ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Title:
Indirect effect of the hydrogen bonds on the magnetic coupling on Mn(III) dinuclear compounds

Authors:
J. M. Pagès,a L. Escriche-Tur,a M. Font-Bardia,b,c G. Aullóna,d* and M. Corbellaa,e*
a. Departament de Química Inorgànica i Orgànica (Secció Química Inorgànica), Facultat de Química. Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
b. Departament de Mineralogia, Petrologia i Geologia Aplicada. Facultat de Ciències de la Terra. Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain.
d. Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1,08028 Barcelona, Spain
e. Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain

Corresponding author
*Montserrat Corbella, e-mail: montse.corbella@ub.edu.
*Gabriel Aullón, e-mail: gabriel.aullon@qi.ub.es

Content:
Figure S1. Arrangement of the nitrate ions on compound 2... 2
Table TS1. Magneto-structural parameters for Mn(III) dinuclear compounds... 3
Table TS2. Results of the DFT calculations for compound 1 and the models derived from it............... 4
Table TS3. Results of the DFT calculations for compound 2 and the models derived from it............. 5
Table TS4. X-ray crystallographic data details for compounds 1 and 2 ... 6
Bibliography.. 7
Figure S1. View of the disposition of the planes containing coordinated and non-coordinated nitrate ions for compound 2.
Table TS1. Magnetic coupling constants J and selected structural parameters for $[\text{Mn}(L)(NN)]_2(\mu-O)(\mu-n-\text{RC}_{6}H_{4}\text{COO})_2]X_2$ compounds ($n = 4$ for monosubstituted carboxylates and $n = 3$ for 1 and 2).

