Morphology/phase controllable synthesis of monodisperse ScVO$_4$ microcrystals and tunable multicolor luminescent properties in Sc(La)VO$_4$(PO$_4$):Bi$^{3+}$,Ln$^{3+}$ phosphors

Dingyi Shena, Yufeng Zhanga, Xuemei Zhanga, Zhenling Wangb, Yanfei Zhangc, Shanshan Hua and Jun Yanga*

a School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China. E-mail: jyang@swu.edu.cn and hushan3@swu.edu.cn

b The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou City, 466001, China.

cAECC Harbin Dongan Engine Co Ltd, Harbin, 150066, China.

Table S1 Summary of the photoluminescence properties of ScVO$_4$:6%Ln$^{3+}$ (Ln = Sm, Eu, Sm, Dy, Ho, Er and Tm) microcrystals under 278nm excitation.

<table>
<thead>
<tr>
<th>No.</th>
<th>Emission peaks (nm)</th>
<th>Emission transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>ScVO$_4$:6%Sm$^{3+}$</td>
<td>498</td>
</tr>
<tr>
<td></td>
<td></td>
<td>569</td>
</tr>
<tr>
<td></td>
<td></td>
<td>607</td>
</tr>
<tr>
<td></td>
<td></td>
<td>651</td>
</tr>
<tr>
<td>b</td>
<td>ScVO$_4$:6%Eu$^{3+}$</td>
<td>599</td>
</tr>
<tr>
<td></td>
<td></td>
<td>619</td>
</tr>
<tr>
<td>c</td>
<td>ScVO$_4$:6%Dy$^{3+}$</td>
<td>485</td>
</tr>
<tr>
<td></td>
<td></td>
<td>579</td>
</tr>
<tr>
<td>d</td>
<td>ScVO$_4$:6%Ho$^{3+}$</td>
<td>502</td>
</tr>
<tr>
<td></td>
<td></td>
<td>548</td>
</tr>
<tr>
<td>e</td>
<td>ScVO$_4$:6%Er$^{3+}$</td>
<td>528</td>
</tr>
<tr>
<td></td>
<td></td>
<td>549,559</td>
</tr>
<tr>
<td>f</td>
<td>ScVO$_4$:6%Tm$^{3+}$</td>
<td>478</td>
</tr>
</tbody>
</table>
Table S2 Emission peaks and FWHM of Sc(VO$_4$)$_{1-x}$(PO$_4$)$_x$:1% Bi$^{3+}$ ($x = 0, 0.2, 0.4, 0.6, 0.8, 1$).

<table>
<thead>
<tr>
<th>No.</th>
<th>Compounds</th>
<th>E_m/nm</th>
<th>FWHM/nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sc(VO$_4$):1%Bi$^{3+}$</td>
<td>560</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td>Sc(VO4)${0.8}$(PO4)${0.2}$:1%Bi$^{3+}$</td>
<td>550</td>
<td>107</td>
</tr>
<tr>
<td>3</td>
<td>Sc(VO4)${0.6}$(PO4)${0.4}$:1%Bi$^{3+}$</td>
<td>541</td>
<td>122</td>
</tr>
<tr>
<td>4</td>
<td>Sc(VO4)${0.4}$(PO4)${0.6}$:1%Bi$^{3+}$</td>
<td>502</td>
<td>152</td>
</tr>
<tr>
<td>5</td>
<td>Sc(VO4)${0.2}$(PO4)${0.8}$:1%Bi$^{3+}$</td>
<td>470</td>
<td>220</td>
</tr>
<tr>
<td>6</td>
<td>ScPO$_4$:1%Bi$^{3+}$</td>
<td>376</td>
<td>81</td>
</tr>
</tbody>
</table>
Fig. S1 Magnified the XRD patterns of the as-prepared ScVO$_4$ samples formed in the presence of different amount of PEG. The relative intensity ratio of (004)/(303) increases a little with the increase of PEG from 0 to 0.25 g, which is consistent with structural alterations in Figure 6g.
Fig. S2 The CIE chromaticity coordinates of ScVO$_4$:6%Sm$^{3+}$ (A), 6%Eu$^{3+}$ (B), 6%Dy$^{3+}$ (C), 6%Ho$^{3+}$ (D), 6%Er$^{3+}$ (E), 6%Tm$^{3+}$ (F), respectively.