Determination of composition distributions of multi-particle crystalline samples by sequential dissolution with concomitant particle sizing and solution analysis

Humphrey A. Moynihan* and Declan Armstrong

School of Chemistry / Analytical and Biological Chemistry Research Facility / Synthesis and Solid-state Pharmaceutical Centre, University College Cork, College Road, Cork, TY12 YN60, Republic of Ireland.

h.moynihan@ucc.ie

SUPPLEMENTARY INFORMATION

Contents

Synthesis of N-(2-nitro-4-trifluoromethylphenyl)pivalamide (4): page 4

Figure S1. 1H NMR spectrum of N-(2-nitro-4-trifluoromethylphenyl)pivalamide (4): page 5

Figure S2. 13C NMR {1H} spectrum of N-(2-nitro-4-trifluoromethylphenyl)pivalamide (4): page 5

Figure S3. 19F NMR {1H} spectrum of N-(2-nitro-4-trifluoromethylphenyl)pivalamide (4): page 6

HPLC Calibration Data: pages 7 - 9

Figure S4. TGA curve overlaid the DSC curve for 1 doped with 8 mol % of 4: page 10

Figure S5. Chart comparing particle area versus the ranking of each particle in a partial dissolution series of 1 doped with 0.5 mol % of 2: page 10

Figure S6. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 0.5 mol % of 2: page 11

Figure S7. Chart comparing particle area versus the ranking of each particle in a partial dissolution series of 1 doped with 1.0 mol % of 2: page 11

Figure S8. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 1.0 mol % of 2: page 12

Figure S9. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 1.5 mol % of 2: page 12

Figure S10. Chart comparing particle area versus the ranking of each particle in a partial dissolution series of 1 doped with 2.0 mol % of 2: page 13

Figure S11. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 2.0 mol % of 2: page 13

Figure S12. Chart comparing particle area versus the ranking of each particle in a partial dissolution series of 1 doped with 2.5 mol % of 2: page 14
Figure S13. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 2.5 mol % of 2: page 13

Figure S14. Chart comparing particle area versus the ranking of each particle in a partial dissolution series of 1 doped with 3.0 mol % of 2: page 15

Figure S15. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 3.0 mol % of 2: page 15

Figure S16. Chart comparing particle area versus the ranking of each particle in a partial dissolution series of 1 doped with 0.5 mol % of 3: page 16

Figure S17. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 0.5 mol % of 3: page 16

Figure S18. Chart comparing particle area versus the ranking of each particle in a partial dissolution series of 1 doped with 1.0 mol % of 3: page 17

Figure S19. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 1.0 mol % of 3: page 17

Figure S20. Chart comparing particle area versus the ranking of each particle in a partial dissolution series of 1 doped with 1.5 mol % of 3: page 18

Figure S21. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 1.5 mol % of 3: page 18

Figure S22. Chart comparing particle area versus the ranking of each particle in a partial dissolution series of 1 doped with 2.0 mol % of 3: page 19

Figure S23. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 2.0 mol % of 3: page 19

Figure S24. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 2.5 mol % of 3: page 20

Figure S25. Chart comparing particle area versus the ranking of each particle in a partial dissolution series of 1 doped with 3.0 mol % of 3. Page 20

Figure S26. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 3.0 mol % of 3: page 21

Figure S27. Plot of percentage by HPLC of added impurity in crystals of compound 1 vs. the dissolution mid-point for the sample of crystals grown from solutions containing 0.5 mol % of additive 2: page 21

Figure S28. Plot of percentage by HPLC of added impurity in crystals of compound 1 vs. the dissolution mid-point for the sample of crystals grown from solutions containing 1.0 mol % of additive 2: page 22

Figure S29. Plot of percentage by HPLC of added impurity in crystals of compound 1 vs. the dissolution mid-point for the sample of crystals grown from solutions containing 2.0 mol % of additive 2: page 22
Figure S30. Plot of percentage by HPLC of added impurity in crystals of compound 1 vs. the dissolution mid-point for the sample of crystals grown from solutions containing 2.5 mol % of additive 2: page 23

Figure S31. Plot of percentage by HPLC of added impurity in crystals of compound 1 vs. the dissolution mid-point for the sample of crystals grown from solutions containing 3.0 mol % of additive 2: page 23

Figure S32. Plot of percentage by HPLC of added impurity in crystals of compound 1 vs. the dissolution mid-point for the sample of crystals grown from solutions containing 0.5 mol % of additive 3: page 24

Figure S33. Plot of percentage by HPLC of added impurity in crystals of compound 1 vs. the dissolution mid-point for the sample of crystals grown from solutions containing 1.0 mol % of additive 3: page 24

