Supplementary Material for:
Streams, cascades, and pools: Various water cluster motifs in structurally similar Ni(II) complexes

Nina Saraei, Oleksandr Hietsoi, Christopher S. Mullins, Alexander J. Gupta, Brian C. Frye, Mark S. Mashuta, Robert M. Buchanan, Craig A. Grapperhaus

1Department of Chemistry, University of Louisville, Louisville, 40292, USA
2Department of Chemical Engineering, University of Louisville, Louisville, 40292, USA

Table of Contents
Figure S1. 1H NMR of HL1: (DMSO - D6, 400 MHz) δ 2.05 (br, 2H), 2.63 (t, 2H), 3.28 (t, 2H), 3.98 (s, 3H), 6.82 (d, 1H), 6.88 (d, 1H), 8.14 (s, 1H). The small peak labeled x results from tautomerization of the amido proton (d). Addition of D2O results in the loss of this peak. ..S3
Figure S2. 1H NMR of H2L2: ...S3
Figure S3. 1H NMR of NiL3 (2): (CD3OD, 400 MHz) δ 1.18 (s, 1H), 2.16-3.45 (m, 8H), 3.78 (s, 3H), 6.29 (d, 1H), 6.92 (d, 1H)..........................S4
Figure S4. 1H NMR of NiL4 (4): (C3D2O, 400 MHz) δ 1.77 (s, 3H), 1.90 (s, 3H), 2.84 (t, 2H), 3.41 (t, 2H), 3.92 (s, 1H), 4.98 (s, 1H), 6.61 (d, 1H), 7.05 (d, 1H)..........................S4
Figure S5. 1H NMR of NiL5 (5): (CDCl3, 400 MHz) δ 1.78 (s, 3H), 1.82 (s, 3H), 2.92 (t, 2H), 3.45 (t, 3H), 3.88 (s, 3H), 4.86 (s, 1H), 6.62 (d, 1H), 6.64 (d, 1H)..........................S5
Figure S6. UV-Vis spectrum of NiL3 (2) in CH3CN. ...S5
Figure S7. UV-Vis spectrum of Ni(L1)2 (3) in CH2Cl2...S6
Figure S8. UV-Vis spectrum of NiL4 (4) in CH3CN. ...S6
Figure S9. UV-Vis spectrum of NiL5 (5) in CH3CN. ...S7
Table S1. Selected stretches (cm-1) in FT-IR spectra of HL1 and 1-5..S7
Figure S10. FT-IR spectrum of HL1 ...S8
Figure S11. FT-IR spectrum of NiL2 (1). ..S8
Figure S12. FT-IR spectrum of NiL3 (2). ..S9
Figure S13. FT-IR spectrum of Ni(L1)2 (3). ..S9
Figure S14. FT-IR spectrum of NiL4 (4). ..S10
Figure S15. FT-IR spectrum of NiL5 (5). ..S10
Figure S16. MALDI of NiL3 (2). ..S11
Figure S17. MALDI of Ni(L1)2 (3). ..S11
Figure S18. MALDI of NiL4 (4). ..S12
Figure S19. MALDI of NiL5 (5). ..S12
Figure S20. Unit cell diagram of NiL3 (2). ..S13
Figure S21. Unit cell diagram of Ni(L1)2 (3). ..S13
Figure S22. Unit cell diagram of NiL$_4$ (4)...S14
Figure S23. Unit cell diagram of NiL$_5$ (5)...S14
Figure S24. TGA of NiL$_2$ (1)..S15
Figure S25. DSC of NiL$_2$ (1)..S15
Figure S26. TGA of NiL$_3$ (2)..S16
Figure S27. DSC of NiL$_3$ (2)..S16
Figure S28. TGA of NiL$_4$ (4)..S17
Figure S29. DSC of NiL$_4$ (4)..S17
Figure S30. TGA of NiL$_5$ (5)..S18
Figure S31. DSC of NiL$_5$ (5)..S18
Figure S32. C$_{2z}$(12) HB motif in Ni(L$_1$)$_2$ (3). ..S19
Figure S33. Bode representations of EIS data for 22 μF capacitor control (A), complexes 1 (B), 4 (C), and 5 (D). Shows the phase angle and impedance behavior as a function of frequency. The inverse relation between Z and frequency and constant ~90 ° phase angles in all four plots are characteristics of capacitors. ..S19
Table S2. Capacitances (with associated chi-squared values) and Z' at 100 kHz (indicative of equivalent series resistance) for the capacitor control and complexes 1, 4, and 5 at various applied DC biases. Also depicted is the equivalent circuit model used to fit EIS data and determine capacitance. ..S20
Figure S34. Nyquist representations of EIS data for 22 μF capacitor control (A), complexes 1 (B), 4 (C), and 5 (D). Data in B, C, and D were truncated at -Z'' = 80,000 Ω to illustrate similarities with (A) and omit the diffusion-related noise observed at low frequencies. ..S21
Figure S1. 1H NMR of HL1: (DMSO - D$_6$, 400 MHz) δ 2.05 (br, 2H), 2.63 (t, 2H), 3.28 (t, 2H), 3.98 (s, 3H), 6.82 (d, 1H), 6.88 (d, 1H), 8.14 (s, 1H). The small peak labeled x results from tautomerization of the amido proton (d). Addition of D$_2$O results in the loss of this peak.

