label{eq:stars} N-[(3R,3aS,7aS)-3-Benzyl-2,5-dioxo-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenzofuran-3-yl]-2-naphthamide$



The compound **3br** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4/1) to afford a white solid in 73% yield. **HPLC** (Daicel Chiralcel. **ADH**, *n*-hexane/<sup>*i*</sup>PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm), t (major) = 12.30 min, t (minor) = 19.80 min, ee = 99%. dr >19:1 (by <sup>1</sup>H NMR). mp 197—199 °C.  $[\alpha]^{16}_{D} = -142.8$  (*c*: 0.430,  $\lambda = 589$  nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, *J* = 1.8 Hz, 1H), 7.82 (t, *J* = 7.5 Hz, 3H), 7.60 – 7.41 (m, 6H), 7.33 (dd, *J* = 7.5, 2.0

Hz, 2H), 6.82 (dd, J = 10.6, 1.3 Hz, 1H), 6.54 (d, J = 2.4 Hz, 1H), 6.22 (d, J = 10.5 Hz, 1H), 3.56 (dt, J = 8.4, 1.6 Hz, 1H), 3.30 (d, J = 4.0 Hz, 2H), 2.60 –2.70 (m, 1H), 2.29 (d, J = 17.9 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 193.22, 171.46, 166.51, 137.10, 135.11, 134.09, 132.78, 132.45, 130.01, 129.88,

129.13, 129.01, 128.92, 128.31, 128.16, 127.79, 127.09, 123.5 (q, J = 283.8 Hz, 1C), 122.84, 77.9 (q, J = 32.3 Hz, 1C),60.75, 45.22, 41.29, 34.23. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  –80.0. IR (thin film, NaCl) 3323, 1800, 1691, 1659, 1524, 1188 cm<sup>-1</sup>. HRMS (FTMS+c ESI) calcd for C<sub>27</sub>H<sub>21</sub>F<sub>3</sub>NO<sub>4</sub> [(M+H<sup>+</sup>)] = 480.1417. Found 480.1414.



*N*-[(*3R*,3a*S*,7a*S*)-3-Benzyl-2,5-dioxo-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenzofuran-3-yl ]adamantane-1-carboxamide

909

19.800

2



The compound **3bs** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5/1) to afford a white solid in 72% yield. **HPLC** (Daicel Chiralcel. **ADH**, *n*-hexane/<sup>*i*</sup>PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm), t (major) = 7.93 min, t (minor) = 7.21 min, ee = 99%. dr >19:1 (by <sup>1</sup>H NMR). mp 212–214 °C. [ $\alpha$ ]<sup>14</sup><sub>D</sub> = +386.8 (*c*: 0.386,  $\lambda = 405$  nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.45 (d, *J* = 6.9 Hz, 3H), 7.26 (d, *J* = 8.1 Hz, 2H), 6.73

0.01

(d, J = 10.5 Hz, 1H), 6.22 (d, J = 10.5 Hz, 1H), 5.83 (s, 1H), 3.45 (d, J = 8.8 Hz, 1H), 3.23 – 3.06 (m, 2H), 2.60 – 2.48 (m, 1H), 2.00 (t, J = 8.8 Hz, 4H), 1.72 (s, 1H), 1.66 (t, J = 4.6 Hz, 9H), 1.62 (s, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.1, 176.6, 171.7, 137.1, 133.8, 132.8, 129.8, 129.7, 128.9, 123.5 (q, J = 280.8 Hz, 1C), 77.6 (q, J = 32.3 Hz, 1C), 59.8, 45.4, 40.7, 40.5, 38.7, 36.2, 33.8, 27.8. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  –80.1. IR (thin film, NaCl) 2913, 2855, 1798, 1695, 1510, 1184 cm<sup>-1</sup>. HRMS (FTMS+c ESI) caled for C<sub>27</sub>H<sub>29</sub>F<sub>3</sub>NO<sub>4</sub> [(M+H<sup>+</sup>)] = 488.2043, Found 488.2057.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 7.001          | 12406566 | 49.03  |
| 2 | 7.925          | 12898056 | 50.97  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 7.210          | 84047    | 0.53   |
| 2 | 7.933          | 15873706 | 99.47  |

*N*-[(3*R*,3a*S*,7a*S*)-3-Benzyl-2,5-dioxo-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenzofuran-3-yl ]furan-2-carboxamide



The compound **3bt** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 2/1) to afford a white solid in 72% yield. **SFC** (Daicel Chiralcel **IA**, scCO<sub>2</sub>/MeOH = 80/20, 1.5 mL/min,  $\lambda$  = 254 nm), t (major) = 1.68 min, t (minor) = 2.19 min, ee = 99%. dr >19:1 (by <sup>1</sup>H NMR). mp 161 - 163 °C. [ $\alpha$ ]<sup>14</sup><sub>D</sub> = -239.9 (*c*: 0.328,  $\lambda$  = 589 nm,in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.50 - 7.41 (m, 4H), 7.34 - 7.28 (m, 2H), 7.05 (d, *J* = 3.4 Hz, 1H), 6.78 (dd, *J* = 10.5, 1.4 Hz, 1H), 6.61 (d, *J* = 7.1 Hz, 1H), 6.48 (dd,

