Supporting Information

Difluorocarbene-derived trifluoromethylselenolation of benzyl halides

Xin-Lei Chenab, Sheng-Hua Zhoub, Jin-Hong Linb, Qing-Hai Denga*, Ji-Chang Xiaob*

aCollege of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China; E-mail: qinghaideng@shnu.edu.cn, Tel: +86-21-64321305.

bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. E-mail: jchxiao@sioc.ac.cn, Tel: +86-21-54925340

Content

1. General information ..S2
2. Procedure for the preparation of 2 ..S2
3. The observation of [CuSeCF\textsubscript{3}] intermediate ..S6
4. References ...S9
5. Copies of 19F NMR, 1H NMR, and 13C NMR spectra ..S10
1. General information

Solvents and reagents were purchased from commercial sources and used as received unless otherwise noted. 1H, 13C and 19F NMR spectra were detected on a 500 MHz, 400 MHz or 300 MHz NMR spectrometer. Data for 1H NMR, 13C NMR and 19F NMR were recorded as follows: chemical shift (δ, ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, coupling constant (J) in Hz). Mass spectra were obtained on a GC-MS or LC-MS. High resolution mass data were recorded on a high resolution mass spectrometer in the EI mode.

2. Procedure for the preparation of 2

\[
\begin{align*}
\text{CuI, 2,2'-bpy,} & \\
\text{R-X + Ph$_3$P$^+$CF$_2$COO$^-$ + Se + CsF} & \\
\text{DMA, 70 °C, 1.5 h} & \\
\rightarrow & \\
\text{R-SeCF$_3$} & \\
\end{align*}
\]

Into a 10 mL sealed tube were added 1a (0.2 mmol, 49.4 mg), Ph$_3$P$^+$CF$_2$COO$^-$ (0.4 mmol, 142.4 mg), Se (1.2 mmol, 94.8 mg), CsF (0.6 mmol, 91.2 mg), CuI (0.6 mmol, 114.3 mg), 2,2'-bpy (0.4 mmol, 62.4 mg), nBu$_4$NCl (0.4 mmol, 111 mg), Ag$_2$CO$_3$ (0.04 mmol, 11.1 mg) and DMA (3 mL) under a N$_2$ atmosphere. The tube was sealed and the mixture was stirred at 70 °C for 1.5 h. After being cooled to room temperature, the mixture was filtrated. The solid was washed by DCM, and the combined organic phase was washed with water (20 mL × 3) to remove DMA. The organic phase was dried over Na$_2$SO$_4$. After the solvent was removed by concentration, the residue was subjected to flash column chromatography to afford the final product 2a.

![2a](image)

([(1,1'-biphenyl]-4-ylmethyl) (trifluoromethyl) selane; 71%; white solid; M. P.: 65 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.58-7.54 (m, 4H), 7.45-7.39 (m, 4H), 7.34 (t, J = 6.8Hz, 1H), 4.28 (s, 2H). 19F NMR (376 MHz, CDCl$_3$) δ -34.41 (s, 3F). 13C NMR (101 MHz, CDCl$_3$) δ 140.8 (s), 140.5 (s), 135.1 (s), 130.6 (s), 129.5 (s), 128.8 (s), 127.6 (s), 127.1 (s) , 122.9 (q, J = 331.0 Hz), 28.9 (q, J = 1.3 Hz). IR (neat) ν = 1488, 1407, 1191, 1103, 842, 765, 738, 728, 662cm$^{-1}$; HRMS (EI) Calcd for C$_{14}$H$_{11}$F$_3$Se[M]$^+$: 310.0038, Found: 310.0051.

