Electronic Supporting Information for:

A phase-transfer crystallization pathway to synthesize ultrasmall silicoaluminophosphate for enhanced catalytic conversion of dimethylether-to-olefin⁺

Hongxin Ding^a, Jiajia Ding^b, Wei Liu^b, Xiaoling Zhao^a, Qijin Chi^c, Kake Zhu^a*, Xinggui Zhou^a, Weimin Yang^b*

^aState Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.

^bShanghai Research Institute of Petrochemical Technology, Sinopec, Shanghai 201208, P. R. China.

^cDepartment of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark

Table of contents

Index	Page
A. Synthesis details	S4
B. Characterization techniques	S4
C. Diffusivity measurements	S6
D. Catalytic assessment and carbon deposit analyses	S 6
E. Supplementary Figures and Tables	S 7
Fig. S1 High magnification FE-SEM images of SAPO-34-N.	S 8
Fig. S2 XRD patterns & relative crystallinity for SAPO-34-C,	S9
SAPO-34-S-W-T, SAPO-34-D-W, SAPO-34-N, SAPO-34-PB-D-W,	
SAPO-34-PB-D-W-T, SAPO-34 W:T=50:3.2 , SAPO-34 W:T=50:13 and	
SAPO-34 W:T=25:6.5.	
Fig. S3 SEM images of SAPO-34-C, SAPO-34-S-W-T, SAPO-34-D-W,	S10
SAPO-34-N, SAPO-34-PB-D-W, SAPO-34-PB-D-W-T, SAPO-34	
W:T=50:3.2, SAPO-34 W:T=50:13, SAPO-34 W:T=25:6.5.	
Fig. S4 Photographs of time-dependent products of SAPO-34-N and	S11
SAPO-34-C crystallization process, and GC-MS of supernatant upper part of	
mother liquor of SAPO-34-C-72h after centrifugation.	
Fig. S5 Dynamic Light Scattering measurements of early stage and final stage	S12
of solid dispersion at varied crystallization time for SAPO-34-N and	
SAPO-34-C formation.	
Fig. S6 XRD patterns of the solid products collected at different time points of	S13
SAPO-34-N, SAPO-34-C, relative crystallinity evolution with crystallization	
time, and time-dependent FT-IR of SAPO-34-N.	
Fig. S7 SEM images of SAPO-34-C-0.5h, SAPO-34-C-1h, SAPO-34-C-2h,	S14
SAPO-34-C-3h, SAPO-34-C-6h, SAPO-34-C-9h, SAPO-34-C-12h,	
SAPO-34-C-24h, SAPO-34-C-48h, SAPO-34-C-72h.	
Fig. S8 SEM images of SAPO-34-N-0.5h, SAPO-34-N-1h, SAPO-34-N-2h,	S15
SAPO-34-N-3h, SAPO-34-N-6h, SAPO-34-N-9h, SAPO-34-N-12h,	
SAPO-34-N-24h, SAPO-34-N-48h, SAPO-34-N-72h.	
Fig. S9 TEM images of SAPO-34-N-0.5h, SAPO-34-N-1h, SAPO-34-N-2h,	S17
SAPO-34-N-24h, SAPO-34-N-48h.	
Fig. S10 Chemical composition variations of inorganic components in solid	S18
product during crystallization process	

Fig. S11 Time on stream C2H4/C3H6 of DTO for SAPO-34-N and	S19						
SAPO-34-C.							
Fig. S12 Coke amounts determined via Thermal gravimetric analysis (TGA)	S20						
measurement from spent catalysts.							
Fig. S13 GC-MS detection of entrapped hydrocarbon species from spent							
catalysts after DTO reaction.							
Table S1 Detailed synthetic procedures of all S							
Table S2 DTO catalytic results of SAPO-34-C and SAPO-34-N catalysts							

A. Materials and methods

Materials: The reagents used were aluminum isopropoxide (AIP, >98 %, TCI), phosphoric acid (85 wt%, Shanghai Lingfeng Chemical Reagent Co. Ltd.), tetraethylammonium hydroxide (TEAOH) (35 wt%, Shanghai Cainorise Chemicals Co., Ltd), tetraethyl orthosilicate (TEOS, 28 wt % SiO₂, Shanghai Lingfeng Chemical Reagent Co. Ltd), toluene (>99.8 wt %, Shanghai Lingfeng Chemical Reagent Co. Ltd).