 $J = 3.5, 1.8 \text{ Hz}, 1\text{H}, 6.22 \text{ (d, } J = 10.5 \text{ Hz}, 1\text{H}, 3.53 \text{ (dt, } J = 8.5, 1.6 \text{ Hz}, 1\text{H}), 3.30 - 3.18 \text{ (m, 2H)}, 2.68 - 2.51 \text{ (m, 1H)}, 2.17 \text{ (d, } J = 18.1 \text{ Hz}, 1\text{H}). {}^{13}\text{C}{}^{1}\text{H} \text{NMR} (101 \text{ MHz}, \text{CDCl}_3) \delta 193.0, 171.3, 156.8, 145.7, 145.1, 137.0, 134.1, 132.5, 130.0, 129.8, 128.9, 123.4 \text{ (q, } J = 284.8 \text{ Hz}, 1\text{C}), 116.6, 112.7, 77.9 \text{ (q, } J = 32.3 \text{ Hz}, 1\text{C}), 60.4, 45.1, 40.7, 33.9. {}^{19}\text{F}{}^{1}\text{H} \text{NMR} (376 \text{ MHz}, \text{CDCl}_3) \delta -80.1. \text{ IR (neat) } 3258, 1803, 1695, 1645, 1531, 1514, 1177 \text{ cm}^{-1}. \text{ HRMS} (\text{FTMS+c ESI}) \text{ caled for } \text{C}_{21}\text{H}_{17}\text{F}_3\text{NO}_5 \text{ [(M+H^+)]} = 420.1053, \text{ Found } 420.1049.$ 



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 1.679          | 2591023 | 39.31  |
| 2 | 2.180          | 2720281 | 41.27  |
| 3 | 4.822          | 638708  | 9.69   |
| 4 | 6.862          | 640669  | 9.72   |



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 1.680          | 1314989 | 99.65  |
| 2 | 2.187          | 4645    | 0.35   |

# *N*-[(*3R*,3a*S*,7a*S*)-3-Benzyl-2,5-dioxo-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenzofuran-3-y l]thiophene-2-carboxamid*e*



The compound **3bu** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 2/1) to afford a white solid in 67% yield. **SFC** (Daicel Chiralcel **IA**, scCO<sub>2</sub>/MeOH = 90/10, 1.5 mL/min,  $\lambda$  = 254 nm), t (major) = 2.14 min, t (minor) = 2.88 min, ee = 99%. dr >19:1 (by <sup>1</sup>H NMR). mp 165 -167 °C. [ $\alpha$ ]<sup>14</sup><sub>D</sub> = -270.3 (*c*: 0.212,  $\lambda$  = 589 nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, MeOD)  $\delta$  7.68 (ddd, *J* = 5.4, 4.4, 1.2 Hz, 2H), 7.36 (qd, *J* = 7.8, 6.8, 3.6 Hz, 3H), 7.29 - 7.25 (m, 2H), 7.13 (dd, *J* = 5.0, 3.8 Hz, 1H), 6.72

(dd, J = 10.5, 1.5 Hz, 1H), 6.16 (d, J = 10.5 Hz, 1H), 3.44 – 3.37 (m, 2H), 3.25 (d, J = 13.6 Hz, 1H), 2.93 – 2.73 (m, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, MeOD)  $\delta$  195.3, 172.5, 163.1, 138.7, 137.8, 135.1, 135.0, 133.0, 132.1, 131.0, 130.0, 129.1, 128.9, 124.7 (q, J = 283.8 Hz, 1C), 79.2 (q, J = 32.3 Hz, 1C), 64.1, 43.2, 40.2, 33.9. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, MeOD)  $\delta$  –81.4. IR (thin film, NaCl) 3277, 1807, 1699, 1637, 1539, 1180 cm<sup>-1</sup>. HRMS (FTMS+c ESI) caled for C<sub>21</sub>H<sub>17</sub>F<sub>3</sub>NO<sub>4</sub>S [(M+H<sup>+</sup>)] = 436.0825, Found 436.0821.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 2.141          | 4848192 | 99.41  |
| 2 | 2.881          | 28867   | 0.59   |

 $\label{eq:linear} N-[(3R,3aS,3aS)-3-Benzyl-2,5-dioxo-7a-(trifluoromethyl)-2,3,3a,4,5,7a-hexahydrobenzofuran-3-yl] cyclopentane carboxamide$ 



The compound **3bv** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5/1) to afford a white solid in 57% yield. **SFC** (Daicel Chiralcel **IA**, scCO<sub>2</sub>/MeOH = 90/10, 1.5 mL/min,  $\lambda = 254$  nm), t (major) = 3.13 min, t (minor) = 2.70 min, ee = 99%. dr >19:1 (by <sup>1</sup>H NMR). mp 175 -177 °C.  $[\alpha]^{18}_{D}$  = +36.4 (*c*: 0.294,  $\lambda = 589$  nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 7.47 - 7.38 (m, 3H), 7.26 - 7.22 (m, 2H), 6.77 (d, *J* = 10.5 Hz, 1H), 6.21 (d, *J* = 10.5 Hz, 1H), 5.79 (s, 1H), 3.43 (d, *J* = 8.3 Hz,