<table>
<thead>
<tr>
<th>Ref.</th>
<th>n-R</th>
<th>NN</th>
<th>X</th>
<th>L</th>
<th>J^a [cm$^{-1}$]</th>
<th>Mn-O-Mn $/^{\circ}$</th>
<th>Δ^b</th>
<th>ρ^c</th>
<th>ω^d $/^{\circ}$</th>
<th>τ^e $/^{\circ}$</th>
<th>Mn-O-N $/^{\circ}$</th>
<th>γ^f $/^{\circ}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2*</td>
<td>2,6-Cl₂</td>
<td>bpy</td>
<td>NO₃</td>
<td>H₂O/NO₃</td>
<td>-27.3</td>
<td>123.7</td>
<td>12.6</td>
<td>4.1</td>
<td>75.1</td>
<td>90.0</td>
<td>118</td>
<td>33</td>
</tr>
<tr>
<td>1</td>
<td>2-Cl</td>
<td>Phen</td>
<td>ClO₄</td>
<td>H₂O/H₂O</td>
<td>-12.6</td>
<td>122.9</td>
<td>11.2</td>
<td>4.5</td>
<td>77.9</td>
<td>88.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2-Cl</td>
<td>bpy</td>
<td>ClO₄</td>
<td>H₂O/ClO₄ (3/1)</td>
<td>-10.9</td>
<td>122.8</td>
<td>13.3</td>
<td>3.5</td>
<td>56.5</td>
<td>92.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1*</td>
<td>2,6-Cl₂</td>
<td>bpy</td>
<td>ClO₄</td>
<td>H₂O/ClO₄</td>
<td>-9.2</td>
<td>124.4</td>
<td>12.6</td>
<td>4.7</td>
<td>73.0</td>
<td>106.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2-Me</td>
<td>bpy</td>
<td>ClO₄</td>
<td>H₂O/ClO₄</td>
<td>-5.6</td>
<td>122.3</td>
<td>13.8</td>
<td>3.7</td>
<td>46.9</td>
<td>101.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2-F</td>
<td>bpy</td>
<td>ClO₄</td>
<td>H₂O/ClO₄</td>
<td>-3.5</td>
<td>124.7</td>
<td>12.7</td>
<td>4.8</td>
<td>19.5</td>
<td>93.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2-MeO</td>
<td>bpy</td>
<td>NO₃</td>
<td>H₂O/NO₃</td>
<td>-2.3</td>
<td>123.5</td>
<td>10.8</td>
<td>5.0</td>
<td>36.2</td>
<td>78.1</td>
<td>140</td>
<td>87</td>
</tr>
<tr>
<td>4</td>
<td>2-MeO</td>
<td>bpy</td>
<td>ClO₄</td>
<td>H₂O/ClO₄</td>
<td>-0.7</td>
<td>122.8</td>
<td>12.2</td>
<td>4.4</td>
<td>29.2</td>
<td>95.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2-Me</td>
<td>bpy</td>
<td>NO₃</td>
<td>H₂O/NO₃</td>
<td>-0.5</td>
<td>123.1</td>
<td>10.7</td>
<td>4.2</td>
<td>28.8</td>
<td>97.2</td>
<td>120</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>2-Cl</td>
<td>Phen</td>
<td>-</td>
<td>NO₃/NO₃</td>
<td>-0.3</td>
<td>124.4</td>
<td>9.7</td>
<td>4.7</td>
<td>38.1</td>
<td>101.7</td>
<td>127</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>2-F</td>
<td>bpy</td>
<td>NO₃</td>
<td>H₂O/NO₃</td>
<td>+1.4</td>
<td>125.1</td>
<td>11.2</td>
<td>5.0</td>
<td>18.6</td>
<td>89.2</td>
<td>138</td>
<td>89</td>
</tr>
<tr>
<td>1</td>
<td>2-Cl</td>
<td>Phen</td>
<td>ClO₄</td>
<td>H₂O/H₂O</td>
<td>+2.7</td>
<td>122.9</td>
<td>9.7</td>
<td>4.9</td>
<td>46</td>
<td>102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2-Cl</td>
<td>bpy</td>
<td>ClO₄</td>
<td>H₂O/NO₃</td>
<td>+3.0</td>
<td>123.0</td>
<td>9.4</td>
<td>5.4</td>
<td>25.4</td>
<td>108.5</td>
<td>126</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>2-COOH</td>
<td>bpy</td>
<td>NO₃</td>
<td>H₂O/NO₃ (3/1)</td>
<td>+4.7</td>
<td>123.5</td>
<td>11.2</td>
<td>4.6</td>
<td>19.9</td>
<td>96.4</td>
<td>122</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>2-Br</td>
<td>phen</td>
<td>NO₃</td>
<td>H₂O/NO₃</td>
<td>+11.8</td>
<td>124.2</td>
<td>-7.7</td>
<td>-1.6</td>
<td>50.5</td>
<td>96.3</td>
<td>128</td>
<td>69</td>
</tr>
<tr>
<td>7</td>
<td>3-MeO</td>
<td>bpy</td>
<td>ClO₄</td>
<td>H₂O/ClO₄</td>
<td>+0.5</td>
<td>123.9</td>
<td>12.8</td>
<td>4.4</td>
<td>10.7</td>
<td>102.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3-MeO</td>
<td>bpy</td>
<td>NO₃</td>
<td>H₂O/NO₃</td>
<td>+1.3</td>
<td>124.7</td>
<td>11.8</td>
<td>5.2</td>
<td>11.8</td>
<td>92.8</td>
<td>134</td>
<td>87</td>
</tr>
<tr>
<td>7</td>
<td>3-MeO</td>
<td>bpy</td>
<td>NO₃</td>
<td>NO₃/NO₃</td>
<td>+1.8</td>
<td>124.5</td>
<td>12.4</td>
<td>4.2</td>
<td>16.9</td>
<td>117.2</td>
<td>131</td>
<td>84</td>
</tr>
<tr>
<td>8</td>
<td>3-Cl</td>
<td>phen</td>
<td>ClO₄</td>
<td>H₂O/H₂O</td>
<td>+5.7</td>
<td>121.0</td>
<td>11.6</td>
<td>4.7</td>
<td>3.9</td>
<td>120.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3-Cl</td>
<td>bpy</td>
<td>NO₃</td>
<td>H₂O/H₂O</td>
<td>+11.8</td>
<td>122.4</td>
<td>9.0</td>
<td>5.4</td>
<td>5.8</td>
<td>112.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4-tBu</td>
<td>bpy</td>
<td>ClO₄</td>
<td>EtOH/ClO₄</td>
<td>-16.0</td>
<td>120.8</td>
<td>13.2</td>
<td>4.1</td>
<td>3.8</td>
<td>73.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4-Br</td>
<td>bpy</td>
<td>ClO₄</td>
<td>EtOH/ClO₄</td>
<td>-6.8</td>
<td>122.8</td>
<td>14.6</td>
<td>4.0</td>
<td>10.7</td>
<td>94.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4-MeO</td>
<td>bpy</td>
<td>ClO₄</td>
<td>EtOH/ClO₄</td>
<td>-5.2</td>
<td>123.5</td>
<td>15.6</td>
<td>3.5</td>
<td>11.7</td>
<td>95.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4-Me</td>
<td>phen</td>
<td>ClO₄</td>
<td>H₂O/H₂O</td>
<td>-1.8</td>
<td>122.2</td>
<td>10.3</td>
<td>4.8</td>
<td>2.9</td>
<td>83.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4-Cl</td>
<td>Phen</td>
<td>ClO₄</td>
<td>EtOH/EtOH</td>
<td>0</td>
<td>122.1</td>
<td>11.1</td>
<td>4.1</td>
<td>6.7</td>
<td>88.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4-F</td>
<td>bpy</td>
<td>NO₃</td>
<td>H₂O/H₂O</td>
<td>+1.4</td>
<td>124.4</td>
<td>10.0</td>
<td>5.1</td>
<td>9.3</td>
<td>99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4-Me</td>
<td>bpy</td>
<td>NO₃</td>
<td>H₂O/H₂O</td>
<td>+1.5</td>
<td>122.1</td>
<td>10.9</td>
<td>4.4</td>
<td>7.3</td>
<td>112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>H</td>
<td>bpy</td>
<td>NO₃</td>
<td>OH/NO₃</td>
<td>+2.0</td>
<td>124.1</td>
<td>10.8</td>
<td>5.3</td>
<td>10.2</td>
<td>94.9</td>
<td>130</td>
<td>88</td>
</tr>
<tr>
<td>10</td>
<td>4-CF₃</td>
<td>bpy</td>
<td>NO₃</td>
<td>H₂O/H₂O</td>
<td>+5.7</td>
<td>122.2</td>
<td>10.6</td>
<td>4.2</td>
<td>7.5</td>
<td>116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>H</td>
<td>bpy</td>
<td>-</td>
<td>NO₃/NO₃</td>
<td>+17.6</td>
<td>122.0</td>
<td>5.3</td>
<td>7.4</td>
<td>5.0</td>
<td>108.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This work; a $H = -J\{S_1, S_2\}$; b average Elongation (Eq. 1): $\Delta = (z - \bar{xy}) / \sqrt{\bar{xy} \bar{xy} = (x+y)/2}$; c average ronbicity: $\rho = (y - x) / x$; d average O-Carboxy-Carboxy-Carboxy; e relative orientation of the O₃; L-Mn···Mn-L angle; f angle between the equatorial plane of the octahedron N₂O₂ and the NO₃ plane; abbreviations: bpy = 2,2’-bipyridine, phen = 1,10-phenantroline.
Table TS2. Magnetic interaction (J_{cal}), charge (Q) and charge loss (ΔQ) on the perchlorate anions (X), the water ligands (Lw) and in the two manganese ions of the complex (Mn\textsubscript{w} and Mn\textsubscript{Cl}), for different models based on the crystallographic data of $[^{[\text{Mn(bpy)(H}_2\text{O})]}(\mu-2,6\text{-Cl}_2\text{C}_6\text{H}_3\text{COO})_2(\mu-O)[\text{Mn(bpy)}(\text{ClO}_4)]\text{ClO}_4]$ (1) (Mn\textsubscript{w}···(ClO\textsubscript{4})\textsubscript{1/2}···w'···Mn'). A scheme for the frame work units in each model is shown in Table 5. ($H = -JS_1S_2$)

