Effect of counter ions on the mesogenic ionic N-phenylpyridiniums

Ren-Tzong Wang, a Gene–Hsiang Lee, b and Chung-Kung Lai* a

Fax: (+8862)–03–4277664; (+886)–03–4259207 ext. 65904; e-mail: cklai@cc.ncu.edu.tw

a Department of Chemistry, National Central University, Chung–Li, Taiwan, ROC.
b Instrumentation Center, National Taiwan University, Taipei 10660, Taiwan, ROC

Table of Contents
1. The 1H, 13C and 19F NMR spectra of compounds 1-2………………………………..2
2. The DSC and TGA thermographs of compounds 1–2…………………………………13
3. The XRD diffraction plots of compound 2–BF4 (n = 12)……………………………16
Fig. S1 1H NMR spectrum of compound 1–Cl in DMSO–d$_6$.

Fig. S2 13C NMR spectrum of compound 1–Cl in DMSO–d$_6$.
Fig. S3 1H NMR spectrum of compound 1–RSO$_3$ (n = 12) in CDCl$_3$.

Fig. S4 13C NMR spectrum of compound 1–RSO$_3$ (n = 12) in CDCl$_3$.
Fig. S5 1H NMR spectrum of compound 2–Cl ($n = 12$) in DMSO–d$_6$.

Fig. S6 13C NMR spectrum of compound 2–Cl ($n = 12$) in DMSO–d$_6$.
Fig. S7 1H NMR spectrum of compound 2–BF$_4$ (n = 12) in CDCl$_3$.

Fig. S8 13C NMR spectrum of compound 2–BF$_4$ (n = 12) in CDCl$_3$.
Fig. S9 19F NMR spectrum of compound 2–BF$_4$ (n = 12) in CDCl$_3$.

Fig. S10 1H NMR spectrum of compound 2–PF$_6$ (n = 12) in DMSO–d$_6$.
Fig. S11 13C NMR spectrum of compound 2–PF$_6$ (n = 12) in DMSO–d$_6$.

Fig. S12 19F NMR spectrum of compound 2–PF$_6$ (n = 12) in DMSO–d$_6$.
Fig. S13. 1H NMR spectrum of compound 2–OTf (n = 12) in CDCl$_3$.

Fig. S14. 13C NMR spectrum of compound 2–OTf (n = 12) in CDCl$_3$.
Fig. S15 19F NMR spectrum of compound 2–OTf (n = 12) in CDCl$_3$.
Fig. S16 1H NMR spectrum of compound 2–NTf_2 ($n = 12$) in CDCl$_3$.

Fig. S17 13C NMR spectrum of compound 2–NTf_2 ($n = 12$) in CDCl$_3$.

Fig. S18 19F NMR spectrum of compound 2–NTf_2 ($n = 12$) in CDCl$_3$.
Fig. S19 1H NMR spectrum of compound 2–RSO$_3$ (n = 12) in CDCl$_3$.

Fig. S20 13C NMR spectrum of compound 2–RSO$_3$ (n = 12) in CDCl$_3$.
Fig. S21 1H NMR spectrum of compound 2–SCN (n = 12) in CDCl$_3$.

Fig. S22 13C NMR spectrum of compound 2–SCN (n = 12) in CDCl$_3$.
Fig. S23 The DSC thermograph of compound 1-SO₃ (n = 16)

Fig. S24 The DSC thermograph of compound 2-BF₄ (n = 12)
Fig. S25 The DSC thermograph of compound 2-NTf₂ (n = 14)

Fig. S26 DSC of compound 2-RSO₃ (n = 12)
Fig. S27 The TGA thermogram of compound 1–RSO₃ (n = 12).

Fig. S28 The TGA thermogram of compounds 2–X (all n = 12).
Fig. S29 Powder XRD plot of compound 2–BF$_4$ at 150°C

Fig. S30 The temperature–dependent powder X–ray diffraction plots of compound 2–BF$_4$ on heating and cooling processes.
Fig. S31 The plots of d-spacing in compound $2-\text{BF}_4$ at different temperature.