Figure S34. Plot of percentage by HPLC of added impurity in crystals of compound 1 vs. the dissolution mid-point for the sample of crystals grown from solutions containing 1.5 mol % of additive 3: page 25

Figure S35. Plot of percentage by HPLC of added impurity in crystals of compound 1 vs. the dissolution mid-point for the sample of crystals grown from solutions containing 2.0 mol % of additive 3: page 25

Figure S36. Plot of percentage by HPLC of added impurity in crystals of compound 1 vs. the dissolution mid-point for the sample of crystals grown from solutions containing 3.0 mol % of additive 3: page 26

Figure S37. Plot of percentage by HPLC of added impurity in a single crystal of compound 1, grown from solutions containing 3.0 mol % of additive 3, vs. the dissolution mid-point for the crystal: page 27
Synthesis of N-(2-nitro-4-trifluoromethylphenyl)pivalamide 4

N-(2-nitro-4-trifluoromethylphenyl)pivalamide 4 was prepared by heating a mixture of 2-nitro-4-trifluoromethylaniline (1.0 g, 4.852 mmol), trimethylacetic anhydride (1.5 mL, 7.390 mmol), and two drops of sulphuric acid to 80 °C for 3 hours. The resulting solution was allowed to cool to room temperature with the formation of yellow plate-like crystals. Water (10 mL) was added to the reaction mixture, and with manual stirring further solid precipitated out of solution. The crude product was isolated by vacuum filtration, washed with two 10 mL portions of water and air dried. The crude product was purified by recrystallization with 20 mL of ethanol, isolated by vacuum filtration, washed with a further 10 mL of ice-cold ethanol and air dried. Yield 0.462 g (33 %) of a yellow crystalline solid. M.p. 92 - 94 °C. 1H NMR (300 MHz, CDCl$_3$): δ 10.89 (1H, s, NH), 9.05 (1H, d, 3J$_{HH}$ = 9 Hz, H6), 8.52 (1H, d, 4J$_{HH}$ = 2 Hz, H3), 7.87 (1H, dd, 3J$_{HH}$ = 9, 4J$_{HH}$ = 2 Hz, H5), 1.37 (s, 9H, $3 \times$ C(CH$_3$)$_3$) ppm; 13C{1H} NMR (DEPTQ-135) (75 MHz, CDCl$_3$): δ 178.17 (s, C=O), 138.37 (s, C1), 135.54 (s, C2), 132.43 (q, 3J$_{CF}$ = 3.3 Hz, C5), 124.86 (q, 3J$_{CF}$ = 34.6 Hz, C4), 123.77 (q, 1J$_{CF}$ = 272.1 Hz, CF$_3$), 123.51 (q, 3J$_{CF}$ = 4.1 Hz, C3), 122.67 (s, C6), 40.91 (s, C(CH$_3$)$_3$), 27.43 (s, $3 \times$ CH$_3$) ppm; 19F{1H} NMR (282 MHz, CDCl$_3$): δ -62.65 (s, CF$_3$) ppm. ESI-MS (CH$_3$CN): 291.2 positive mode [M + H$^+$, calc. 291.10 for C$_{12}$H$_{14}$N$_2$F$_3$O$_3$]; 292.2 positive mode [M + H$^+$ + 1, calc. 292.10 for C$_{12}$H$_{14}$N$_2$F$_3$O$_3$]; 289.2 negative mode [M - H, calc. 289.08 for C$_{12}$H$_{12}$N$_2$F$_3$O$_3$]; 290.3 negative mode [M - H + 1, calc. 290.09 for C$_{12}$H$_{12}$N$_2$F$_3$O$_3$] R$_f$ (1:7 ethyl acetate:hexane on silica gel) = 0.55.

[1H (300 MHz), 13C{1H} (75 MHz), and 19F{1H} NMR (282 MHz) spectra were recorded on a Bruker Avance 300 MHz NMR spectrometer. Low resolution mass spectra were recorded on a Waters Quattro Micro triple quadrupole instrument in electrospray ionization (ESI) mode using 50% acetonitrile-water containing 0.1% formic acid as eluent; samples were prepared in acetonitrile.]
Figure S1. 1H NMR spectrum of 4 in CDCl$_3$.