1H), 3.15 (q, J = 13.7 Hz, 2H), 2.65 – 5.54 (m, 1H), 2.39 (q, J = 7.8 Hz, 1H), 2.19 (d, J = 18.0 Hz, 1H), 1.74 – 1.45 (m, 8H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.4, 175.1, 171.6, 137.4, 133.9, 132.8, 130.0, 129.7, 128.8, 123.4 (q, J = 284.8 Hz, 1C), 77.8 (q, J = 32.3 Hz, 1C), 60.5, 44.9, 40.4, 33.9, 30.2, 29.9, 25.9, 25.7. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  –80.1. IR (thin film, NaCl) 3265, 1802, 1695, 1659, 1533, 1513, 1188 cm<sup>-1</sup>. HRMS (FTMS+c ESI) caled for C<sub>22</sub>H<sub>23</sub>F<sub>3</sub>NO<sub>4</sub> [(M+H<sup>+</sup>)] = 422.1574, Found 422.1581.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 2.704          | 5549    | 0.06   |
| 2 | 3.131          | 9991571 | 99.94  |

### 



The compound **3bw** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4/1) to afford a white solid in 60% yield. **SFC** (Daicel Chiralcel **IB**, scCO<sub>2</sub>/MeOH = 90/10, 1.5 mL/min,  $\lambda = 254$  nm), t (major) = 3.28 min, t (minor) = 2.84 min, ee = 99%. dr >19:1 (by <sup>1</sup>H NMR). mp 170–172 °C. [ $\alpha$ ]<sup>22</sup><sub>D</sub> = -106.1 (*c*: 0.130,  $\lambda = 405$  nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.47 – 7.39 (m, 3H), 7.26 – 7.22 (m, 2H), 6.76 (dd, *J* = 10.5,

1.3 Hz, 1H), 6.22 (d, J = 10.5 Hz, 1H), 5.72 (s, 1H), 3.44 (dt, J = 8.5, 1.6 Hz, 1H), 3.19 – 3.09 (m, 2H), 2.62 – 2.52 (m, 1H), 2.12 (d, J = 18.1 Hz, 1H), 1.81 – 1.63 (m, 5H), 1.33 – 1.10 (m, 6H). <sup>13</sup>C{<sup>1</sup>H} **NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.4, 174.7, 171.5, 137.3, 133.9, 132.7, 129.9, 129.7, 128.8, 123.4 (q, J = 10.5 Hz, 1H), 1.81 – 1.63 (m, 5H), 1.33 – 1.10 (m, 6H).

283.8 Hz, 1C), 77.7 (q, J = 32.3 Hz, 1C), 60.2, 45.1, 44.3, 40.4, 33.9, 29.2, 28.9, 25.5, 25.4. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  –80.1. IR (thin film, NaCl) 3285, 1794, 1692, 1651, 1535, 1510, 1190 cm<sup>-1</sup>. HRMS (FTMS+c ESI) caled for C<sub>23</sub>H<sub>25</sub>F<sub>3</sub>NO<sub>4</sub> [(M+H<sup>+</sup>)] = 436.1730, Found 436.1737.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 2.839          | 4963    | 0.35   |
| 2 | 3.281          | 1411842 | 99.65  |

*N*-[(3*R*,3a*S*,7a*S*)-3-Benzyl-2,5-dioxo-7a-phenyl-2,3,3a,4,5,7a-hexahydrobenzofuran-3-yl] benzamide



The compound **3ca** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 3/1) to afford a white solid in 40% yield. **SFC** (Daicel Chiralcel **IB**, scCO<sub>2</sub>/MeOH = 80/20, 1.5 mL/min,  $\lambda$  = 254nm), t (major) = 3.57 min, t (minor) = 4.45 min, ee = 90%. dr >19:1 (by <sup>1</sup>H NMR). mp 128–130 °C.  $[\alpha]_{D}^{22}$  = -129.5 (*c*: 0.244,  $\lambda$  = 589 nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H **NMR** (400 MHz, CDCl3)  $\delta$  7.61 – 7.57 (m, 2H), 7.54 – 7.38 (m, 8H), 7.3 – 7.25 (m, 3H), 7.07 – 7.01 (m, 2H), 6.73 (d, *J* = 10.1 Hz, 1H), 6.36 (d, *J* = 3.3 Hz, 1H), 6.12

(d, J = 10.2 Hz, 1H), 3.69 (t, J = 7.2 Hz, 1H), 3.41 (d, J = 13.8 Hz, 1H), 2.91 (d, J = 13.8 Hz, 1H), 2.82 - 2.70 (m, 1H), 2.51 - 2.35 (m, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl3) & 196.2, 173.6, 167.0, 145.0, 141.0, 133.9, 133.0, 132.3, 130.2, 129.4, 129.0, 128.8, 128.8, 127.9, 127.0, 124.8, 82.2, 64.2, 49.8, 41.9, 35.1. IR (thin film, NaCl) 3298, 1778, 1688, 1659, 1535, 1493, 1246 cm<sup>-1</sup>. HRMS (FTMS+c ESI) caled for C<sub>28</sub>H<sub>24</sub>NO<sub>4</sub>H [(M+H<sup>+</sup>)] = 438.1700, Found 438.1702.





| 1 | 3.577 | 12111248 | 50.05 |
|---|-------|----------|-------|
| 2 | 4.371 | 12088901 | 49.95 |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 3.571          | 16063977 | 94.81  |
| 2 | 4.451          | 879376   | 5.19   |