Synthesis procedure: SAPO-34-N was prepared using a phase-transfer synthesis process. The molar composition ratio of the synthesis gel was $1.0 \text{ Ab}O_3$: $1.0 \text{ P}_2\text{O}_5$: 0.3 SiO_2 : 2.0 TEAOH: 50 H₂O: 6.5 toluene. In a typical synthesis, 2.19 g TEOS was mixed with 3.84 g H₃PO₄ and 3.76 g deionized water to form a mixture, to which 14.03 g TEAOH was added dropwise after 2 h stirring. The mixture was further stirred for 4 h and named solution A. In another beaker, 6.81 g AIP was dissolved in 10.00 g toluene by mechanical stirring for 3 h to produce solution B. Solutions A and B were mixed and transferred to a 100 mL Teflon lined stainless steel autoclave for crystallization. Crystallization was conducted at 473 K under tumbling of 50 rpm for 48 h. The product was centrifuged, washed thoroughly with water before drying at 353 K for 6 h, followed by calcination at 823 K for 6 h. To investigate the crystallization, part of the gel was sampled at various crystallization intervals and denoted by using synthesis time as suffix. For example, SAPO-34-N-12h represent the sample was hydrothermally treated for 12h.

Conventional counterpart SAPO-34-C was derived from aqueous static crystallization otherwise identical crystallization conditions as that of SAPO-34-N. A series of controlled experiments SAPO-34-D-W derived from aqueous dynamic crystallization, and SAPO-34-S-W-T prepared from water-toluene biphasic media under static crystallization, SAPO-34-PB-D-W derived from aqueous dynamic crystallization from pseudoboehmite, and SAPO-34-PB-D-W-T prepared from water-toluene biphasic media using pseudoboehmite as precursor under otherwise identical crystallization conditions as that of SAPO-34-N; SAPO-34-W:T=50:3.2& SAPO-34-W:T=50:13 just turn water toluene radio from 50:3.2 to 50:13 under otherwise identical crystallization conditions as that of SAPO-34-N. Detailed synthetic procedures are tabulated in Table S3.

B. Characterization techniques

X-ray diffraction (XRD) patterns were gathered using a Rigaku 2550VB/PC

diffractometer operating at 40 kV and 100 mA with Cu K α X-ray source ($\lambda = 1.5418$ Å).

Scanning electron microscopy (SEM) were captured on NOVA Nano SEM 450 (FEI) and Gemini SEM 500 (Carl Zeiss) and transmission electron microscopy (TEM) were captured on images JEL-2011 (JEOL) instruments.

N₂ physisorption measurements were conducted on an ASAP 2020 HD (Micromeritics, USA) analyzer at 77 K, all samples were degassed at 623 K for 24 h under vacuum before measurements. The surface areas were determined by the Brunauer-Emmett-Teller (BET) method. Micropore volumes and surfaces were derived from a *t*-plot approach, pore size distribution was derived from adsorption branch using Barret-Joyner-Halenda (BJH) method, and the total pore volume values were estimated by the adsorption at a relative pressure $p/p_0 = 0.99$.

Ammonium temperature programed desorption (NH₃-TPD) measurements were performed on an AutoChem II (Micromeritics, USA) analyzer. The samples were pretreated at 873 K for 1 h under He flow before saturated with ammonium at 373 K. The profiles collected between 373 K and 873 K at a ramp of 10 K \cdot min⁻¹.