![2b](image)
(1,1'-biphenyl)-2-ylmethyl) (trifluoromethyl) selane; 41%; yellow liquid; 1H NMR (400 MHz, CDCl$_3$) δ 7.45-7.38 (m, 4H), 7.34-7.31 (m, 4H), 7.24 (t, $J = 4.4$ Hz, 1H), 4.20 (s, 2H). 19F NMR (376 MHz, CDCl$_3$) δ -34.75 (s, 3F). 13C NMR (101 MHz, CDCl$_3$) δ 142.4 (s), 140.3 (s), 133.4 (s), 130.6 (s), 130.3 (s), 129.0 (s), 128.4 (s), 127.93 (s), 127.90 (s), 127.6 (s), 122.9 (q, $J = 331.0$ Hz), 27.3 (q, $J = 1.7$ Hz). IR (neat) $\tilde{\nu}$ = 3062, 1478, 1451, 1438, 1099, 762, 744, 702 cm$^{-1}$; HRMS (EI) Calcd for C$_{14}$H$_{11}$F$_3$Se[M]$^+$: 310.0038, Found: 310.0045.

![2c](image)

(4-chlorobenzyl) (trifluoromethyl) selane; 57%; slightly yellow liquid; 1H NMR (400 MHz, CDCl$_3$) δ 7.30-7.24 (m, 4H), 4.18 (s, 2H). 19F NMR (376 MHz, CDCl$_3$) δ -34.37 (s, 3F). 13C NMR (101 MHz, CDCl$_3$) δ 134.8 (s), 133.7 (s), 130.3 (s), 129.1 (s), 122.7 (q, $J = 331.4$ Hz), 28.3 (q, $J = 1.8$ Hz). IR (neat) $\tilde{\nu}$ = 2962, 1492, 1408, 1261, 1095, 864, 800, 739, 704 cm$^{-1}$; HRMS (EI) Calcd for C$_8$H$_6$ClF$_3$Se[M]$^+$: 267.9335, Found: 267.9330.

![2d](image)

(3,4-dichlorobenzyl) (trifluoromethyl) selane; 55%; slightly yellow liquid; 1H NMR (400 MHz, CDCl$_3$) δ 7.42 (d, $J = 2.1$ Hz, 1H), 7.38 (d, $J = 8.3$ Hz, 1H), 7.16 (dd, $J = 8.2$, 2.1 Hz, 1H), 4.14 (s, 2H). 19F NMR (376 MHz, CDCl$_3$) δ -34.29 (s, 3F). 13C NMR (101 MHz, CDCl$_3$) δ 136.7 (s), 132.9 (s), 132.0 (s), 130.9 (s), 130.8 (s), 128.3 (s), 122.6 (q, $J = 331.5$ Hz), 27.7 (q, $J = 1.8$ Hz). IR (neat) $\tilde{\nu}$ = 1593, 1470, 1396, 1201, 1096, 1073, 1034, 891, 738 cm$^{-1}$; HRMS (EI) Calcd for C$_8$H$_6$ClF$_3$Se[M]$^+$: 301.8945, Found: 301.8957.

![2e](image)

(4-bromobenzyl) (trifluoromethyl) selane; 71%; white liquid; 1H NMR (400 MHz, CDCl$_3$) δ 7.44 (d, $J = 8.1$ Hz, 2H), 7.20 (d, $J = 8.1$ Hz, 2H), 4.16 (s, 2H). 19F NMR (376 MHz, CDCl$_3$) δ -34.36 (s, 3F). 13C NMR (101 MHz, CDCl$_3$) δ 135.3 (s), 132.0 (s), 130.7 (s), 122.5 (q, $J = 331.0$ Hz), 121.8 (s), 28.4 (q, $J = 1.7$ Hz). IR (neat) $\tilde{\nu}$ = 2960, 2925, 2853, 1590, 1488, 1420, 1403, 1261, 1097, 1012, 801, 477 cm$^{-1}$; HRMS (EI) Calcd for C$_8$H$_6$BrF$_3$Se[M]$^+$: 311.8830, Found: 311.8844.
(3,5-dibromobenzyl) (trifluoromethyl) selane; 81%; slightly yellow liquid; 1H NMR (400 MHz, CDCl$_3$) δ 7.58 (s, 1H), 7.42 (s, 2H), 4.12 (s, 2H). 19F NMR (376 MHz, CDCl$_3$) δ -34.29 (s, 3F). 13C NMR (101 MHz, CDCl$_3$) δ 140.3 (s), 133.5 (s), 130.8 (s), 123.2 (s), 122.4 (q, $J = 331.0$ Hz), 27.5 (s). IR (neat) $\nu = 1584, 1556, 1425, 1219, 1097, 1074, 858, 742, 684$ cm$^{-1}$; HRMS (EI) Calcd for C$_8$H$_5$Br$_2$F$_3$Se[M]$^+$: 389.7935, Found: 389.7932.

