Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Near-Infrared Absorption by Intramolecular Charge Transfer Transition in 5,10,15,20-Tetra(*N*-carbazolyl)porphyrin through Protonation

Shin-ichiro Kawano,[†] Sae Kawada,[†] Yasutaka Kitagawa,[‡] Rena Teramoto,[‡] Masayoshi Nakano,[‡] and Kentaro Tanaka^{*,†}

[†]Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602 (Japan)

[‡]Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Science ,Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531 (Japan)

E-mail: kentaro@chem.nagoya-u.ac.jp

Contents

1.	Experimental	p. S2
2.	Synthesis	p. S3
3.	X-ray crystallographic analysis of H_2P1 and H_4P1^{2+}	p. S9
4.	Absorption and fluorescence spectra of H_2 P1	p. S15
5.	DPV of H2P1	p. S16
6.	Photometric titration of trifluoromethanesulfonic acid against H_2P1 and H_2TPP	p. S17
7.	Theoretical calculations	p. S18
8.	References	p. S21

1. Experimental

Synthetic procedures were carried out under dry nitrogen atmosphere, unless otherwise specified. All of the chemicals were purchased at the highest commercials quality available (Wako, Kanto, TCI, and Aldrich) and used without any further purification, unless otherwise stated. The syntheses of Zn-porphine was reported previously.¹ ¹H and ¹³C NMR spectra were recorded on a JNM-ECS400 (400 MHz for ¹H; 100 MHz for ¹³C) and JNM-ECA600 (600 MHz for ¹H; 150 MHz for ¹³C) spectrometers at a constant temperature of 298 K. Tetramethylsilane (TMS) was used as an internal reference for ¹H and ¹³C NMR measurements in CDCl₃. Elemental analyses were performed on a Yanaco MT-6 analyzer. Silica gel column chromatography was performed using Merck silica gel 60. GPC was performed using a JAI LC-9204 equipped with JAIGEL 2H-40/1H-40 or 3H-40/2.5H-40 columns. ESI-TOF Mass spectroscopy was performed with a micrOTOF-QII, Bruker. Matrix-assisted laser desorption ionization time-of-flight mass spectroscopy (MALDI-TOF-MS) was performed with an ultraflex III, Bruker Daltonics and dithranol was used as the matrix. The absorption spectra were recorded with a Hitachi U-4100 spectrophotometer in CHCl₃ solutions at 20 \pm 0.1 °C in 1.0 cm quartz cells. The fluorescence spectra were measured with a Hitachi F-4500 fluorescence spectrophotometer in CHCl₃ solutions at 20 ± 0.1 °C in 1.0 cm quartz cells. Cyclic voltammetry (CV) and the differential-pulse voltammetry (DPV) were conducted using a BAS Electrochemical Analyzer Model ALS 750 Ds. The CV cell consisted of a glassy carbon electrode as a working electrode, a Pt wire as a counter electrode, and a Ag/AgCl in CH₃CN as a reference electrode. Tetrabutylammonium hexafluorophosphate was used as a supporting electrolyte. The redox potentials were calibrated with ferrocene as an internal standard.

2. Synthesis

Scheme S1. Synthesis of 5,10,15,20-tetra(*N*-carbazolyl)porphyrin

2-1. Synthesis of 3,6-di(2-methoxyethoxy)carbazole, C1

NaH (24.4 g, 614 mmol, 20 equiv.) was dissolved in 2-methoxyethanol (350 mL). 3,6-Dibromocarbazole (10.1 g, 30.7 mmol) and CuI (24.3 g, 129 mmol) were added to the solution. The mixture was refluxed for 19 h. After cooling, the reaction mixture was filtered to remove insoluble inorganic materials. The residue was washed with AcOEt. The filtrate was washed with 10% Na₂S₂O₃ solution (500 mL × 1), water (500 mL × 3), brine (500 mL × 1). The organic layer was collected and dried with anhydrous Na₂SO₄, then evaporated to obtain brown solid and colorless liquid. The colorless liquid was removed with decantation to obtain crude as brown solid. The crude was purified by SiO₂ column chromatography (SiO₂, hexane: AcOEt = 5:1-3:1) to obtain **C1** as colorless solid (7.48 g, 77%). ¹H NMR (400 MHz, CDCl₃/TMS) δ = 7.82 (s, 1H), 7.51-7.50 (d, *J* = 2.4 Hz, 2H), 7.30-7.26 (m, 2H), 7.10-7.07 (dd, *J* = 2.4Hz, 8.6Hz, 2H), 4.25-4.22 (t, *J* = 4.8, 4H), 3.82-3.80 (t, *J* = 4.8, 4H), 3.49 (s, 6H), ¹³C NMR (100 MHz, CDCl₃/TMS) δ = 152.5, 135.5, 123.5, 115.9, 111.5, 104.2, 71.3, 68.3, 59.2. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₈H₂₁NO₄Na 338.1368; Found 338.1365. IR (ATR): 3314 (NH), 1204 (ArOR), 1046 (ArOR) cm⁻¹.