Elementary compositions were measured by inductively coupled plasma optical emission spectrometry (ICP) on an IRIS 1000 instrument.

Dynamic Light Scattering (DLS) measurements were performed on NICOMP 380 ZLS instrument.

²⁹Si, ²⁷Al and ³¹P solid state magic angle spinning nuclear magnetic resonance (MAS NMR) measurements were obtained on a Varian 400 spectrometer, 4 mm ZrO₂ rotors with a spinning rate of 8-10 kHz at room temperature. ²⁷Al MAS NMR spectra were recorded at a resonance frequency of 104.26 MHz. ²⁷Al chemical shifts were reported relative to 0.1 M aqueous Al(NO₃)₃ solution. ²⁹Si and ³¹P MAS NMR measurements were performed at a resonance frequency of 79.49 MHz and 161.98MHz, respectively. The ppm scale was referenced to Si(CH₃)₄ for ²⁹Si and (NH₄)H₂PO₄ for ³¹P.

FT-IR spectra were obtained with a Nicolet 6700 instrument. 1 mg sample was mixed with 99 mg KBr powder to prepare self-support pellets used for FT-IR measurement.

Diffuse reflectance infrared Fourier-transform spectra (DRIFTS) were recorded using a Nicolet 380 spectrometer at 4 cm⁻¹ resolutions. Prior to measurement, catalysts were first activated at 674 K under vacuum for 2h. The background spectrum recorded under identical operating conditions except in the absence of a sample in the cell, was always automatically subtracted from measured spectra.

Gas chromatography-mass spectrometry (GC-MS) were performed on a Agilent 7890B GC/5977B, equipped with MSD&CTC Analytics, 2 mL sample was headspace injected after 363 K for 30 min.

C. Diffusivity measurements

The diffusivity of propylene in the SAPO-34 samples was measured by gravimetric analysis, using an Intelligent Gravimetric Analyzer, model IGA-100, from Hiden Analytical Ltd., Warrington, UK. The system consists of a fully computerized microbalance, which automatically measures the weight of the sample sorbents as a function of time with the gas vapor pressure and sample temperature under computer control. The sensitivity of the microbalance was 1 µg. The calcined sample (0.10 g) was pretreated at a pressure of < 10⁻⁶ Pa and 573 K in a N₂ atmosphere for 3 h to remove adsorbed impurities until the sample held a constant weight. Afterwards, the sample was cooled to 365 K and the contacting gas was replaced by a preset amount of gaseous mixture, consisting of propylene and N₂ (N₂ saturated with propylene at 323 K, 100 mL/min). Isotherms and the corresponding kinetics of adsorption and desorption were determined at varied partial pressure ($P/P_0 = 0-1$) steps.

To quantify to which extent diffusion resistance was mitigated by reduction of crystal size, diffusion measurements were carried out with propylene as a representative adsorbate. The effective diffusivity was estimated using Fick's second law, which expresses the concentration variation of molecules inside a porous slab (assumed infinitely extended in the transverse direction) as a function of exposure time:

$$\frac{\partial C}{\partial t} = D_{eff} \left(\frac{\partial^2 C}{\partial x^2} \right) \tag{1}$$

where C is the concentration of propylene inside the particle, t is time, D_{eff} is the diffusivity, and x is the distance, measured from the center of a slab.

At the beginning of adsorption process in a slab-like crystal, the solution of this equation can be well approximated

$$\frac{q(t)}{q(\infty)} = \frac{6}{\sqrt{\pi}} \sqrt{\frac{D_{eff}}{L^2}} \sqrt{t}$$
(2)

where $q(t)/q(\infty)$ is the normalized hydrocarbon uptake and L is the characteristic diffusion length.

