Tb³⁺ and Yb³⁺ Doped Novel KBaLu(MoO₄)₃ Crystals with a Disorder Chained Structure Showing Dual-mode Luminescence Under UV or NIR Excitation

G. Q. Wang^{*, a, b}, L. Y. Li^{*, a, b, c}, Y. N. Feng^a, H. Yu^a, and X. H. Zheng^a

^a College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.

^b Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou, Fujian 350108, China.

^c Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujain 350002, China. E-mail: gqwang@fzu.edu.cn.

^{*} Corresponding author. Tel: (011)86-591- 22866531; E-mail: gqwang@fzu.edu.cn. (G. Q. Wang).

CONTENTS

- Table S1. Atomic coordinates and equivalent isotropic displacement parameters for KBaLu(MoO₄)₃.
- Table S2. Selected bond distances (Å) for $KBaLu(MoO_4)_3$.
- Table S3. Selected Bond Angles (deg) for $KBaLu(MoO_4)_3$.
- Table S4. Anisotropic displacement parameters $(Å^2)$ for KBaLu(MoO₄)₃.
- Table S5. Raman wavenumbers for $KBaLu(MoO_4)_3$.
- Table S6. The chromaticity coordinates of Tb^{3+} and Tb^{3+}/Yb^{3+} codoped KBaLu(MoO₄)₃ under various excitations at room temperature.
- Table S7. The chromaticity coordinates of KBaLu(MoO_4)₃: Tb³⁺, Yb³⁺ at various temperature under excitation of 275 nm.
- Fig. S1. EDX spectrum of KBaLu(MoO₄)₃ crystal.
- Fig. S2. Coordination environments for Ba/K, Lu and Mo atoms in the structure of KBaLu(MoO₄)₃.
- Fig. S3. A schematic configurational coordinate diagram of Tb³⁺ and Yb³⁺ ions in KBaLu(MoO₄)₃.
- Fig. S4. Plot of pathways for the thermal quenching of the ${}^{5}D_{4}$ state of Tb³⁺ through a IVCT band.
- Fig. S5. The ratio of the integrated intensity of ${}^{5}D_{4} \rightarrow {}^{7}F_{5}/{}^{5}D_{4} \rightarrow {}^{7}F_{6}$ transitions, ${}^{5}D_{4} \rightarrow {}^{7}F_{5}/{}^{5}D_{4} \rightarrow {}^{7}F_{4}$

and ${}^{5}D_{4} \rightarrow {}^{7}F_{5} / {}^{5}D_{4} \rightarrow {}^{7}F_{3}$ transitions as temperature rise from 300K to 550K.

Atom	Wyck.	Site	х	У	Z	$U_{\rm eq}[{ m \AA}^2]^{ m a}$
Lu	4e	2	0	0.11529(2)	3/4	0.0007(1)
К	8f	1	0.16413(3)	0.37451(4)	-0.07521(9)	0.0010(1)
Ва	8f	1	0.16413(3)	0.37451(4)	-0.07521(9)	0.0010(1)
Mo1	8f	1	0.15494(3)	0.10695(3)	1.39774(8)	0.0008(1)
Mo2	4e	2	0	0.34480(5)	1/4	0.0009(1)
01	8f	1	0.0791(2)	0.4292(3)	0.4205(7)	0.0019(1)
02	8f	1	-0.03929(19)	0.2648(3)	0.4737(7)	0.0014(1)
03	8f	1	0.07416(18)	0.0371(3)	1.1422(6)	0.0011(1)
04	8f	1	0.20574(19)	0.1976(3)	1.2466(7)	0.0015(1)
05	8f	1	0.22780(19)	0.0284(3)	1.6191(7)	0.0016(1)
06	8f	1	0.10877(18)	0.1845(3)	0.6048(6)	0.0013(1)

Table S1. Atomic coordinates and equivalent isotropic displacement parameters for $KBaLu(MoO_4)_3$.