 1 H NMR spectrum of **C1**

Zn-por¹ (32.2 mg, 80.3 μ mol) and **C1** (257 mg, 803 μ mol) were dissolved in dry CH₂Cl₂ (160 mL) and MeOH (5 mL). Cs₂CO₃ (0.537 g, 1.6 mmol, 20 equiv) was added to the solution. To the stirred solution of **Zn-por** and **C1**, phenyliondine diacetate: PIDA (108 mg, 241 µmol, 4 equiv) and NaAuCl₄•2H₂O (192 mg, 482 µmol, 6 equiv) were added. The reaction mixture was stirred at room temperature for 30 min. The reaction was guenched with 10% Na₂S₂O₄ aqueous solution 200 mL, then reaction mixture was filtered. The organic layer was collected and washed with 10% Na₂S₂O₄ aqueous solution (200 mL), water (200 mL \times 2), brine (200 mL), and dried over anhydrous Na₂SO₄, then evaporated to obtain brown solid. The solid was dissolved in CH₂Cl₂ (20 mL) and MeOH (5 mL). TFA (6.40 mL, 83.6 mmol) was added to the solution. The solution was stirred at room temperature for 1 h. 1M NaOH aqueous solution (200 mL) and CH₂Cl₂ (150 mL) were added to the solution. The organic layer was collected and washed with sat. NaHCO₃ aqueous solution (200 mL), water (200 mL \times 2), brine (200 mL), dried over anhydrous Na₂SO₄, then evaporated to obtain crude. The crude was SiO₂ column chromatography (3.5 cm $\phi \times 10$ cm, CH₂Cl₂: MeOH = 100:1, 50:1) to obtain the fraction containing the target. This fraction was further purified by GPC (JAIGEL, 2H-1H, eluent: CHCl₃) to obtain the target as brown solid (34.3 mg, 21.8 µmol, 27%). ¹H NMR (400 MHz, CDCl₃/TMS) δ = 8.36 (s, 8H), 7.82–7.81 (d, J = 2.4 Hz, 8H), 6.96-6.93 (d-d, J = 2.4 Hz, 9.2, 8H), 6.78–6.76 (d, J = 9.2 Hz, 8H), 4.32–4.29 (t, J = 4.4 Hz, 16H), 3.85–3.82 (t, J = 4.4 Hz, 16H) 3.49 (s, 24H), -2.17 (s, 2H). ¹³C NMR (100 MHz, CDCl₃/TMS) $\delta = 153.5$, 144.9, 123.1, 116.3, 114.8, 111.6, 104.6, 71.3, 68.5, 59.3. MALDI-TOF MS (dithranol, positive); m/z calcd for $[M + H]^+$ 1563.7 found 1563.9, Anal. calcd for C_{92} H₉₀N₈O₈•0.2CHCl₃. C 69.75 H 5.73 N 7.06; found C 69.86 H 5.81 N 6.76. IR (ATR): 1200 (ArOR), 1026 (ArOR) cm^{-1} .

¹H NMR spectrum of H_2 P1

13 C NMR spectrum of H₂P1

MALDI TOF-MS of H_2 P1

3. X-ray crystallographic analysis of H₂P1 and H₄P1²⁺

3-1. X-ray crystallographic analysis of H₂P1

Single crystal X-ray diffraction measurement was performed with a Rigaku X-ray diffractometer equipped with a molybdenum MicroMax-007 and Saturn 70 CCD detector. The structure was solved by the direct method (SHELXL-2014) and refined by the full-matrix least-squares on F^2 (SHELXL-2014/6) using Yadokari-XG 2014.² All non-hydrogen atoms were refined anisotropically.