*N*-[(*3R*,3a*S*,7a*S*)-3-Benzyl-7a-(4-cyanophenyl)-2,5-dioxo-2,3,3a,4,5,7a-hexahydrobenzofuran-3-yl] benzamide



The compound **3da** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 2/1) to afford a white solid in 29% yield. **SFC** (Daicel Chiralcel **IA**, scCO<sub>2</sub>/MeOH = 85/15, 1.5 mL/min,  $\lambda$  = 254nm), t (major) = 12.04 min, t (minor) = 17.81 min, ee = 93%. dr >19:1 (by <sup>1</sup>H NMR). mp 158–160 °C.  $[\alpha]^{21}_{D} = -132.1$  (*c*: 0.290,  $\lambda = 589$  nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, Acetone)  $\delta$  7.87 (s, 1H), 7.75 (d, *J* = 7.8 Hz, 2H), 7.64 (dd, *J* = 8.4, 1.6 Hz, 2H), 7.57 – 7.53 (m, 1H),

7.48 – 7.43 (m, 2H), 7.33 – 7.24 (m, 5H), 7.15 (d, J = 7.8 Hz, 2H), 6.68 (dd, J = 10.4, 1.6 Hz, 1H), 6.09 (dd, J = 10.4, 1.4 Hz, 1H), 3.48 (d, J = 13.3 Hz, 1H), 3.30 (d, J = 13.3 Hz, 1H), 2.87 (d, J = 1.5 Hz, 2H), 2.83 – 2.80 (m, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, Acetone)  $\delta$  194.9, 173.2, 167.1, 147.3, 144.6, 135.4, 134.6, 133.4, 132.5, 132.1, 131.0, 129.7, 129.2, 128.6, 128.4, 126.5, 118.9, 112.9, 81.9, 64.6, 48.3, 43.0, 34.0. **IR** (thin film, NaCl) 3335, 1782, 1678, 1653, 1531, 1510, 1188 cm<sup>-1</sup>. **HRMS** (FTMS+c ESI) caled for C<sub>29</sub>H<sub>23</sub>N<sub>2</sub>O<sub>4</sub>H [(M+H<sup>+</sup>)] = 463.1652, Found 463.1652.



|   | RetentionTime | Area     | % Area |
|---|---------------|----------|--------|
| 1 | 12.038        | 16397754 | 96.37  |
| 2 | 17.812        | 616835   | 3.63   |

*N*-[(3*R*,3a*S*,7a*S*)-3-benzyl-7a-(4-bromophenyl)-2,5-dioxo-2,3,3a,4,5,7a-hexahydrobenzofuran-3-yl]benzamide



The compound **3ea** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 3/1) to afford a white solid in 47% yield. **SFC** (Daicel Chiralcel **IA**, scCO<sub>2</sub>/MeOH = 80/20, 1.5 mL/min,  $\lambda = 254$  nm), t (major) = 8.38 min, t (minor) = 12.51min, ee = 93%. dr >19:1 (by <sup>1</sup>H NMR). mp 144–146 °C.  $[\alpha]^{21}{}_{D} = -117.7$  (*c*: 0.232,  $\lambda = 589$  nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.59 – 7.48 (m, 5H), 7.42 – 7.37 (m, 2H), 7.34 – 7.29 (m, 3H), 7.20 – 7.15 (m, 2H), 7.11 – 7.02 (m, 2H),

6.72 (d, J = 10.2 Hz, 1H), 6.38 (s, 1H), 6.12 (dd, J = 10.2, 1.3 Hz, 1H), 3.55 (t, J = 6.7 Hz, 1H), 3.41 (d, J = 13.6 Hz, 1H), 2.96 (d, J = 13.7 Hz, 1H), 2.80 – 2.61 (m, 1H), 2.51 – 2.38 (m, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  195.6, 173.3, 167.0, 144.6, 139.9, 133.6, 132.9, 132.5, 132.3, 130.3, 129.3, 129.0, 128.8, 128.1, 127.0, 126.5, 123.2, 81.8, 63.8, 49.6, 42.5, 34.7. **IR** (thin film, NaCl) 3302, 1780, 1688, 1653, 1535, 1493, 1188 cm<sup>-1</sup>. **HRMS** (FTMS+c ESI) caled for C<sub>28</sub>H<sub>23</sub>BrNO<sub>4</sub> [(M+H<sup>+</sup>)] = 516.0805, 518.0785, Found 516.0814, 518.0793.



| <i>N-</i> [( <i>3R</i> ,3a <i>S</i> ,7a <i>R</i> )-3-Benzyl-6-bromo-7a-methyl-2,5-dioxo-2,3,3a,4,5,7a-hexahydro | benzofuran-3-yl |
|-----------------------------------------------------------------------------------------------------------------|-----------------|
| ]benzamide                                                                                                      |                 |

4130975



2

12.511

To a solution of **3aa** (37.5 mg, 0.10 mmol, 1 eq) in 1 mL DCM at 0  $^{\circ}$ C was added Br<sub>2</sub> (7 µL, 1.3 eq). The reaction was allowed to stir for 24 h and then 0.5 mL of NEt<sub>3</sub> was added and the reaction was warmed to room temperature. The crude residue was purified by column chromatography on silica gel to afford **4aa** as a pale White solid in 60% yield. **TLC** (petroleum ether/ethyl

