Magnetic interactions in the $S = 1/2$ square-lattice antiferromagnets Ba$_2$CuTeO$_6$ and Ba$_2$CuWO$_6$

Otto Mustonen,a,b Sami Vasala,c,d Heather Mutch,b Chris I. Thomas,a Gavin B. G. Stenning,e Elisa Baggio-Saitovitch,c Edmund J. Cussenb and Maarit Karppinena

Electronic Supporting Information

Density functional theory calculations

Density functional theory was used to calculate the magnetic exchange constants in Ba$_2$CuTeO$_6$ and Ba$_2$CuWO$_6$. The calculations were carried out with the full potential linearized augmented plane wave code ELK.1 We used the generalized gradient approximation functionals by Perdew, Burke and Ernzerhof.2 Five different spin configurations with $2 \times 2 \times 1$ ($1 \times 1 \times 2$) supercells were needed to calculate the exchange constants (Fig. 1).3,4 A k point grid of $4 \times 4 \times 6$ ($8 \times 8 \times 3$) was used. A plane-wave cutoff of $|G + k|_{\text{max}} = 8/\text{R}_{\text{MT}}$ a.u.1 was used, where R_{MT} was the average muffin tin radius. Electron correlation effects of the localized Cu$^{2+}$ 3d orbitals were included within the DFT+U framework with the on-site coulombic repulsion U and Hund exchange term I as parameters.5 The on-site coulombic U term was varied from 7 to 9 eV, which are typical values for Cu 3d orbitals. The Hund term I was fixed at 0.9 eV for all calculations.

Fig. 1. The five different spin configurations used in the density functional theory calculations. Only the magnetic Cu$^{2+}$ cations and their spins are shown. The energies are calculated in $2 \times 2 \times 1$ (and one $1 \times 1 \times 2$) supercells.

In order to obtain the exchange constants J_1-J_4 we mapped the energies of the different spin configurations to a simple Heisenberg Hamiltonian:

$$H = - \sum_{i<j} J_{ij} S_i \cdot S_j$$

where J_{ij} is the exchange constant for the interaction between spins i and j. The spin configurations are presented in Fig. 1. Using the Hamiltonian, the energies of the spin configurations3 can be written as:

$$E_{FM} = E_0 + (-4J_1 - 4J_2 - 8J_3 - 2J_4)S^2$$
$$E_{AFM1} = E_0 + (-4J_1 - 4J_2 + 8J_3 - 2J_4)S^2$$
\[E_{AFM2} = E_0 + (4J_1 - 4J_2 - 2J_4)S^2 \]
\[E_{AFM3} = E_0 + (4J_2 - 2J_4)S^2 \]
\[E_{AFM4} = E_0 + (-4J_1 - 4J_2 + 2J_4)S^2 \]

The exchange constants \(J_1 \) to \(J_4 \) can then be obtained from:

\[J_3 = \frac{(E_{AFM1} - E_{FM})}{16S^2} \]
\[J_1 = \frac{(E_{AFM2} - E_{FM} - 8J_3S^2)}{8S^2} \]
\[J_2 = \frac{(E_{AFM3} - E_{FM} - 4J_1S^2 - 8J_3S^2)}{8S^2} \]
\[J_4 = \frac{(E_{AFM4} - E_{FM} - 8J_3S^2)}{4S^2} \]

The calculated energies and exchange constants for \(U = 7-9 \) eV are presented in Table 1.

<table>
<thead>
<tr>
<th>(E_{FM}) (meV/2f.u.)</th>
<th>(E_{AFM1}) (meV/2f.u.)</th>
<th>(E_{AFM2}) (meV/2f.u.)</th>
<th>(E_{AFM3}) (meV/2f.u.)</th>
<th>(E_{AFM4}) (meV/2f.u.)</th>
<th>(J_1) (meV)</th>
<th>(J_2) (meV)</th>
<th>(J_3) (meV)</th>
<th>(J_4) (meV)</th>
<th>(J_2/J_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U = 7) eV</td>
<td>(U = 8) eV</td>
<td>(U = 9) eV</td>
<td>(U = 7) eV</td>
<td>(U = 8) eV</td>
<td>(U = 9) eV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>5.12</td>
<td>3.33</td>
<td>2.67</td>
<td>0.22</td>
<td>-0.04</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-44.74</td>
<td>-38.78</td>
<td>-33.11</td>
<td>-2.39</td>
<td>-2.37</td>
<td>-2.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-20.82</td>
<td>-18.10</td>
<td>-15.77</td>
<td>-30.56</td>
<td>-25.08</td>
<td>-20.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.26</td>
<td>1.67</td>
<td>1.39</td>
<td>0.14</td>
<td>0.35</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-23.65</td>
<td>-20.22</td>
<td>-17.22</td>
<td>-1.25</td>
<td>-1.17</td>
<td>-1.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.13</td>
<td>0.23</td>
<td>0.06</td>
<td>-14.71</td>
<td>-11.94</td>
<td>-9.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.28</td>
<td>0.83</td>
<td>0.67</td>
<td>0.05</td>
<td>-0.01</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.30</td>
<td>0.01</td>
<td>0.05</td>
<td>0.03</td>
<td>0.37</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.01</td>
<td>-0.01</td>
<td>0.00</td>
<td>11.79</td>
<td>10.18</td>
<td>7.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Structural effects on magnetic interactions