Red crystals of H₂**P1** suitable for X-ray analysis were obtained by slow vapor diffusion of methanol into CHCl₃ at room temperature. The measurement was performed at 123 K. Total 39056 reflections were collected, among which 8045 reflections were independent ($R_{int} = 0.0386$). The crystal data are deposited in the Cambridge Crystallographic Data Centre (CCDC 1864209). The crystal data are as follows: Formula C₉₂H₉₀N₈O₁₆; FW = 1563.71, crystal size $0.35 \times 0.35 \times 0.1$ mm³, monoclinic, space group *P*2₁/a (#14), *a* = 13.051(14) Å, *b* = 18.73(2) Å, *c* = 19.67(2) Å, *a* = 90°, *β* = 90.899(10)°, *γ* = 90°, *V* = 4808(9) Å³, *Z* = 2, *D*_{calcd} = 1.080 g cm⁻³; $R_1 = 0.0789$ (*I* > 2 (*I*)), $wR_2 = 0.2270$ (all data), *GOF* = 1.089.

Figure S1. (a) Crystal structure of H_2 P1. ORTEP diagram with the thermal ellipsoids at a 50% probability level. Solvents were omitted for clarity.

Two methanol and two disordered chloroform were placed between the molecules in the unit cell. These solvent molecules were removed using the 'SQUEEZE' procedure in the PLATON program.³ The dihedral angles between carbazole and porphyrin core were 71° and 89°. In the molecular packing of H_2 **P1**, the distance between the neighboring porphyrin planes was 13 Å (Figure 1b).

Table S1. Identification code of H_2 P1

Identification code	H ₂ P1
Empirical formula	$C_{92}H_{90}N_8O_{16}$
Formula weight	1563.71
Temperature	123(2) <i>K</i>
Crystal system	Monoclinic
Space group	P 2 ₁ /a
Unit cell dimensions	a = 13.051(14) Å
	b = 18.73(2) Å
	c = 19.67(2) Å
	$\alpha = 90^{\circ}$
	$\beta = 90.889(10)^{\circ}$
	$\gamma = 90^{\circ}$
Volume	4808(9) Å ³
Ζ	2
Density (calcd.)	1.080 g/cm^3
Absorption coefficient	0.075 mm ⁻¹
<i>F</i> (000)	1652.0
Crystal size	$0.35\times0.35\times0.1~mm^3$
Goodness-of-fit on F^2	1.089
$R_1 [I > 2s(I)]$	0.0789
wR ₂ [all data]	0.2270

3-2. X-ray crystallographic analysis of H₄P1²⁺•2(CF₃SO₄⁻)

Single crystal X-ray diffraction measurements were performed using synchrotron radiation ($\lambda = 0.7004$ Å) at the BL02B1 in the SPring-8 with approval of the Japan Synchrotron Radiation Research Institute (JASRI) (proposal No. 2016B1144).

Red crystals of H₄P1²⁺•2(CF₃SO₄⁻) suitable for X-ray analysis were obtained by slow evaporation of acetonitrile at room temperature. The measurement was performed at 100 K. Total 250749 reflections were collected, among which 14618 reflections were independent ($R_{int} = 0.0293$). The crystal data are deposited in The Cambridge Crystallographic Data Centre (CCDC 1868761). The crystal data are as follows: Formula C₆₉H₉₂F₁₂N₈O₂₈S₄; FW = 2062.01, crystal size 0.20 × 0.20 × 0.20 mm³, cubic, space group P4₄32 (#212), *a* = *b* = c = 33.668(2) Å, $\alpha = \beta = \gamma = 90^{\circ}$, *V* = 38164.(7) Å³, *Z* = 12, *D*calcd = 1.129 g cm⁻³; $R_1 = 0.1133$ (*I* > 2 σ (*I*)), *w* $R_2 = 0.3369$ (all data), *GOF* = 1.349.

Figure S2. Crystal structure of $H_4P1^{2+} \cdot 2(CF_3SO_4^{-})$. ORTEP diagram with the thermal ellipsoids at a 50% probability level. Hydrogen atoms were omitted for clarity. (b) The dihedral angles between porphyrin plane and each carbazol were shown. The side chains were omitted for clarity.

