ZnO-TiO$_2$ Composites and Ternary ZnTiO$_3$ Electrospun Nanofibers: Influence on annealing on Photocatalytic Response and Reusable Functionality

Kugalur Shanmugam Ranjith*, Tamer Uyar*

Institute of Materials Science & Nanotechnology and UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey

Supporting Information

Synthesis of TiO$_2$ Nanofibers

Synthesis of TiO$_2$ nanofibers was accomplished through an electrospinning process. To prepare the precursor solution, 0.5 g of polyvinylpyrrolidone (PVP, Mw = 1,300,000, Sigma-Aldrich) were dissolved in 2.5 mL of ethanol by stirring. 0.5 ml of titanium tetra butoxide (Ti(OBu)$_4$) were used as Ti precursor and stirred for 20 mins in 1 ml of ethanol and 0.3 ml of acetic acid; this solution was then added to the polymer solution. After stirring for 3 h, the precursor solution was drawn into a 3 mL plastic syringe with needle diameter of 0.4 mm and displaced to the needle tip to an electrospinning system (KD Scientific, KDS101) at a flow rate of 0.5 mLh$^{-1}$; the distance between the tip of the needle and the grounded aluminum plate was approximately 15 cm. The needle was connected to a high-voltage power source, and a voltage of 15 kV was applied from a high voltage power supply (Spellman, SL series, USA). The electrospun TiO$_2$/polymer nanofibers were dried at 80 °C in an oven for 6 hours and then calcined at 500 °C for 3 h in air.

Electrospinning of ZnO nanofibers

The electrospinning solution was prepared by dissolving polyvinyl alcohol (PVA, 7.5% w/v) in water at 80 °C followed by addition of zinc acetate dihydrate (4%, w/v). The resulting solution was stirred for 2 hours to obtain a homogeneous solution. Furthermore, the solution was loaded in a 3 mL plastic syringe with needle diameter of 0.8 mm and placed horizontally on a syringe pump (KD Scientific, KDS101). The flow rate of the polymer solution was controlled by the syringe pump and fixed at 0.5 mL h$^{-1}$. The grounded metal collector was covered with aluminum foil and placed at a distance of 12 cm from the needle tip. The electric field (15.0 kV) was applied from a high voltage power supply (Spellman, SL series, USA). Electrospinning procedure was carried out at 22 °C and 19% relative humidity in a Plexiglas box. The obtained zinc acetate/PVA composite NF were further calcined at 400 °C for 3 h in air to obtain ZnO NF.
Fig. S1 XRD spectra and SEM images of Zn(OAc)$_2$-Ti(OBu)$_4$-PVP NF annealed at 500 °C, 600 °C, 700 °C, 800 °C respectively.
Fig. S2 (a) C 1s XPS spectra of ZnO-TiO$_2$ composite and ternary ZnTiO$_3$ NFs. (b, c) EDAX spectra of ZnO-TiO$_2$ composite and ternary ZnTiO$_3$ NFs, respectively.

Fig. S3 EDAX-SEM image mapping of ZnO-TiO$_2$ composite NF coated on copper tape.
Fig. S4 BET adsorption–desorption curve for the composite and ternary NFs. (a) ZnO-TiO$_2$ NF and (b) ZnTiO$_3$ NF. The inset shows the distribution of pore volume vs pore radius.

Fig. S5. Self-degradation of MB dye solution under visible irradiation without any catalyst respect to time.
Fig. S6 Photo degradation activity of the composite and ternary NFs over the colorless 4-chlorophenol in 120 min under visible irradiation.
Fig. S7 Comparative photocatalytic properties over the MB dye molecules with composite and ternary NFs under visible photo irradiation

Fig. S8 Quantifying the superoxide radical anions (O$_2^-$) and hydroxyl radicals (OH) production rate, from the degradation of NBT and p-CBA were used as a probe molecules under visible irradiation.
Fig. S9 Optical images of (a) ZnO-TiO$_2$ composite and (d) ternary ZnTiO$_3$ NFs before irradiation. Optical and low magnified SEM images of the (a, b) ZnO-TiO$_2$ composite and (c, d) ternary ZnTiO$_3$ NFs after photocatalytic process.

Fig. S10 XRD spectra of the ZnO-TiO$_2$ composite and ternary ZnTiO$_3$ NFs before and after photocatalytic process.