D. Catalytic assessment and carbon deposit analyses

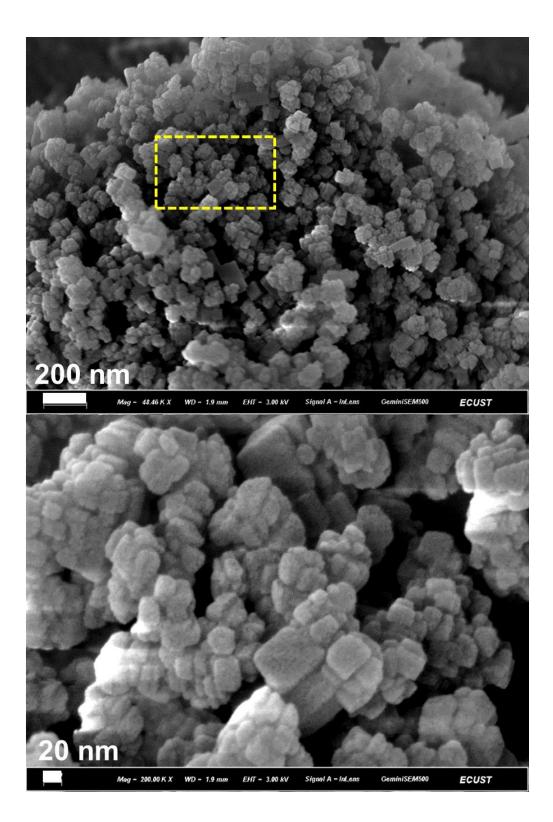
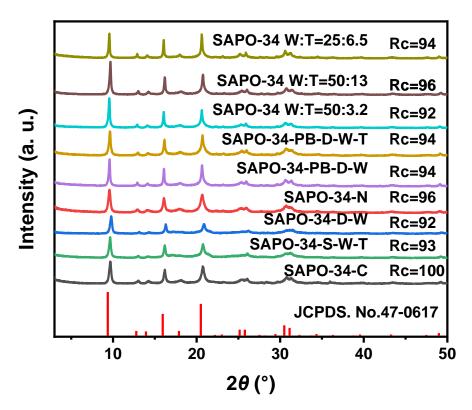
Dimethyl ether to olefin conversion (DTO) was carried out on a fix bed reactor at atmospheric pressure. 100 mg catalyst (60-80 mesh) was preheated at 823 K for 3h under N₂ flow before reaction. Reaction temperature was 723 K and the dimethyl ether weight hourly space velocity (WHSV) was 2 h⁻¹. The products were analyzed by an on-line gas chromatograph equipped with a flame ionization detector (FID) and Plot-Q column (Agilent J&W GC Columns, HP-PLOT/Q 19091P-Q04, 30 m × 320 μ m × 20 μ m). The conversion and selectivity were calculated on CH₂ basis and methanol was considered as reactant in the calculation.

DME conversion =
$$\frac{1 - (C - \text{atoms of DME}_{output})}{(C - \text{atoms of DME}_{input})} \times 100$$
(3)

Product selectivity =
$$\frac{C-atoms of the product}{C-atoms of DME_{input} - C-atoms of DME_{output}}$$
 (4)

Coke amounts determined via Thermal gravimetric analysis (TGA) measurement and the corresponding GC-MS detection of entrapped hydrocarbon species from spent catalysts TGA was carried out on a Perkin-Elmer Pyris 1 TG analyzer at a heating rate of 10 K min⁻¹ from room temperature to 800 °C in air. GC-MS were conducted on Agilent 7890A GC/5975C MSD with HP-5MS column (30 m × 250 μ m × 0.25 μ m) after flash at 1023 K by PY-2020iD (Frontier Lab).