Figure S2. 13C NMR {1H} (DEPTQ-135) spectrum of 4 in CDCl$_3$. CH and CH$_3$ signals are positive, all other signals are negative.
Figure S3. 19F NMR 1H spectrum of 4 in CDCl$_3$.
HPLC Calibration Data

General Calibration Setting

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calib. Data Modified</td>
<td>21-Jun-17 12:24:13 PM</td>
</tr>
<tr>
<td>Signals calculated separately</td>
<td>No</td>
</tr>
<tr>
<td>Rel. Reference Window</td>
<td>5.000 %</td>
</tr>
<tr>
<td>Abs. Reference Window</td>
<td>0.000 min</td>
</tr>
<tr>
<td>Rel. Non-ref. Window</td>
<td>5.000 %</td>
</tr>
<tr>
<td>Abs. Non-ref. Window</td>
<td>0.000 min</td>
</tr>
<tr>
<td>Uncalibrated Peaks</td>
<td>not reported</td>
</tr>
<tr>
<td>Partial Calibration</td>
<td>Yes, identified peaks are recalibrated</td>
</tr>
<tr>
<td>Correct All Ret. Times</td>
<td>No, only for identified peaks</td>
</tr>
<tr>
<td>Curve Type</td>
<td>Linear</td>
</tr>
<tr>
<td>Origin</td>
<td>Forced</td>
</tr>
<tr>
<td>Weight</td>
<td>Equal</td>
</tr>
<tr>
<td>Recalibration Settings</td>
<td></td>
</tr>
<tr>
<td>Average Response</td>
<td>Average all calibrations</td>
</tr>
<tr>
<td>Average Retention Time</td>
<td>Floating Average New 75%</td>
</tr>
</tbody>
</table>

Signal Details

Signal 1: DAD1 A, Sig=234,4 Ref=360,100

<table>
<thead>
<tr>
<th>RT</th>
<th>Sig Lvl</th>
<th>Amount</th>
<th>Area</th>
<th>Rsp.Factor</th>
<th>Ref ISTD</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.059</td>
<td>1</td>
<td>1.03000</td>
<td>47.69269</td>
<td>2.15966e-2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>2.57500</td>
<td>120.68970</td>
<td>2.13357e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.15000</td>
<td>246.91501</td>
<td>2.08574e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10.30000</td>
<td>497.15610</td>
<td>2.07178e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>25.75000</td>
<td>1238.43115</td>
<td>2.07924e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>51.50000</td>
<td>2416.96289</td>
<td>2.13077e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>103.00000</td>
<td>4937.32324</td>
<td>2.08615e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RT</th>
<th>Sig Lvl</th>
<th>Amount</th>
<th>Area</th>
<th>Rsp.Factor</th>
<th>Ref ISTD</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.990</td>
<td>1</td>
<td>9.80000e-1</td>
<td>50.16642</td>
<td>1.95350e-2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>2.45000</td>
<td>125.26588</td>
<td>1.95584e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.90000</td>
<td>257.21909</td>
<td>1.90499e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9.80000</td>
<td>518.87018</td>
<td>1.88872e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>24.50000</td>
<td>1292.15259</td>
<td>1.89606e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>49.00000</td>
<td>2516.06958</td>
<td>1.94748e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>98.00000</td>
<td>5164.98242</td>
<td>1.89739e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RT</th>
<th>Sig Lvl</th>
<th>Amount</th>
<th>Area</th>
<th>Rsp.Factor</th>
<th>Ref ISTD</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.732</td>
<td>1</td>
<td>1.02000</td>
<td>48.12077</td>
<td>2.11967e-2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>2.55000</td>
<td>113.33391</td>
<td>2.24999e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.10000</td>
<td>230.78233</td>
<td>2.20987e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10.20000</td>
<td>465.83960</td>
<td>2.18959e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>25.50000</td>
<td>1158.93127</td>
<td>2.20030e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>51.00000</td>
<td>2261.68774</td>
<td>2.25495e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>102.00000</td>
<td>4634.19922</td>
<td>2.20103e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RT</th>
<th>Sig Lvl</th>
<th>Amount</th>
<th>Area</th>
<th>Rsp.Factor</th>
<th>Ref ISTD</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.282</td>
<td>1</td>
<td>1.02000</td>
<td>34.24325</td>
<td>2.97869e-2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>2.55000</td>
<td>86.07143</td>
<td>2.96266e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.10000</td>
<td>175.30609</td>
<td>2.90920e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10.20000</td>
<td>354.45395</td>
<td>2.87767e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>25.50000</td>
<td>883.34070</td>
<td>2.88677e-2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Calibration Curves

2 at exp. RT: 5.070
DAD1 A, Sig=234,4 Ref=360,100
Correlation: 0.99996
Residual Std. Dev.: 19.39276
Formula: \(y = mx \)
 \(m = 47.75528 \)
 \(x: \) Amount[ng/ul]
 \(y: \) Area

3 at exp. RT: 7.003
DAD1 A, Sig=234,4 Ref=360,100
Correlation: 0.99995
Residual Std. Dev.: 24.56110
Formula: \(y = mx \)
 \(m = 52.45060 \)
 \(x: \) Amount[ng/ul]
 \(y: \) Area

1 at exp. RT: 12.745
DAD1 A, Sig=234,4 Ref=360,100
Correlation: 0.99996
Residual Std. Dev.: 20.48602
Formula: \(y = mx \)
 \(m = 45.23025 \)
 \(x: \) Amount[ng/ul]
 \(y: \) Area
4 at exp. RT: 23.275
DADl A, Sig=234,4 Ref=360,100
Correlation: 0.99996
Residual Std. Dev.: 15.54065
Formula: y = mx
m: 34.34116
x: Amount[ng/ul]
y: Area
Figure S4. TGA curve overlaid the DSC curve for 1 doped with 8 mol % of 4.