3.47

acetate = 3/1):  $R_f = 0.25$ . Analytical data for **4aa** : **SFC** (Daicel Chiralcel **IA**, scCO<sub>2</sub>/MeOH = 80/20, 1.5 mL/min,  $\lambda = 254$  nm), t (major) = 4.59 min, t (minor) = 5.73min, ee = 99%. dr >19:1 (by <sup>1</sup>H NMR). mp decomposed at 172 °C.  $[\alpha]^{25}_{D} = -87.3$  (*c*: 0.546,  $\lambda = 589$  nm, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H **NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 – 7.52 (m, 2H), 7.52 – 7.46 (m, 1H), 7.44 – 7.36 (m, 4H), 7.32 – 7.23 (m, 3H), 7.19 (d, *J* = 1.4 Hz, 1H), 6.15 (s, 1H), 3.37 – 3.21 (m, 2H), 3.13 – 3.04 (m, 1H), 2.72 – 2.66 (m, 1H), 2.56 – 2.44 (m, 1H), 1.55 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} **NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  187.3, 173.1, 166.2, 148.4, 133.5, 132.4, 132.2, 130.3, 129.5, 128.7, 128.5, 127.1, 123.7, 104.7, 80.9, 61.8, 48.1, 44.9, 26.3. **IR** (thin film, NaCl) 3349, 1770, 1677, 1508, 1269cm<sup>-1</sup>. **HRMS** (FTMS+c ESI) caled for C<sub>23</sub>H<sub>21</sub>BrNO<sub>4</sub> [(M+H<sup>+</sup>)] = 454.0648, 456.0628, Found 454.0645, 456.0630.



*N*-[(1a*R*,3a*S*,4*R*,6a*R*,6b*S*)-4-Benzyl-2,5-dioxo-6a-(trifluoromethyl)octahydrooxireno[2,3-g]benzof uran-4-yl]benzamide



Into a mixed solution of **3ba** (0.1 mmol), *tert*-BuNH<sub>2</sub> (3  $\mu$ L, 30 mol%) and CH<sub>3</sub>OH (1 mL) was slowly added 50  $\mu$ L of H<sub>2</sub>O<sub>2</sub> (30%, 0.44 mmol) under stirring at 30 °C. The reaction was allowed to stir for 24 h and then the solution was treated with 2 mL of ethyl acetate, 1 mL of H<sub>2</sub>O and 2 mL of brine, the formed organic layer was separated. The water layer was extracted with ethyl acetate (3×3 mL). The extract was washed with brine and dried by Na<sub>2</sub>SO<sub>4</sub>,

filtered, and concentrated *in vacuo*. The crude residue was purified by column chromatography on silica gel to afford **5ba** as a white solid in 82% yield. **TLC** (petroleum ether/ethyl acetate = 3/1):  $R_f = 0.10$ . Analytical data for **5ba**: mp decomposed at 158 °C.  $[\alpha]_D^{25} = -21.6$  (*c*: 0.334,  $\lambda = 365$  nm, in acetone). <sup>1</sup>H NMR (400 MHz, acetone-d<sub>6</sub>)  $\delta$  7.94 – 7.89 (m, 2H), 7.74 (s, 1H), 7.62 – 7.56 (m, 1H), 7.52 – 7.47 (m, 2H), 7.42 – 7.32 (m, 5H), 4.11 (d, J = 4.4 Hz, 1H), 3.91 – 3.83 (m, 1H), 3.61 – 3.58 (m, 1H), 3.51 (d, J = 25.2 Hz, 1H), 3.33 – 3.27 (m, 1H), 3.08 (dd, J = 14.4, 8.9 Hz, 1H), 2.30 (dd, J = 14.5, 10.1 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, Acetone)  $\delta$  203.1, 171.9, 167.1, 78.9 (q, J = 307.0 Hz, 1C), 63.4, 58.7 (q, J = 115.1 Hz, 1C), 56.0, 55.6, 43.4, 40.8, 33.0. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, Acetone)  $\delta$  98.0. **IR** (neat) 3413, 1805, 1726, 1703, 1677, 1497, 1278, 1191cm<sup>-1</sup>. **HRMS** (FTMS+c ESI) caled for  $C_{23}H_{19}F_3NO_5$  [(**M**+**H**<sup>+</sup>)] = 446.1210, Found 446.1199.

#### 4-Methoxy-4-(trifluoromethyl)cyclohexa-2,5-dien-1-one



Into a mixed solution of **1b** (0.67 mmol), KOH (1.0 mol) and DMSO (10 mL) was slowly added CH<sub>3</sub>I (6.7 mmol) under stirring at 30 °C. The reaction was allowed to stir for 24 h and then the solution was treated with 10 mL of water, the water layer was extracted with DCM ( $3 \times 10$  mL). The extract was washed with brine and dried by Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated *in vacuo*. The crude residue was purified by column chromatography on silica gel to afford **1i** as a yellow solid in 30% yield. **TLC** 

(petroleum ether/ethyl acetate = 3/1):  $R_f = 0.80$ . <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.79 (d, J = 10.3 Hz, 2H), 6.59 (d, J = 10.4 Hz, 2H), 3.31 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  183.6, 140.7, 135.3, 122.8 (q, J = 285.8 Hz, 1C), 74.8 (q, J = 31.3 Hz, 1C), 52.8. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  77.6.