 $^{\rm a}U_{\rm eq}$ is defined as one-third of the trace of the orthogonalized $U_{\rm ij}$ tensor.

Atoms	d(Å)	Atoms	d(Å)	Atoms	d(Å)
Lu—O6	2.367(3)	Mo1-04	1.727(3)	K Ba—O4iv	2.781(3)
Lu—O6i	2.367(3)	Mo1-05	1.756(3)	K Ba—O1v	2.748(3)
Lu—O2i	2.311(3)	Mo1—O6vii	1.779(3)	K Ba—O6v	2.866(3)
Lu—O2	2.311(3)	Mo1-03	1.868(3)	K Ba—O4v	2.709(3)
Lu—O3	2.322(3)	Mo2-01	1.757(3)	K Ba—O2i	2.711(3)
Lu—O3i	2.322(3)	Mo2—O1viii	1.757(3)	K Ba—O1vi	2.800(3)
Lu—O3ii	2.404(3)	Mo2—O2viii	1.789(3)	K Ba—O5ix	2.874(3)
Lu—O3iii	2.404(3)	Mo2-02	1.789(3)	K Ba—O5x	2.699(3)

Table S2. Selected bond distances (Å) of $KBaLu(MoO_4)_3$.

Symmetry codes: (i) -x, y, 1.5-z; (ii) x, -y, -0.5+z; (iii) -x, -y, 2-z; (iv) 0.5-x, 0.5-y, 1-z; (v) x, y, -1+z; (vi) -x, 1-y, -0.5+z; (vii) x, y, 1+z; (viii) -x, y, 0.5-z; (ix) 0.5-x, 0.5+y, 2-z; (x) 0.5-x, 0.5+y, 1.5-z.

Atoms	angles [deg]	Atoms	angles [deg]
02i -Lu1-O2	76.40(17)	06i-Lu1-O3ii	150.46(11)
02i -Lu1-03i	151.59(12)	O2i-Lu1-O3iii	123.07(11)
02-Lu1-03i	76.31(12)	O2-Lu1-O3iii	131.62(11)
02i-Lu1-03	76.31(12)	03i-Lu1-03iii	71.76(7)
02-Lu1-03	151.59(12)	03-Lu1-03iii	71.54(12)
03i-Lu1-03	131.72(16)	O6-Lu1-O3iii	150.46(11)
02i-Lu1-06	78.08(11)	06i-Lu1-03iii	71.16(11)
02-Lu1-06	69.39(11)	O3ii-Lu1-O3iii	79.33(15)
03i-Lu1-06	99.42(11)	04-Mo1-05	106.49(16)
03-Lu1-06	97.29(11)	04-Mo1-O6iv	107.92(15)
02i-Lu1-06i	69.39(11)	05-Mo1-06iv	104.24(15)
02-Lu1-06i	78.08(11)	04-Mo1-O3	109.74(15)
03i-Lu1-06i	97.29(11)	O5-Mo1-O3	120.07(15)
03-Lu1-06i	99.42(11)	06 iv -Mo1-O3	107.75(14)
06-Lu1-06i	138.37(16)	01-Mo2-01v	108.60(2)
O2i-Lu1-O3ii	131.62(11)	01-Mo2-02v	105.63(16)
02-Lu1-03ii	123.07(11)	0 v -Mo2-O2v	111.37(16)
03i-Lu1-03ii	71.54(12)	01-Mo2-02	111.37(16)
03-Lu1-03ii	71.76(7)	01v -Mo2-O2	105.63(16)
06-Lu1-03ii	71.16(11)	02v -Mo2-O2	114.20(2)

Table S3. Selected Bond Angles (deg) for KBaLu(MoO₄)₃.

Symmetry codes: (i) -x,y,-z+3/2; (ii) x,-y,z-1/2; (iii) -x,-y,-z+2; (iv) x,y,z+1; (v) -x,y,-z+1/2;

Table S4. Anisotropic displacement parameters $(Å^2)$ for KBaLu(MoO₄)₃.