Figure S2. 1H NMR of H$_2$L3: (C$_6$D$_6$, 400 MHz) δ 1.35 (br, 1H), 2.3-2.7 (m, 6H), 3.2-3.5 (m, 3H), 3.68 (s, 3H), 6.32 (d, 1H), 6.92 (d, 1H), 8.08 (s, 1H). The small peak labeled x results from tautomerization of the amido proton (g). Addition of D$_2$O results in the loss of this peak.
Figure S3. 1H NMR of NiL3 (2): (CD$_3$OD, 400 MHz) δ 1.18 (s, 1H), 2.16-3.45 (m, 8H), 3.78 (s, 3H), 6.29 (d, 1H), 6.92 (d, 1H).

Figure S4. 1H NMR of NiL4 (4): (C$_3$D$_6$O, 400 MHz) δ 1.77 (s, 3H), 1.90 (s, 3H), 2.84 (t, 2H), 3.41 (t, 2H), 3.92 (s, 3H), 4.98 (s, 1H), 6.61 (d, 1H), 7.05 (d, 1H).
Figure S5. 1H NMR of NiL5 (5): (CDCl$_3$, 400 MHz) δ 1.78 (s, 3H), 1.82 (s, 3H), 2.92 (t, 2H), 3.45 (t, 3H), 3.88 (s, 3H), 4.86 (s, 1H), 6.62 (d, 1H), 6.64 (d, 1H).

Figure S6. UV-Vis spectrum of NiL3 (2) in CH$_3$CN.
Figure S7. UV-Vis spectrum of Ni(L1)$_2$ (3) in CH$_2$Cl$_2$.

Figure S8. UV-Vis spectrum of NiL4 (4) in CH$_3$CN.
Figure S9. UV-Vis spectrum of NiL₅ (5) in CH₃CN.

Table S1. Selected stretches (cm⁻¹) in FT-IR spectra of HL¹ and 1-5

<table>
<thead>
<tr>
<th>Moiety</th>
<th>HL¹</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C = O</td>
<td>1670</td>
<td>1660</td>
<td>1660</td>
<td>1590</td>
<td>1610</td>
<td>1590</td>
</tr>
<tr>
<td>C — N</td>
<td>1544</td>
<td>1540</td>
<td>1540</td>
<td>1510</td>
<td>1510</td>
<td>1510</td>
</tr>
</tbody>
</table>
Figure S10. FT-IR spectrum of HL1.