### 7. NMR spectra

 $^1H$  NMR (400 MHz) and  $^{13}C\{^1H\}$  NMR (101 MHz), CDCl<sub>3</sub>, compound **3aa** 





200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20

### <sup>1</sup>H NMR (400 MHz), <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz), <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz), CDCl<sub>3</sub>, compound **3ba**





S36






210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10



<sup>1</sup>H NMR (400 MHz), <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz), <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz), CDCl<sub>3</sub>, compound **3bd** 









S42









S45

7.6

1.0<u>-</u>

6.0

6.5

1.9 1.9 4.2√

7.5

8.0

2.0

7.0

7.4

5.5

5.0

4.5

7.2

7.0

6.8

4.0

6.6

0.9<sub>1</sub> 2.0<sub>1</sub>

3.5

2. 1

2.5

2.0

1.5

1.0

3.0

Ó

0.5

0.0

-0.5

3bh









S48





<sup>1</sup>H NMR (400 MHz), <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz), <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz), CDCl<sub>3</sub>, compound **3bk**  $\frac{9}{4}, \frac{9}{4}, \frac{9}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}, \frac{$ 



<sup>1</sup>H NMR (400 MHz), <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz), <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz), CDCl<sub>3</sub>, compound **3bl**  $\frac{8}{2}$ ,  $\frac{4}{2}$ ,





<sup>1</sup>H NMR (400 MHz), <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz), <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz), CDCl<sub>3</sub>, compound **3bm** 





7,427,427,7317,7317,7327,7317,7317,2327,2296,6866,6866,6866,6866,6866,6833,5553,5553,5533,5533,5533,5533,5533,5533,5533,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553,5553.26 2.69 2.67 2.63 2.36 2.31 2.65







<sup>1</sup>H NMR (400 MHz), <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz), <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz), CDCl<sub>3</sub>, compound **3bo** 







<sup>1</sup>H NMR (400 MHz), <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz), <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz), CDCl<sub>3</sub>, compound **3bq** 49 49 49 49 49 49 49 49 40  $\times$  200  $\times$  200









<sup>1</sup>H NMR (400 MHz), <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz), <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz), CDCl<sub>3</sub>, compound **3bs** 









## <sup>1</sup>H NMR (400 MHz), <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz), <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz), MeOD, compound **3bu**



-10 -70 -50 10 -30 -130 -90 -110 -150 -170 -190 -210 <sup>1</sup>H NMR (400 MHz), <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz), <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz), CDCl<sub>3</sub>, compound **3bv** 3.423.193.133.133.133.133.133.132.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.562.572.562.572.562.562.562.562.562.572.562.572.562.572.562.572.562.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.572.577.44 7.43 7.41 7.40 7.27 7.25 7.25 7.25 6.78 6.75 5.79 3.44 5.71 1.70 1.68 1.66 1.64 1.62 1.61 1.53 1.51 1.48 .72 .65 6.22 6.20 1.55









210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10





200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 <sup>1</sup>H NMR (400 MHz), <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz), <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz), Acetone, compound **3da**  $\begin{array}{c} 7.45\\ 7.45\\ 7.43\\ 7.43\\ 7.33\\ 7.23\\ 7.33\\ 7.23\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\ 7.26\\$ 7.76 7.74 7.65 7.65 7.63 7.63 7.63 7.63 7.55 7.55 7.55 7.53 7.53 7.53 7.46 .47










180 170 160 150 140 130 120 110 100 190 90 80 70 60 50 40 30  $^{1}$ H NMR (400 MHz),  $^{13}$ C{ $^{1}$ H} NMR (101 MHz),  $^{19}$ F{ $^{1}$ H} NMR (376 MHz), Acetone, compound **5ba** 7.9 9.7 9.7 9.7 9.7 9.7 7.7 0.7 7.6 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.4 7.4 7.4 7.4 7.4





190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -4



190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50



10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

## 8. Mechanism studies

### 8.1 CCDC 1836787

**3aa** was recrystallized from mixed solvents of  $CH_2Cl_2$ , *n*-hexane, ethanol, isopropanol, toluene at 0 °C. The absolute configuration of the product **3aa** was determined to be (3*R*, 3a*S*, 7a*S*) according to X-ray crystal structural analysis.



| Identification code   | fxm-xxx-150k           |
|-----------------------|------------------------|
| Empirical formula     | $C_{24}H_{23}Cl_2NO_4$ |
| Formula weight        | 460.33                 |
| Temperature/K         | 150.00(10)             |
| Crystal system        | triclinic              |
| Space group           | P1                     |
| a/Å                   | 9.4955(4)              |
| b/Å                   | 11.2983(5)             |
| c/Å                   | 11.3062(5)             |
| α/°                   | 75.516(4)              |
| β/°                   | 69.837(4)              |
| γ/°                   | 89.852(3)              |
| Volume/Å <sup>3</sup> | 1097.76(8)             |

