Supplementary material for

Controllable growth of two-dimensional WSe$_2$ using salt as co-solvent

Xiangzhuo Wang, Yongkai Li, La Zhuo, Jingchuan Zheng, Xianglin Peng, Zefeng Jiao, Xiaolu Xiong, Junfeng Han, and Wende Xiao

1School of Physics, Beijing Institute of Technology, 100081, Beijing
2Micronano Center, Beijing Institute of Technology, Beijing, 100081, China

a To whom correspondence should be addressed. E-mail: pkuhjf@bit.edu.cn (J.F.H.); wdxiao@bit.edu.cn (W.D.X.)
Fig. S1 OM images showing the coexistence of monolayer, bilayer and multilayers in the WSe$_2$ flakes. (a) overview. (b) zoom-in of (a). Scale bars, 10 µm.

Fig. S2 Raman spectra collected from the regions of the 2D WSe$_2$ with different thickness shown in Fig. S1.
Fig. S3 Raman spectra collected from the regions of the 2D WSe$_2$ with different thickness shown in Fig. S1.

Fig. S4 PL spectra collected from the regions of the 2D WSe$_2$ with different thickness shown in Fig. S1.
Fig. S5 XPS spectra of the as-grown 2D WSe$_2$. (a) survey scan, (b) C1s, (c) Na1s, and (d) Cl2p.
Fig. S6 OM image of 2D WSe$_2$ flakes grown by CVD without NaCl. Optimized parameters: (a) mass (WO$_3$); (b) reaction temperature T; (c) reaction time t; and (d) gas flow. Scale bars, 10 µm.

Fig. S7 OM image of 2D WSe$_2$ flakes grown by CVD with NaCl. Optimized parameters: (a) mass (WO$_3$) : mass (NaCl); (b) mass (Se); (c) growth pressure. Scale bars, 10 µm.
Fig. S8 Raman spectra collected from the regions of a WSe$_2$ flake with a spiral dislocation shown in Fig. 4(c).

Fig. S9 PL spectra collected from the regions of a WSe$_2$ flake with a spiral dislocation shown in Fig. 4(c).
The crystal structures of samples were characterized using X-ray diffraction as shown in Fig S10. Fig. S10(a) shows two major diffraction peaks of (002) and (400) appearing in both WSe$_2$ and Si, which is consistent with the standard values of WSe$_2$ (JCPDS card 38-1388) and Si substrate (JCPDS card 27-1402). For the 2D WSe$_2$ with spiral dislocations, the diffraction peaks of (002), (004) and (008) show no significant change with respect to WSe$_2$ multilayer, indicating that the crystal phase of WSe$_2$ is not destroyed with spiral dislocation, as shown in Fig. S10(b). Fig. S10(c) shows the half-width of (002) direction. The slight broadening of the diffraction peaks is caused by the spiral dislocation structure.