Figure S11. FT-IR spectrum of NiL2 (1).
Figure S12. FT-IR spectrum of NiL³ (2).

Figure S13. FT-IR spectrum of Ni(L¹)₂ (3).
Figure S14. FT-IR spectrum of NiL4 (4).

Figure S15. FT-IR spectrum of NiL5 (5).
Figure S16. MALDI of NiL$_3$ (2).

Figure S17. MALDI of Ni(L1)$_2$ (3).
Figure S18. MALDI of NiL4 (4).

Figure S19. MALDI of NiL5 (5).
Figure S20. Unit cell diagram of NiL$_3$ (2).

Figure S21. Unit cell diagram of Ni(L')$_2$ (3).
Figure S22. Unit cell diagram of NiL4 (4).

Figure S23. Unit cell diagram of NiL5 (5).
Figure S24. TGA of NiL2 (1).

Figure S25. DSC of NiL2 (1).
Figure S26. TGA of NiL3 (2).

Figure S27. DSC of NiL3 (2).
Figure S28. TGA of NiL4 (4).

Figure S29. DSC of NiL4 (4).
Figure S30. TGA of NiL⁵ (5).

Figure S31. DSC of NiL⁵ (5).
Figure S32. $C_2^2(12)$ HB motif in Ni(L1)$_2$ (3).

Figure S33. Bode representations of EIS data for 22 μF capacitor control (A), complexes 1 (B), 4 (C), and 5 (D). Shows the phase angle and impedance behavior as a function of frequency. The inverse relation between Z and frequency and constant ~90 ° phase angles in all four plots are characteristics of capacitors.
Table S2. Capacitances (with associated chi-squared values) and Z' at 100 kHz (indicative of equivalent series resistance) for the capacitor control and complexes 1, 4, and 5 at various applied DC biases. Also depicted is the equivalent circuit model used to fit EIS data and determine capacitance.

<table>
<thead>
<tr>
<th>Sample</th>
<th>DC Bias (V)</th>
<th>Circuit</th>
<th>Chi-Squared</th>
<th>Capacitance (F)</th>
<th>Z' @ 100 kHz (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitor</td>
<td>-0.1</td>
<td></td>
<td>1E-20</td>
<td>2.08E-07</td>
<td>3.84</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>1E-20</td>
<td>2.08E-07</td>
<td>3.82</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td></td>
<td>1E-20</td>
<td>2.07E-07</td>
<td>6.63</td>
</tr>
<tr>
<td>Complex 1</td>
<td>-0.1</td>
<td>C1</td>
<td>1E-20</td>
<td>1.31E-10</td>
<td>1346.88</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>1E-20</td>
<td>1.25E-10</td>
<td>729.26</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td></td>
<td>1E-20</td>
<td>1.30E-10</td>
<td>984.91</td>
</tr>
<tr>
<td>Complex 4</td>
<td>-0.1</td>
<td></td>
<td>1E-20</td>
<td>1.07E-10</td>
<td>659.57</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>1E-20</td>
<td>1.12E-10</td>
<td>650.04</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td></td>
<td>1E-20</td>
<td>1.07E-10</td>
<td>637.31</td>
</tr>
<tr>
<td>Complex 5</td>
<td>-0.1</td>
<td></td>
<td>1E-20</td>
<td>1.23E-10</td>
<td>512.69</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>1E-20</td>
<td>1.27E-10</td>
<td>577.06</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td></td>
<td>1E-20</td>
<td>1.33E-10</td>
<td>529.32</td>
</tr>
</tbody>
</table>
Figure S34. Nyquist representations of EIS data for 22 μF capacitor control (A), complexes 1 (B), 4 (C), and 5 (D). Data in B, C, and D were truncated at $-Z'' = 80,000 \, \Omega$ to illustrate similarities with (A) and omit the diffusion-related noise observed at low frequencies.