| Z                                           | 2                                                      |
|---------------------------------------------|--------------------------------------------------------|
| $\rho_{calc}g/cm^3$                         | 1.393                                                  |
| $\mu/\text{mm}^{-1}$                        | 2.923                                                  |
| F(000)                                      | 480.0                                                  |
| Crystal size/mm <sup>3</sup>                | 0.5 	imes 0.3 	imes 0.2                                |
| Radiation                                   | $CuK\alpha$ ( $\lambda = 1.54184$ )                    |
| 2\Theta range for data collection/°         | 8.116 to 145.982                                       |
| Index ranges                                | $-11 \le h \le 11, -12 \le k \le 13, -13 \le l \le 14$ |
| Reflections collected                       | 22281                                                  |
| Independent reflections                     | 7754 [ $R_{int} = 0.0580, R_{sigma} = 0.0576$ ]        |
| Data/restraints/parameters                  | 7754/3/561                                             |
| Goodness-of-fit on F <sup>2</sup>           | 1.060                                                  |
| Final R indexes [I>= $2\sigma$ (I)]         | $R_1 = 0.0547, wR_2 = 0.1360$                          |
| Final R indexes [all data]                  | $R_1 = 0.0574, wR_2 = 0.1402$                          |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.45/-0.41                                             |
| Flack parameter                             | -0.002(11)                                             |
|                                             |                                                        |

#### 8.2 CCDC 1847525

Catalyst was recrystallized from mixed solvents of  $CH_2Cl_2$ , alcohol and *n*-hexane at 0 °C. We synthesized the catalyst using L-Pipecolinic acid and (1S,2S)-1,2-Diphenyl-1,2-ethanediamine of known absolute configuration, So the absolute configuration of the catalyst is deterministic.





Identification code cat.cu\_20180530xlhbp\_0ma\_a\_sq Empirical formula  $C_{76}H_{99}BN_8O_2$ Formula weight 1167.44 Temperature/K 170(2)Crystal system orthorhombic Space group  $P2_12_12_1$ a/Å 20.6886(6) b/Å 21.2747(5) c/Å 21.4491(7) α/° 90 ß/° 90 γ/° 90 Volume/Å<sup>3</sup> 9440.7(5) Ζ 4  $\rho_{calc}g/cm^3$ 0.820  $\mu/\text{mm}^{-1}$ 0.378 F(000) 2520.0 Crystal size/mm<sup>3</sup>  $0.600 \times 0.040 \times 0.040$ Radiation CuKa ( $\lambda$  = 1.54178)  $2\Theta$  range for data collection/° 5.936 to 108.766 Index ranges  $-21 \le h \le 21, -22 \le k \le 22, -21 \le l \le 22$ 39183 Reflections collected Independent reflections 11357 [ $R_{int} = 0.0561$ ,  $R_{sigma} = 0.0516$ ] Data/restraints/parameters 11357/1902/756 Goodness-of-fit on F<sup>2</sup> 0.954 Final R indexes  $[I \ge 2\sigma(I)]$  $R_1 = 0.0950, wR_2 = 0.2222$ Final R indexes [all data]  $R_1 = 0.1186, wR_2 = 0.2388$ Largest diff. peak/hole / e Å<sup>-3</sup> 0.24/-0.25 Flack parameter 0.45(13)

#### Alert level A

 $THETM01\_ALERT\_3\_A The value of sine(theta\_max)/wavelength is less than 0.550 Calculated sin(theta\_max)/wavelength = 0.5273$ 

Author Response: The dataset was cut at 0.95 Angstroms as at this point the average I/sigama(I) drop to below 2. Increase the exposure time didn't help. Alert level B PLAT340\_ALERT\_3\_B Low Bond Precision on C-C Bonds ...... 0.01588 Ang. Author Response: The resolution is low, hard to get high precision on C-C Bonds

#### 8.3 CCDC 1851705

**5ba** was recrystallized from missed solvents of  $CH_2Cl_2$  and *n*-hexane. The absolute configuration of **5ba** was determined to be (1a*R*, 3a*S*, 4*R*, 6a*R*, 6b*S*) according to X-ray crystal structural analysis.



\_0m\_a

| Ider              | ntification code | cu_2018626_XLH_01                             |
|-------------------|------------------|-----------------------------------------------|
| Emp               | pirical formula  | $C_{23}H_{18}F_{3}NO_{5}$                     |
| For               | mula weight      | 445.38                                        |
| Ten               | nperature/K      | 170(2)                                        |
| Crys              | stal system      | orthorhombic                                  |
| Spa               | ce group         | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> |
| a/Å               |                  | 6.8880(14)                                    |
| b/Å               |                  | 7.800(2)                                      |
| c/Å               |                  | 36.992(16)                                    |
| $\alpha/^{\circ}$ |                  | 90                                            |
|                   |                  | S80                                           |

| β/°                                         | 90                                                   |
|---------------------------------------------|------------------------------------------------------|
| $\gamma^{/\circ}$                           | 90                                                   |
| Volume/Å <sup>3</sup>                       | 1987.4(11)                                           |
| Z                                           | 4                                                    |
| $\rho_{calc}g/cm^3$                         | 1.489                                                |
| $\mu/mm^{-1}$                               | 1.060                                                |
| F(000)                                      | 920.0                                                |
| Crystal size/mm <sup>3</sup>                | $0.360 \times 0.110 \times 0.110$                    |
| Radiation                                   | $CuK\alpha$ ( $\lambda = 1.54178$ )                  |
| 2\Overlap range for data collection/°       | 12.316 to 129.886                                    |
| Index ranges                                | $-8 \le h \le 6,  -9 \le k \le 9,  -43 \le l \le 40$ |
| Reflections collected                       | 11558                                                |
| Independent reflections                     | 3350 [ $R_{int} = 0.0253$ , $R_{sigma} = 0.0237$ ]   |
| Data/restraints/parameters                  | 3350/0/293                                           |
| Goodness-of-fit on F <sup>2</sup>           | 1.047                                                |
| Final R indexes $[I \ge 2\sigma(I)]$        | $R_1 = 0.0236, wR_2 = 0.0595$                        |
| Final R indexes [all data]                  | $R_1 = 0.0240,  wR_2 = 0.0597$                       |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.15/-0.16                                           |
| Flack parameter                             | 0.03(3)                                              |

