Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Simultaneous size adjustment and upconversion luminescence

enhancement of β-NaLuF₄:Yb³⁺/Er³⁺,Er³⁺/Tm³⁺ microcrystals by

introducing Ca²⁺ for temperature sensing

Aihua Zhou, Feng Song , Yingdong Han, Feifei Song, Dandan Ju,

Xueqing Wang

School of Physics, Nankai University, Tianjin 300071, China

The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education,

Nankai University, Tianjin 300457, China

0% Ca²⁺ **(a)** $H = 0.92 \mu m$ (b) 10% Ca²⁺ $H = 0.77 \mu m$ (c) 20% Ca²⁺ H = 0.64µm (d) 30% Ca²⁺ $H = 1.25 \mu m$ (e) 40% Ca²⁺ H = 1.77µm 50% Ca²⁺ (f) $H = 2.03 \mu m$ 0.0 0.4 0.8 1.2 1.6 2.4 2.8 2.0

50)

E-mail: HYPERLINK "mailto:fsong@nankai.edu.cn" fsong@nankai.edu.cn; Fax: +86-22-2350-1743

Fig. S2. The size distribution of diameter in β -NaLuF₄:20Yb³⁺/2Er³⁺/xCa²⁺ (x=10, 20, 30, 30, 30)

Fig. S3 (a)-(d) The upconversion luminescence of the four repetition groups experiments for β -NaLuF4:20Yb³⁺/2Er³⁺ (Yb/Er) and β -NaLuF4:20Yb³⁺/2Er³⁺/40Ca²⁺ (Yb/Er/Ca) under 980nm excitation under the same condition.

Fig. S4. Photoluminescence spectra of (a) 5%Eu, (b) 40%Ca/5%Eu. The excitation wavelength was 394nm.

Fig. S5. Schematic diagram showing the β -NaLuF₄.

Table S1 Summary of the different concentration of Ca²⁺ ions and the corresponding dimensions, height, and the surface area to volume ratio.

	, 8,		
Sample 20Yb/2Er/xCa	Height	Diamond	the surface area to
	(H, um)	(D ,um)	volume ratio (R, um ⁻¹)
0	0.92	2.93	3.75
10	0.77	3.01	4.13
20	0.64	2.62	4.89
30	1.25	3.69	2.85
40	1.77	3.21	2.57
50	2.03	-	-

^aParticle sizes were counted about 50 particles from the SEM images.

In order to calculate the surface area to volume ratio, the volume (V) of microplate can be calculate as:

$$V = \frac{3\sqrt{3}D^2H}{8}$$

The surface area (S) of microplate can be expressed as:

$$S = \frac{3\sqrt{3}D^2}{4} + 3DH$$

Where D is the diameter of a microplate, H is the height of a microplate, as shown in Fig. S4. So, the surface area to volume ratio (R) can be described as:

$$R = \frac{S}{V}$$

Fig. S6. The upconversion emission spectra of $NaLuF_4:2Er^{3+}/0.5Tm^{3+}/xCa^{2+}$ (x=0, 10, 20, 30, 40, 50) under 980nm excitation.

Fig. S7. Temperature-dependent upconversion luminescence spectra of β -NaLuF₄:20Yb³⁺/2Er³⁺ under 980nm excitation (laser power=1W (a), 1.5W (b), 2W (c)) and β -NaLuF₄:20Yb³⁺/2Er³⁺/40Ca²⁺ under 980nm excitation (laser power=1W (d), 1.5W (e), 2W (f)).

References

[1] H. Dong, L.D. Sun, Y.F. Wang, J. Ke, R. Si, J.W. Xiao, G.M. Lyu, S. Shi, C.H. Yan, C.S. Lim, Y.H. Lu, J. Wang , J. Xu , H.Y. Chen , C. Zhang , M.H. Hong , X.G. Liu , Efficient Tailoring of Upconversion Selectivity by Engineering Local Structure of Lanthanides in NaxREF3+x Nanocrystals, J. Am. Chem. Soc. 2015, 137, 6569–6576.
[2] M.Y. Ding, D.Q. Chen, S.L. Yin, Z.G. Ji, J.S. Zhong, Y.R. Ni, C.H. Lu, Z.Z. Xu, Simultaneous morphology manipulation and upconversion luminescence enhancement of beta-NaYF4:Yb3+/Er3+ microcrystals by simply tuning the KF dosage, Scientific reports, 2015, 5, 12745.

[3] X.W. Wang, X. Zhang, Y.B. Wang, H.Y. Li, J. Xie, T. Wei, Q.W. Huang, X.J. Xie, L. Huang, W. Huang, Comprehensive studies of the Li+ effect on NaYF4:Yb/Er nanocrystals: morphology, structure, and upconversion luminescence. Dalton Trans. 2017, 46(28), 8968-8974.