Identification code	H ₄ P1 ²⁺ •2(CF ₃ SO ₄ -)
Empirical formula	$C_{69}H_{92}F_{12}N_8O_{28}S_4$
Formula weight	2162.01
Temperature	100(2) <i>K</i>
Crystal system	Cubic
Space group	<i>P</i> 4 ₁ 3 2
Unit cell dimensions	a = 33.668(2) Å
	b = 33.668(2) Å
	c = 33.668(2) Å
	$\alpha = 90^{\circ}$
	$\beta = 90^{\circ}$
	$\gamma = 90^{\circ}$
Volume	38164(7) Å ³
Ζ	12
Density (calcd.)	1.129 g/cm ³
Absorption coefficient	0.149 mm ⁻¹
<i>F</i> (000)	13440
Crystal size	$0.2\times0.2\times0.2\ mm^3$
Goodness-of-fit on F^2	1.349
$R_1 [I > 2s(I)]$	0.1133
wR ₂ [all data]	0.3369

Table S2. Identification code of $H_4P1^{2+} \cdot 2(CF_3SO_4^{-})$

Figure S3. (a) Left; The packing structure of $H_4P1^{2+} \cdot 2(CF_3SO_4^-)$ was presented with a space-filling model. H_4P1^{2+} forms the cyclic barrel-shaped trimer, in which the three counter anions, $3CF_3SO_3^-$ were entrapped. In the crystalline structure, the cyclic trimer assembled in the chiral left-handed fashion. Right; The cyclic barrel-shaped trimer was bound through intermolecular π - π interaction between the peripheral carabazoles. (b) The packing structure of $H_4P1^{2+} \cdot 2(CF_3SO_4^-)$ in the unit cell. The four cyclic trimer were shown with different color.

There is a certain electron density due to the disordered solvent between the molecules and inside the macrocyclic structure. These solvent molecules were removed using the 'SQUEEZE' procedure in the PLATON program.³

Figure S4. X-ray crystal structures of (a) H_2P1 , (b) $H_4P1^{2+} \cdot 2(CF_3SO_4^{-})$, and (c) $H_4TPP^{2+} \cdot 2CI^{-.6}$ The side chains and hydrogens were omitted for clarity. The plane-to-plane twist angles between the neighboring pyrrole ring of $H_4TPP^{2+} \cdot 2CI^{-}$ are $38^{\circ} - 39^{\circ}$.⁴

4. Absorption and fluorescence spectra of H_2P1

Figure S5. Absorption spectra of H₂P1 in different solvents ($[H_2P1] = 5.0 \mu M$); in CHCl₃ (red line), THF (blue line), and DMSO (right green line).

Figure S6. Fluorescence spectra of porphyrins in CHCl₃, [porphyrin] = 0.5 μ M. The fluorescence intensities for H₂P1, H₄P1²⁺, and H₂TPP were normalized at the fluorescence maxima. Excitation wavelengths: 406 nm for H₂P1, H₄P1²⁺, 418 nm for H₂TPP, and 438 nm for H₄TPP²⁺.

Using the fluorescence quantum yield of H_2 **TPP** ($\Phi_f = 0.11$) as a standard,⁵ the fluorescence quantum yield of H_2 **P1** was estimated to be 0.008.

5. DPV of H₂P1

Figure S7. DPVs of carbazole derivative, C1 and H₂P1.

Compd.	$E_{\mathrm{ox},2}$	$E_{\rm ox,1}$	$E_{ m red,1}$	$E_{ m red,2}$
H_2 P1	0.78	0.58	-1.38	-1.81
H_2 TPP	0.85	0.53	-1.69	-1.97
$H_4 P 1^{2+}$	0.83	0.64	-0.61	-
$H_4 TPP^{2+}$	-	-	-1.00 ^b	-

Table S3. Electrochemical properties of H₂P1, H₄P1²⁺, H₂TPP, and H₄TPP²⁺.^a

[a] Potentials [V] vs. ferrocene/ferrocenium ion. 0.1 M "Bu₄NPF₆ at 20 °C and a scan rate of 100 mVs⁻¹. $[H_2P1] = [H_4P1^{2+}] = 400 \mu$ M, working electrode, glassy carbon; counter electrode, Pt wire; reference electrode, Ag/AgCl in CH₃CN. [b] Ref. [6].