## 8.4 CCDC 1866762



| Identification code                   | 3bc. cu_20180910_XLH_2_0m_a                          |
|---------------------------------------|------------------------------------------------------|
| Empirical formula                     | $C_{17}H_{14}F_{3}NO_{4}$                            |
| Formula weight                        | 353.29                                               |
| Temperature/K                         | 173(2)                                               |
| Crystal system                        | orthorhombic                                         |
| Space group                           | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub>        |
| a/Å                                   | 8.2742(16)                                           |
| b/Å                                   | 10.476(2)                                            |
| c/Å                                   | 18.592(4)                                            |
| α/°                                   | 90                                                   |
| β/°                                   | 90                                                   |
| $\gamma^{\prime \circ}$               | 90                                                   |
| Volume/Å <sup>3</sup>                 | 1611.5(6)                                            |
| Z                                     | 4                                                    |
| $\rho_{calc}g/cm^3$                   | 1.456                                                |
| $\mu/\text{mm}^{-1}$                  | 1.097                                                |
| F(000)                                | 728.0                                                |
| Crystal size/mm <sup>3</sup>          | $0.330 \times 0.220 \times 0.150$                    |
| Radiation                             | $CuK\alpha \ (\lambda = 1.54178)$                    |
| $2\Theta$ range for data collection/° | 9.69 to 130.182                                      |
| Index ranges                          | $-8 \le h \le 9, -12 \le k \le 12, -21 \le l \le 21$ |
| Reflections collected                 | 9036                                                 |
| Independent reflections               | 2641 [ $R_{int} = 0.0258$ , $R_{sigma} = 0.0250$ ]   |
| Data/restraints/parameters            | 2641/0/227                                           |
| Goodness-of-fit on F <sup>2</sup>     | 0.714                                                |
| Final R indexes [I>= $2\sigma$ (I)]   | $R_1 = 0.0244, wR_2 = 0.0653$                        |
| Final R indexes [all data]            | $R_1 = 0.0247, wR_2 = 0.0656$                        |
| Largest diff. peak/hole / e $Å^{-3}$  | 0.12/-0.14                                           |
| Flack parameter                       | 0.08(3)                                              |

## 8.5 <sup>1</sup>H NMR experiments



<sup>8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8</sup> 



.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 **1b**  $\mathbf{H}^{\mathbf{a}} = 6.92 - 6.23 \text{ ppm (m)}, \mathbf{1b} + \mathbf{BG-1} \mathbf{BPh}_4 + \mathbf{2a} \mathbf{H}^{\mathbf{a}} = 6.79 - 6.23 \text{ ppm (m)}.$ **2a**  $\mathbf{H}^{\mathbf{b}} = 4.72 - 4.66 \text{ ppm (m)}, \mathbf{1b} + \mathbf{BG-1} \mathbf{BPh}_4 + \mathbf{2a} \mathbf{H}^{\mathbf{b}} = 4.62 - 4.58 \text{ ppm (m)}.$ 

**2a**  $\mathbf{H}^{c} = 3.41 - 3.15 \text{ ppm (m)}, \mathbf{1b} + \mathbf{BG-1} \mathbf{BPh}_{4} + \mathbf{2a} \mathbf{H}^{c} = 3.31 - 3.05 \text{ ppm (m)}.$ 

# 8.6 NOE studies





<sup>*a*</sup> The reactions were carried out **1i** (0.10 mmol), **2a** (0.15 mmol) and **BG-1**•HBPh<sub>4</sub> (5 or 10 mol%) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) at the indicated temperature under N<sub>2</sub> for 24 h. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> Determined by HPLC analysis on a chiral stationary phase. <sup>*d*</sup> N.R. = no reaction.

# 9. CD spectra of the products



















S92







#### **10. References**

- 1. Z. P. Y, X. H. Liu, L. Zhou, L. L. Lin, X. M. Feng, Angew. Chem., Int. Ed., 2009, 48, 5195.
- (a) S. X. Dong, X. H. Liu, X. H. Chen, F. Mei, Y. L. Zhang, B. Gao, L. L. Lin, X. M. Feng, J. Am. Chem. Soc., 2010, 132, 10650; (b) S. X. Dong, X. H. Liu, L. Zhou, L. L. Lin, X. M. Feng, Org. Lett., 2011, 13, 5060.
- 3. J. D. Zhao, J. Liu, X. Xie, S. Li, Y. H. Liu, Org. Lett., 2015, 17, 5926.
- 4. T. Yakura, M. Omoto, Y. Yamauchi, Y. Tian, A. Ozono, Tetrahedron, 2010, 66, 5833.
- 5. G. P. Stahly, D. R. Bell, J. Org. Chem., 1989, 54, 2873.