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>J_{cal} /cm$^{-1}$</th>
<th>Q (X) /me</th>
<th>Q (Lw) /me</th>
<th>ΔQ (2X+w) /me</th>
<th>Q (w') /me</th>
<th>ΔQ (2X+2w) /me</th>
<th>Q (Mn\textsubscript{w}) /me</th>
<th>Q (Mn\textsubscript{Cl}) /me</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>w-None</td>
<td>-19.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>72</td>
<td>72</td>
<td>1563</td>
<td>1545</td>
</tr>
<tr>
<td>1B</td>
<td>w-ClO\textsubscript{4}⁻</td>
<td>-16.7</td>
<td>-963</td>
<td>-</td>
<td>37</td>
<td>68</td>
<td>105</td>
<td>1553</td>
<td>1562</td>
</tr>
<tr>
<td>1C</td>
<td>w-ClO\textsubscript{4}⁻</td>
<td>-16.5</td>
<td>-</td>
<td>-975</td>
<td>25</td>
<td>63</td>
<td>88</td>
<td>1546</td>
<td>1561</td>
</tr>
<tr>
<td>1D</td>
<td>w-(ClO\textsubscript{4}⁻)\textsubscript{2}</td>
<td>-13.5</td>
<td>-964</td>
<td>-978</td>
<td>58</td>
<td>65</td>
<td>123</td>
<td>1556</td>
<td>1554</td>
</tr>
<tr>
<td>1E</td>
<td>w-(ClO\textsubscript{4}⁻)\textsubscript{2}·W</td>
<td>-13.1</td>
<td>-956</td>
<td>-963</td>
<td>-26</td>
<td>55</td>
<td>122</td>
<td>1556</td>
<td>1555</td>
</tr>
<tr>
<td>1···1</td>
<td>w-(ClO\textsubscript{4}⁻)\textsubscript{2}·w'</td>
<td>-14.5</td>
<td>-953</td>
<td>-953</td>
<td>+61</td>
<td>(155)/2</td>
<td>(216)/2</td>
<td>1554</td>
<td>1559</td>
</tr>
</tbody>
</table>
Table TS3. Magnetic exchange (J_{cal}), charge (Q) and charge loss (ΔQ) and spin density (ρ) on the extra bridge, and charge in the two manganese ions of the complex and the monodentate ligands, for different models based on the crystallographic data of [(Mn(bpy)(H$_2$O))(μ-2,6-Cl$_2$C$_6$H$_3$COO)$_2$]μ-O)(Mn(bpy)(NO$_3$)]NO$_3$·H$_2$O·CH$_3$CN (2·H$_2$O·CH$_3$CN) (Mn-L···W···X···L···W-Mn). A scheme for the frame work units in each model is shown in Table 6. ($H = -JS_1\cdot S_2$)