(2-iodobenzyl) (trifluoromethyl) selane; 43%; slightly yellow liquid; 1H NMR (400 MHz, CDCl$_3$) δ 7.84 (d, $J = 7.8$ Hz, 1H), 7.38 (d, $J = 7.5$ Hz, 1H), 7.30 (t, $J = 7.4$ Hz, 1H), 6.95 (t, $J = 7.6$ Hz, 1H), 4.29 (s, 2H). 19F NMR (376 MHz, CDCl$_3$) δ -34.29 (s, 3F). 13C NMR (101 MHz, CDCl$_3$) δ 139.84 (s), 139.75 (s), 130.0 (s), 129.4 (s), 128.8 (s), 122.8 (q, $J = 331.9$ Hz), 100.6 (s), 34.8 (q, $J = 1.6$ Hz). IR (neat) $\nu = 2924, 1563, 1468, 1437, 1199, 1096, 754, 737, 718, 646$ cm$^{-1}$; HRMS (EI) Calcd for C$_8$H$_6$I$_7$F$_3$Se[M]$^+$: 359.8691, Found: 359.8695.

(trifluoromethyl) (4-(trifluoromethyl) benzyl) selane; 50%; slightly yellow liquid; 1H NMR (400 MHz, CDCl$_3$) δ 7.58 (d, $J = 8.2$ Hz, 2H), 7.44 (d, $J = 8.1$ Hz, 2H), 4.24 (s, 2H). 19F NMR (376 MHz, CDCl$_3$) δ -34.39 (s, 3F), -62.73 (s, 3F). 13C NMR (101 MHz, CDCl$_3$) δ 140.6 (s), 130.0 (q, $J = 33.0$ Hz), 129.3 (s), 125.8 (q, $J = 3.8$ Hz), 124.0 (q, $J = 272.1$ Hz), 123.1 (q, $J = 333.0$ Hz), 28.3 (q, $J = 1.6$ Hz). IR (neat) $\nu = 1618, 1558, 1326, 1123, 1097, 1067, 1019, 848, 753, 739$ cm$^{-1}$; HRMS (EI) Calcd for C$_9$H$_6$F$_6$Se[M]$^+$: 301.9598, Found: 301.9592.

(naphthalen-2-ylmethyl) (trifluoromethyl) selane; 41%; white solid; M. P.: 48 °C;
1H NMR (400 MHz, CDCl$_3$) δ 7.83-7.78 (m, 4H), 7.52-7.43 (m, 3H), 4.41 (s, 2H). 19F NMR (376 MHz, CDCl$_3$) δ -34.35 (s, 3F). 13C NMR (101 MHz, CDCl$_3$) δ 133.43 (s), 133.36 (s), 132.8 (s), 128.8 (s), 127.9 (s), 127.76 (s), 127.75 (s), 126.8 (s), 126.5 (s), 126.3 (s), 122.9 (q, $J = 331.4$ Hz), 29.6 (q, $J = 1.7$ Hz). IR (neat) ν = 1598, 1507, 1201, 1096, 966, 953, 867, 826, 751, 737, 480 cm$^{-1}$; HRMS (EI) Calcd for C$_{12}$H$_9$F$_3$Se[M]$^+$: 283.9881, Found: 283.9884.

![2j](image1.png)

(3-methoxybenzyl) (trifluoromethyl) selane1; 71%; white liquid; 1H NMR (400 MHz, CDCl$_3$) δ 7.23 (t, $J = 7.9$ Hz, 1H), 6.91 (d, $J = 8.0$ Hz, 1H), 6.85 (t, $J = 1.9$ Hz, 1H), 6.81 (dd, $J = 8.2$ Hz, 2.0 Hz, 1H), 4.21 (s, 2H), 3.80 (s, 3H). 19F NMR (376 MHz, CDCl$_3$) δ -34.53 (s, 3F).