Atom	U11	U22	U33	U12	U13	U23
Lu	0.0080(1)	0.0080(1)	0.0070(1)	0	0.0020(1)	0
Ва	0.0080(1)	0.0090(1)	0.01301)	0.0020(1)	0.0030(1)	-0.0010(1)
К	0.0080(1)	0.0090(1)	0.01301)	0.0020(1)	0.0030(1)	-0.0010(1)
Mo1	0.0070(1)	0.0090(1)	0.0070(1)	-0.0010(1)	0.0010(1)	0.0010(1)
Mo2	0.0100(1)	0.0090(1)	0.0080(1)	0	0.0040(1)	0
01	0.0220(2)	0.0150(2)	0.0180(2)	-0.0020(2)	0.0040(1)	-0.0050(1)
02	0.0130(2)	0.0170(2)	0.0150(2)	0.0040(1)	0.0080(1)	0.0020 (1)
03	0.0110(2)	0.0110(2)	0.0110(2)	0.0020(1)	0.0020(1)	-0.0020(1)
04	0.0140(2)	0.0150(2)	0.0170(2)	-0.0020(1)	0.0040(1)	0
05	0.0170(2)	0.0180(2)	0.0130(2)	0.0010(1)	0.0050(1)	0.0070(1)
06	0.0120(2)	0.0120(2)	0.0170(2)	-0.0010(1)	0.0060(1)	0

Table S5. Raman wavenumbers (cm⁻¹) for $KBaLu(MoO_4)_3$.

78.90	325.85	
113.99	338.06	
130.11 w	378.28	
135.40 w	417.75	
153.04	735.04	
162.63	836.46	
173.31	874.28	
183.53	900.98	
219.60 w	925.12	
285.82	943.56	

w – weak line.

	Tb ³⁺ : KBLM		Tb ³⁺ /Yb ³⁺ : KBLM		
Excitations (nm)	CIE		(CIE	
	х	У	х	У	
275	0.326	0.616	0.324	0.618	
365	0.294	0.411	0.299	0.410	
485	0.364	0.628	0.359	0.633	
980	—	—	0.315	0.611	

Table S6. The chromaticity coordinates of Tb^{3+} and Tb^{3+}/Yb^{3+} doped KBaLu(MoO₄)₃ at room temperature under various excitations.

	KBLM: Tb ³⁺ , Yb ³⁺		
Temperature (K)	CIE		
	x	У	
300	0.326	0.616	
325	0.327	0.609	
350	0.326	0.604	
375	0.325	0.596	
400	0.326	0.589	
425	0.326	0.580	
450	0.327	0.569	
475	0.327	0.560	
500	0.327	0.551	
525	0.326	0.541	
550	0.327	0.530	

Table S7. The chromaticity coordinates of KBaLu(MoO_4)₃: Tb³⁺, Yb³⁺ at various temperature under excitation of 275 nm.

Fig. S1. EDX spectrum of KBaLu(MoO_4)₃ crystal.

Fig. S2. Coordination environments for Ba/K, Lu and Mo atoms in the structure of KBaLu(MoO₄)₃.

Fig. S3. A schematic configurational coordinate diagram of Tb^{3+} and Yb^{3+} ions in KBaLu(MoO₄)₃.

Fig. S4. Plot of pathways for the thermal quenching of the ${}^{5}D_{4}$ state of Tb³⁺ through a IVCT band.

Fig. S5. The ratio of the integrated intensity of ${}^{5}D_{4} \rightarrow {}^{7}F_{5}/{}^{5}D_{4} \rightarrow {}^{7}F_{6}$ transitions, ${}^{5}D_{4} \rightarrow {}^{7}F_{5}/{}^{5}D_{4} \rightarrow {}^{7}F_{4}$ and ${}^{5}D_{4} \rightarrow {}^{7}F_{5}/{}^{5}D_{4} \rightarrow {}^{7}F_{3}$ transitions as temperature rise from 300K to 550K.