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>J_{cal} /cm$^{-1}$</th>
<th>Q (X) /me</th>
<th>ΔQ (X) /me</th>
<th>Q (W) /me</th>
<th>ΔQ (X+W) /me</th>
<th>ρ (X) /me</th>
<th>ρ (W) /me</th>
<th>Q (LX) /me</th>
<th>Q (LW) /me</th>
<th>Q (MN) /me</th>
<th>Q (Mn) /me</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A</td>
<td>None</td>
<td>-31.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-850</td>
<td>76</td>
<td>1543</td>
<td>1557</td>
</tr>
<tr>
<td>2B</td>
<td>MeNO$_2$</td>
<td>-31.2</td>
<td>23</td>
<td>23</td>
<td>-10</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>-846</td>
<td>54</td>
<td>1553</td>
<td>1554</td>
</tr>
<tr>
<td>2C</td>
<td>HONO$_2$</td>
<td>-31.1</td>
<td>19</td>
<td>19</td>
<td>-9</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>-849</td>
<td>61</td>
<td>1555</td>
<td>1554</td>
</tr>
<tr>
<td>2D</td>
<td>NO$_2^-$</td>
<td>-28.6</td>
<td>-858</td>
<td>142</td>
<td>-19</td>
<td>123</td>
<td>-877</td>
<td>67</td>
<td>-848</td>
<td>55</td>
<td>1545</td>
<td>1552</td>
</tr>
<tr>
<td>2E</td>
<td>ONO$_2^-$</td>
<td>-27.6</td>
<td>-943</td>
<td>57</td>
<td>-15</td>
<td>42</td>
<td>-958</td>
<td>1</td>
<td>-849</td>
<td>59</td>
<td>1556</td>
<td>1547</td>
</tr>
<tr>
<td>2F</td>
<td>HOCO$_2^-$</td>
<td>-26.5</td>
<td>-939</td>
<td>61</td>
<td>-13</td>
<td>48</td>
<td>-952</td>
<td>1</td>
<td>-848</td>
<td>58</td>
<td>1558</td>
<td>1544</td>
</tr>
</tbody>
</table>
Table TS4. X-ray crystallographic data collection and structure refinement details for compounds [(Mn(bpy)(H₂O))(µ-2,6-Cl₂C₆H₃COO)](µ-O)(Mn(bpy)(ClO₄))ClO₄ (1) and [(Mn(bpy)(H₂O))(µ-2,6-Cl₂C₆H₃COO)](µ-O)(Mn(bpy)(NO₃))NO₃·H₂O·CH₃CN (2·H₂O·CH₃CN).