![2k](image2.png)

(3,5-dimethoxybenzyl) (trifluoromethyl) selane; 50%; slightly yellow liquid; 1H NMR (400 MHz, CDCl$_3$) δ 6.47 (d, $J = 2.2$ Hz, 2H), 6.35 (t, $J = 2.2$ Hz, 1H), 4.16 (s, 2H), 3.77 (s, 6H). 19F NMR (376 MHz, CDCl$_3$) δ -34.57 (s, 3F). 13C NMR (101 MHz, CDCl$_3$) δ 161.1 (s), 138.2 (s), 122.9 (q, $J = 331.4$ Hz), 107.0 (s), 99.8 (s), 55.3 (s), 29.3 (q, $J = 1.7$ Hz). IR (neat) ν = 1608, 1598, 1464, 1430, 1325, 1207, 1158, 1099, 1066, 930, 737 cm$^{-1}$; HRMS (EI) Calcd for C$_{10}$H$_{11}$F$_3$O$_2$Se[M]$^+$: 293.9936, Found: 293.9944.

![2l](image3.png)

methylbenzyl) (trifluoromethyl) selane2; 58%; slightly yellow liquid; 1H NMR (400 MHz, CDCl$_3$) δ 7.22 (d, $J = 8.0$ Hz, 2H), 7.13 (d, $J = 7.9$ Hz, 2H), 4.22 (s, 2H), 2.33 (s, 3H). 19F NMR (376 MHz, CDCl$_3$) δ -34.50 (s, 3F).

![2m](image4.png)

(4-methoxybenzyl) (trifluoromethyl) selane; 45%; slightly yellow liquid; 1H NMR (400 MHz, CDCl$_3$) δ 7.25 (d, $J = 8.5$ Hz, 2H), 6.84 (d, $J = 8.5$ Hz, 2H), 4.21 (s, 2H), 3.79
(s, 3H). 19F NMR (376 MHz, CDCl$_3$) δ -34.45 (s, 3F). 13C NMR (101 MHz, CDCl$_3$) δ 159.2 (s), 130.2 (s), 127.8 (s), 122.9 (q, $J = 333.2$ Hz), 114.3 (s), 55.3 (s), 28.8 (q, $J = 1.8$ Hz). IR (neat) ν = 2956, 1608, 1512, 1464, 1322, 1251, 1096, 1071, 1034, 737, 598 cm$^{-1}$; HRMS (EI) Calcd for C$_9$H$_9$F$_3$O$_7^{64}$Se[M$^+$]: 263.9830, Found: 263.9819.

\[
\text{SeCF}_3
\]

2n

cinnamyl(trifluoromethyl)selane3; The yield determined by 19F NMR spectroscopy was 12%; 19F NMR (376 MHz, CDCl$_3$) δ -33.86 (s, 3F).

\[
\text{SeCF}_3
\]

2o

phenethyl(trifluoromethyl)selane$^{1-2}$; The yield determined by 19F NMR spectroscopy was 20%; 19F NMR (376 MHz, CDCl$_3$) δ -34.03 (s, 3F).

3. The observation of [CuSeCF$_3$] intermediate

\[
\begin{align*}
\text{CuI, Ag$_2$CO$_3$} & \quad \text{Ph$_3$P*CF$_2$CO$_2^-$ + Se + CsF} \quad \text{2,2'-bpy, nBu$_4$Cl} \\
\text{DMA, 70$^\circ$C, 0.5 h} & \quad \text{[CuSeCF$_3$]} \quad \text{2-PhC$_6$H$_4$CH$_2$Br} \quad \text{70$^\circ$C, 1 h} \\
\text{4-PhC$_6$H$_4$CH$_2$SeCF$_3$} & \quad 2a, 48%
\end{align*}
\]