Figure S8. UV-vis absorption spectra of H₂**P1** and H₂**TPP** titrated with TFSA. (a) $[H_2P1] = 5.0 \mu$ M in 50:1 (v/v) CHCl₃:CH₃CN at 293 K. Inset, plot of absorbance at 841 nm as a function of $[H^+]/[H_2P1]$. (b) $[H_2TPP] = 2.5 \mu$ M in 50:1 (v/v) CHCl₃:CH₃CN at 293 K. Inset, plot of absorbance at 438 nm as a function of $[H^+]/[H_2TPP]$.

7. Theoretical calculations

The molecular structures of H_2P1 and H_4P1^{2+} were optimized by the density functional theory (DFT) method at the B3LYP/6-31G* level of theory, under a solvent (CHCl₃) condition with a polarizable continuum model (PCM) using the integral equation formalism variant (IEFPCM). The optimized structures were confirmed that they do not have imaginary frequencies by normal mode analyses. Excited states (S1 – S70) of those molecules were examined at the optimized geometry by the time-dependent DFT (TD-DFT) calculations using B3LYP/6-31G*, under the solvent co1ndition (CHCl₃). All calculations were performed by Gaussian 09 program package.⁷

Figure S9. Frontier molecular orbitals and their energy levels of H_2P1 and H_4P1^{2+} at the B3LYP/6-31G* level of theory.

Figure S10. Oscillator strengths (blue Bares) obtained by the TD DFT calculation of H_2P1 at the B3LYP/6-31G* level of theory and the observed UV-vis absorption spectrum (black line) of H_2P1 .

Dominant excited state	Transition energy / eV (nm)	Dominant transitions	Oscillator strength f
S13	2.31 (538 nm)	HOMO-6→LUMO (80%)	0.0172
S18	2.46 (504 nm)	HOMO-9→LUMO+1 (51%) HOMO-8→LUMO (35%)	0.0625
S19	3.04 (407 nm)	HOMO-9→LUMO (40%) HOMO-8→LUMO+1 (30%)	1.0328
S20	3.15 (394 nm)	HOMO-9→LUMO+1 (39%) HOMO-8→LUMO (36%)	1.4464

Table S4. Calculated dominant excitations for the optimized geometry of H₂P1.

Figure S11. Oscillator strengths (blue Bares) obtained by the TD DFT calculation of H_4P1^{2+} at the B3LYP/6-31G* level of theory and the observed UV-vis absorption spectrum (black line) of H_4P1^{2+} .

Dominant excited state	Transition energy / eV (nm)	Dominant transitions	Oscillator strength f
\$3	1.29 (963 nm)	HOMO-1→LUMO (35%) HOMO-1→LUMO+1 (61%)	0.3634
S13	1.58 (783 nm)	HOMO-5→LUMO (35%) HOMO-4→LUMO (60%)	0.0588
S26	2.47 (503 nm)	HOMO-11→LUMO+1 (38%) HOMO-10→LUMO (19%)	0.0334
S45	2.84 (437 nm)	HOMO-2→LUMO+2 (79%)	0.1541
S51	3.18 (390 nm)	HOMO-21→LUMO+1 (29%)	0.6856

Table S5. Calculated dominant excitations for the optimized geometry of H_4P1^{2+} .

8. References

- 1). T. Higashino, Y. Fujimori, K. Sugiura, Y. Tsujii, S. Ito, H. Imahori, J. Porphr. Phthalocyanines, 1999, 19, 99-116.
- (a) K. Wakita, *Yadokari-XG*, Program for Crystal Structure Analysis; 2000. (b) C. Kabuto, S. Akine, E. Kwon, J. Cryst. Soc. Jpn. 2009, 51, 218–224.
- 3). A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7-13.
- 4). L. A. Plaza, J. Chojnacki, Acta Cryst. 2012, C68, m24-m28.
- 5). N. C. Maiti, M. Ravikanth, J. Chem. Soc., Faraday Trans., 1996, 92, 1095-1100.
- 6). Y. Cui, L. Zeng, Y. Fang, J. Zhu, C. H. Devillers, D. Lucas, N. Desbois, C. P. Gros, K. M. Kadish, *ChemElectroChem*, 2016, **3**, 228–241.
- Gaussian 09 revision C01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A., Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, M. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.