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2·H₂O·CH₃CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>chemical formula</td>
<td>C₃₆H₂₈Cl₆Mn₂N₄O₁₄</td>
<td>C₃₆H₂₈Cl₆Mn₂N₄O₁₃</td>
</tr>
<tr>
<td>formula weight / g mol⁻¹</td>
<td>1035.15</td>
<td>1016.32</td>
</tr>
<tr>
<td>T / K</td>
<td>293</td>
<td>100</td>
</tr>
<tr>
<td>λ (Mo Kα) / Å</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>crystal system</td>
<td>P2₁/c (No. 14)</td>
<td>Pca2₁(Nº21)</td>
</tr>
<tr>
<td>space group</td>
<td>Monoclinic</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>a / Å</td>
<td>11.693(2)</td>
<td>18.6545(12)</td>
</tr>
<tr>
<td>b / Å</td>
<td>39.642(8)</td>
<td>14.0357(8)</td>
</tr>
<tr>
<td>c / Å</td>
<td>9.7135(18)</td>
<td>15.6154(10)</td>
</tr>
<tr>
<td>β / deg.</td>
<td>111.005(7)</td>
<td></td>
</tr>
<tr>
<td>V / Å³</td>
<td>4203.3(14)</td>
<td>4088.6(4)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ρ<sub>calc</sub> / g cm⁻³</td>
<td>1.636</td>
<td>1.651</td>
</tr>
<tr>
<td>μ / mm⁻¹</td>
<td>1.051</td>
<td>0.934</td>
</tr>
<tr>
<td>Absorption coefficient / mm⁻¹</td>
<td>1.051</td>
<td>0.934</td>
</tr>
<tr>
<td>F(000)</td>
<td>2080</td>
<td>2052</td>
</tr>
<tr>
<td>Crystal size / mm</td>
<td>0.344 x 0.090 x 0.056</td>
<td>0.534 x 0.248 x 0.153</td>
</tr>
<tr>
<td>Θ range / deg.</td>
<td>1.9 to 28.4</td>
<td>2.5 to 27.2</td>
</tr>
<tr>
<td>limiting indices</td>
<td>-14 ≤ h ≤ 15, -52 ≤ k ≤ 52, -12 ≤ l ≤ 12</td>
<td>-23 ≤ h ≤ 23, -18 ≤ k ≤ 17, -20 ≤ l ≤ 16</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>88576 / 10480 [R(int) = 0.0573]</td>
<td>17365/7592 [R(int) = 0.0517]</td>
</tr>
<tr>
<td>Completeness to theta / %</td>
<td>99.7</td>
<td>98.5</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.7457 and 0.6807</td>
<td>0.7455 and 0.5728</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>data / restraints / parameters</td>
<td>10480 / 95 / 649</td>
<td>7592 / 14 / 530</td>
</tr>
<tr>
<td>goodness-of-fit on F²</td>
<td>1.057</td>
<td>1.084</td>
</tr>
<tr>
<td>final R indices [I>2σ(I)]</td>
<td>R₁ = 0.0497, wR₂ = 0.1198</td>
<td>R₁ = 0.0700, wR₂ = 0.1856</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R₁ = 0.0637, wR₂ = 0.1266</td>
<td>R₁ = 0.0753, wR₂ = 0.1907</td>
</tr>
</tbody>
</table>

^a R₁ = Σ(|F₀| - |F₁|) / Σ|F₀|. ^b wR² = Σ[ω(F₀² - F₁²)²] / Σ[ω(F₀²)²]²/2, ω = 1/[σ²(F₀²) + (0.0675P)² + 1.4805P], where P = (F₀² + 2F₁²) / 3.
Gómez, V.; Corbella, M.; Aullón, G. Two Temperature-Independent Spinomers of the Dinuclear Mn(III) Compound \([\text{Mn}(\text{H}_2\text{O})(\text{Phen})]_2[\mu-2-\text{ClC}_6\text{H}_4\text{COO}]_2[\mu-\text{O}][\text{ClO}_4]_2\). Inorg. Chem. 2010, 49 (4), 1471–1480 DOI: 10.1021/ic901719t.

Gómez, V.; Corbella, M.; Rouboue, O.; Teat, S. J. Magneto-Structural Correlations in Dinuclear Mn(III) Compounds with Formula \([\text{Mn}(\text{L})(\text{NN})][\mu-\text{O}][\mu-2-\text{RC}_6\text{H}_4\text{COO}]_2[\text{Mn}(\text{L}')(\text{NN})]]^{2-}\). Dalton Trans. 2011, 40 (44), 11968 DOI: 10.1039/c1dt11242b.

Escrive-Tur, L.; Font-Bardia, M.; Albela, B.; Corbella, M. New Insights into the Comprehension of the Magnetic Properties of Dinuclear MnIII Compounds with the General Formula \([\text{Mn}(\text{L})(\text{NN})][\mu-\text{O}][\mu-\text{n}-\text{RC}_6\text{H}_4\text{COO}]_2]_2X_2\). Dalton Trans. 2016, 45 (29), 11753–11764 DOI: 10.1039/C6DT01097K.

Bibliography