Into a 10 mL sealed tube were added Ph$_3$P*CF$_2$CO$_2^-$ (0.4 mmol, 142.4 mg), Se (1.2 mmol, 94.8 mg), CsF (0.6 mmol, 91.2 mg), CuI (0.6 mmol, 114.3 mg), 2,2'-bpy (0.4 mmol, 62.4 mg), nBu$_4$NCl (0.4 mmol, 111 mg), Ag$_2$CO$_3$ (0.04 mmol, 11.1 mg) and DMA (3 mL) under a N$_2$ atmosphere. The tube was sealed and the mixture was stirred at 70 $^\circ$C for 0.5 h. 19F NMR analysis showed that [CuSeCF$_3$] complex was generated (0.2 mmol of PhCF$_3$ was used as an internal standard). The 19F NMR spectrum is shown as follows. The 19F NMR yield was quite low (10% based on Ph$_3$P*CF$_2$CO$_2^-$), because the complex decomposed during the process of collecting 19F NMR spectrum due to its instability. CuSeCF$_3$; 19F NMR (376 MHz, CDCl$_3$) δ -26.37 (s, 3F)1.

56
In order to prove that CuSeCF$_3$ is the key intermediate, substrate 1a was added after the complex was generated. The procedure is shown as follows.

Into a 10 mL sealed tube were added Ph$_3$P$^+$CF$_2$CO$_2^-$ (0.4 mmol, 142.4 mg), Se (1.2 mmol, 94.8 mg), CsF (0.6 mmol, 91.2 mg), CuI (0.6 mmol, 114.3 mg), 2,2'-bpy (0.4 mmol, 62.4 mg), nBu$_4$NCl (0.4 mmol, 111 mg), Ag$_2$CO$_3$ (0.04 mmol, 11.1 mg) and DMA (3 mL) under a N$_2$ atmosphere. The tube was sealed and the mixture was stirred at 70 °C for 0.5 h. Substrate 1a (0.2 mmol, 49.4 mg) was added and the resulting mixture was stirred at 70 °C for 1 h. The 19F NMR analysis revealed that the desired product was obtained in 48% yield (0.2 mmol of PhCF$_3$ was used as an internal standard). The 19F NMR spectrum is shown as follows.
$[\text{CuSeCF}_3] \overset{4-\text{PhC}_6\text{H}_4\text{CH}_2\text{Br}}{\xrightarrow{70 \, ^\circ\text{C}, \, 1 \, \text{h}}} 4-\text{PhC}_6\text{H}_4\text{CH}_2\text{SeCF}_3$
4. References

5. Copies of 19F NMR, 1H NMR, and 13C NMR spectra

1H NMR

19F NMR

13C NMR
$\text{Ph-\text{SeCF}_3}$

$\text{2a, }^{13}\text{C NMR}$

$\text{Ph-\text{SeCF}_3}$

$\text{2b, }^{19}\text{F NMR}$
2b, 1H NMR

2b, 13C NMR
$\text{Cl-}\text{SeCF}_3$

$\text{2c, }^{19}\text{F NMR}$

$\text{Cl-}\text{SeCF}_3$

$\text{2c }^{1}\text{H NMR}$
$2c, ^{13}C$ NMR

$2d, ^{19}F$ NMR
$\text{Br} - \text{SeCF}_3$

$2e, ^{19}\text{F NMR}$

$\text{Br} - \text{SeCF}_3$

$2e, ^1\text{H NMR}$
Br_2SeCF_3

$2e$, 13C NMR

Br_2SeCF_3

$2f$, 19F NMR
$2f$, 1H NMR

$2f$, ^{13}C NMR
19F NMR

1H NMR
^{13}C NMR

^{19}F NMR

^{15}I NMR
2h, 1H NMR

2h, 13C NMR
$2j. ^1H$ NMR

$2k. ^{19}F$ NMR
19F NMR

1H NMR
$2m, {^{19}}F\text{ NMR}$

$2m, {^1}H\text{ NMR}$
MeO-\(\text{SeCF}_3\)

2m, \(^{13}\text{C}\) NMR