Figure S5. Chart comparing particle area versus the ranking of each particle in a partial dissolution series of 1 doped with 0.5 mol % of 2.
Figure S6. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 0.5 mol % of 2.

Figure S7. Chart comparing particle area versus the ranking of each particle in a partial dissolution series of 1 doped with 1.0 mol % of 2.
Figure S8. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 1.0 mol % of 2.

Figure S9. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 1.5 mol % of 2.
Figure S10. Chart comparing particle area versus the ranking of each particle in a partial dissolution series of 1 doped with 2.0 mol % of 2.

Figure S11. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 2.0 mol % of 2.
Figure S12. Chart comparing particle area versus the ranking of each particle in a partial dissolution series of 1 doped with 2.5 mol % of 2.

Figure S13. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 2.5 mol % of 2.
Figure S14. Chart comparing particle area versus the ranking of each particle in a partial dissolution series of 1 doped with 3.0 mol % of 2.

Figure S15. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 3.0 mol % of 2.
Figure S16. Chart comparing particle area versus the ranking of each particle in a partial dissolution series of 1 doped with 0.5 mol % of 3.

Figure S17. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 0.5 mol % of 3.
Figure S18. Chart comparing particle area versus the ranking of each particle in a partial dissolution series of 1 doped with 1.0 mol % of 3.

Figure S19. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 1.0 mol % of 3.
Figure S20. Chart comparing particle area versus the ranking of each particle in a partial dissolution series of 1 doped with 1.5 mol % of 3.

Figure S21. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 1.5 mol % of 3.
Figure S22. Chart comparing particle area versus the ranking of each particle in a partial dissolution series of 1 doped with 2.0 mol % of 3.

Figure S23. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 2.0 mol % of 3.
Figure S24. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 2.5 mol % of 3.

Figure S25. Chart comparing particle area versus the ranking of each particle in a partial dissolution series of 1 doped with 3.0 mol % of 3.
Figure S26. Chart comparing particle length versus the ranking of each particle in a partial dissolution series of 1 doped with 3.0 mol % of 3.

Figure S27. Plot of percentage by HPLC of added impurity in crystals of compound 1 vs. the dissolution mid-point for the sample of crystals grown from solutions containing 0.5 mol % of additive 2.
Figure S28. Plot of percentage by HPLC of added impurity in crystals of compound 1 vs. the dissolution mid-point for the sample of crystals grown from solutions containing 1.0 mol % of additive 2.

Figure S29. Plot of percentage by HPLC of added impurity in crystals of compound 1 vs. the dissolution mid-point for the sample of crystals grown from solutions containing 2.0 mol % of additive 2.
Figure S30. Plot of percentage by HPLC of added impurity in crystals of compound 1 vs. the dissolution mid-point for the sample of crystals grown from solutions containing 2.5 mol % of additive 2.

Figure S31. Plot of percentage by HPLC of added impurity in crystals of compound 1 vs. the dissolution mid-point for the sample of crystals grown from solutions containing 3.0 mol % of additive 2.
Figure S32. Plot of percentage by HPLC of added impurity in crystals of compound 1 vs. the dissolution mid-point for the sample of crystals grown from solutions containing 0.5 mol % of additive 3.

Figure S33. Plot of percentage by HPLC of added impurity in crystals of compound 1 vs. the dissolution mid-point for the sample of crystals grown from solutions containing 1.0 mol % of additive 3.
Figure S34. Plot of percentage by HPLC of added impurity in crystals of compound 1 vs. the dissolution mid-point for the sample of crystals grown from solutions containing 1.5 mol % of additive 3.

Figure S35. Plot of percentage by HPLC of added impurity in crystals of compound 1 vs. the dissolution mid-point for the sample of crystals grown from solutions containing 2.0 mol % of additive 3.
Figure S36. Plot of percentage by HPLC of added impurity in crystals of compound 1 vs. the dissolution mid-point for the sample of crystals grown from solutions containing 3.0 mol % of additive 3.
Data from dissolution of single crystal grown from solution containing 3.0 mol % 3.

Figure S37. Plot of percentage by HPLC of added impurity in a single crystal of compound 1, grown from solutions containing 3.0 mol % of additive 3, vs. the dissolution mid-point for the crystal.