Changing strontium to barium has two effects on the structure that could explain the changes in magnetic interactions: it changes the Cu-O bond length and the Cu-O-Te/W bond angle in the \(ab \) plane, see Fig. 2 a). The equatorial Cu-O bonds in the \(ab \) plane are longer in the Ba-phases (2.01 vs 1.95 Å) but the Te/W-O bonds remain constant within experimental error. This lengthening of the Cu-O bond, on its own, would be expected to weaken the magnetic interactions in these materials. The other effect is related to the \(a^\alpha\alpha\alpha^\gamma \) octahedral tilting in these \(I4/m \) double perovskites. The CuO\(_6\) octahedrons tilt with \(c \) as the tilting axis, so that the Cu-O-Te/W angles in the \(ab \) plane are reduced from the ideal 180° (no octahedral tilting, \(I4/mmm \)). The larger size of the Ba\(^{2+}\) cation reduces this octahedral tilting, so that the Cu-O-Te/W angle in the \(ab \) plane is higher. This larger Cu-O-Te/W angle increases orbital overlap, and results in the observed significantly increased magnetic interactions in the Ba-phases in comparison to the Sr-phases.\(^3\) This effect is especially
strong in \(\text{Sr}_2\text{CuTeO}_6 \) and \(\text{Ba}_2\text{CuTeO}_6 \), where the Cu-O-Te bond angle increases from 158° to 175° when replacing strontium with barium, and as a consequence \(J_1 \) increases from -7.18 meV to -20.22 meV. The trends in bond lengths, angles and magnetic interactions are plotted in Fig. 2 panels b) and c). The trends in the Curie-Weiss constant and dominant magnetic interactions in Fig. 2 c) follow the trend in the Cu-O-Te/W angle in Fig. 2 b).

![Diagram](image)

Fig. 2. a) The structure of tetragonal \(\text{A}_2\text{CuB}^{V''}\text{O}_6 \) double perovskites with view down the c-axis. The Cu-O bond length and the Cu-O-Te/W angle are shown. b) The Cu-O bond length and Cu-O-Te/W angle in the compounds. c) The Curie-Weiss constant and dominant magnetic interactions \((J_1 \text{ for } \text{Ba}_2\text{CuTeO}_6 \text{ and } \text{Sr}_2\text{CuTeO}_6, J_2 \text{ for } \text{Ba}_2\text{CuWO}_6 \text{ and } \text{Sr}_2\text{CuWO}_6) \). Figure adapted from ref. 6 with data from this work and refs. 4,6–8.

Sample synthesis

\(\text{Ba}_2\text{CuWO}_6 \) and triclinic \(\text{Ba}_2\text{CuTeO}_6 \) were prepared using a conventional solid state reaction method from stoichiometric amounts of \(\text{BaCO}_3, \text{CuO, WO}_3 \text{ and TeO}_2 \) (Alpha Aesar ≥99.995). The samples were calcined at 900 °C in air for 12 hours, reground, pelletized and fired twice at 1000 °C in air for 24 hours. Tetragonal double perovskite \(\text{Ba}_2\text{CuTeO}_6 \) was prepared from triclinic \(\text{Ba}_2\text{CuTeO}_6 \) under high-pressure high-temperature conditions. Sample powder enclosed in a gold capsule was pressed in a cubic-anvil Riken-Seiki high-pressure apparatus at 4 GPa and 900 °C for 30 min. The temperature was slowly cooled before gradually releasing the pressure. This procedure resulted in around 50 mg of sample powder.

X-ray diffraction

The phase purity of samples was investigated by x-ray diffraction. The diffraction data were collected on a Panalytical X’pert Pro MPD diffractometer using Cu \(K_{\alpha 1} \) radiation. The diffraction patterns were refined with the FULLPROF\(^3\) software suite. Rietveld refinement was carried out for both compounds, although the data quality for \(\text{Ba}_2\text{CuTeO}_6 \) was not as good due to the small amount of sample powder. The crystal structures were visualized with VESTA.\(^10\)

The measured x-ray diffraction patterns for \(\text{Ba}_2\text{CuTeO}_6 \) and \(\text{Ba}_2\text{CuWO}_6 \) are shown in Fig. 3. No impurity peaks are observed in \(\text{Ba}_2\text{CuTeO}_6 \) indicating that the material is phase pure. In the \(\text{Ba}_2\text{CuWO}_6 \) sample a minor (< 1%) \(\text{BaWO}_4 \) impurity is observed in addition to the main phase. The lattice parameters are in good agreement with literature.\(^6\)
Fig. 3. X-ray diffraction patterns of (a) Ba$_2$CuTeO$_6$ and (b) Ba$_2$CuWO$_6$. The minor BaWO$_4$ impurity in Ba$_2$CuWO$_6$ is marked with an asterisk. Bragg positions for the space group I4/m are shown.

Magnetic measurements

Magnetic properties were measured with a Quantum Design MPMS3 SQUID magnetometer. 120 mg of Ba$_2$CuWO$_6$ and 25 mg of Ba$_2$CuTeO$_6$ were enclosed in gelatin capsules and placed in plastic straws for measurements. DC magnetic susceptibility was measured in the temperature range 2-400 K under an applied field of 1 T in zero-field cool (ZFC) and field cool (FC) modes.

References