E. Supplementary Figures and Tables

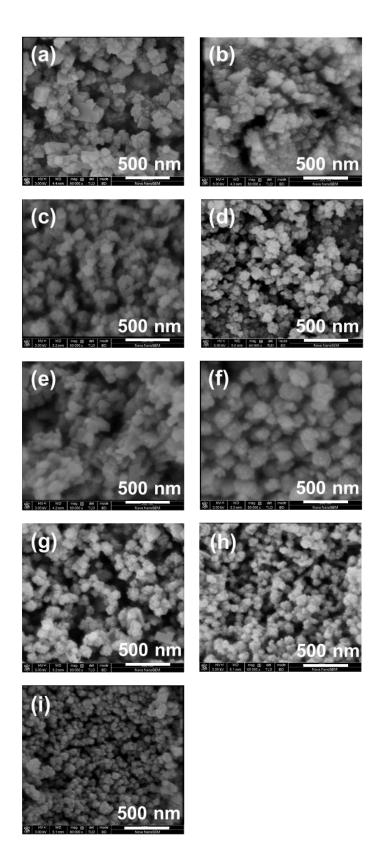
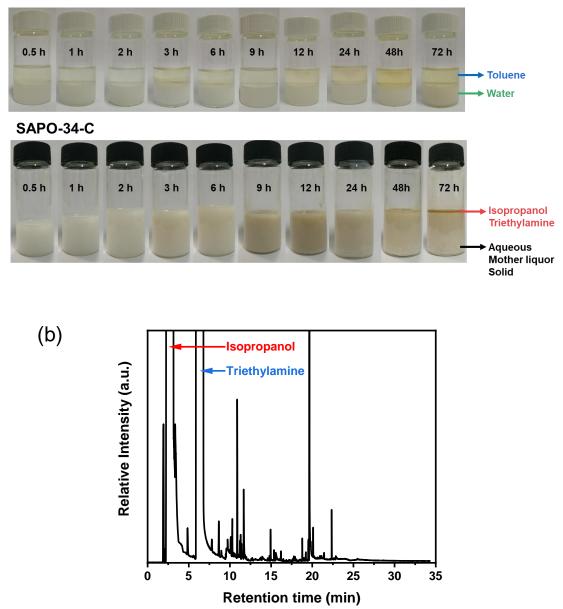

Fig. S1 High magnification FE-SEM images of SAPO-34-N.

Fig. S2 XRD patterns & relative crystallinity ^a for SAPO-34-C, SAPO-34-S-W-T, SAPO-34-D-W, SAPO-34-N, SAPO-34-PB-D-W, SAPO-34-PB-D-W-T, SAPO-34 W:T=50:3.2 and SAPO-34 W:T=50:13.^b


^a Relative crystallinity calculation based on the area of peaks at $2\theta = 9.5$, 16.0, 20.5, 25.8 and 30.50°, the relative crystallinity of fully crystallized SAPO-34-C.

^b SAPO-34-N derived from water-toluene biphasic synthesis using AIP as precursor (SAPO-34-N), SAPO-34-C derived from aqueous static crystallization, SAPO-34-D-W derived from aqueous dynamic crystallization, and SAPO-34-S-W-T prepared from water-toluene biphasic media under static crystallization otherwise identical crystallization conditions as that of SAPO-34-N. SAPO-34-PB-D-W derived from aqueous dynamic crystallization using PB as precursor, SAPO-34-PB-D-W-T derived from water-toluene biphasic synthesis; SAPO-34 W:T=50:3.2, 50:13& SAPO-34 W:T=25:6.5 just turn water toluene radio from 50:3.2, 50:13 to 25:6.5.

Fig. S3 SEM images of SAPO-34-C (a); SAPO-34-S-W-T (b); SAPO-34-D-W (c); SAPO-34-N (d); SAPO-34-PB-D-W (e); SAPO-34-PB-D-W-T (f); SAPO-34-W:T=50:3.2 (g); SAPO-34-W:T=50:13 (h), SAPO-34-W:T=25:6.5 (i)

SAPO-34-N

Fig. S4 Photographs of time-dependent products of SAPO-34-N and SAPO-34-C crystallization process (a), and GC-MS of supernatant upper part of mother liquor of SAPO-34-C-72h after centrifugation (b).

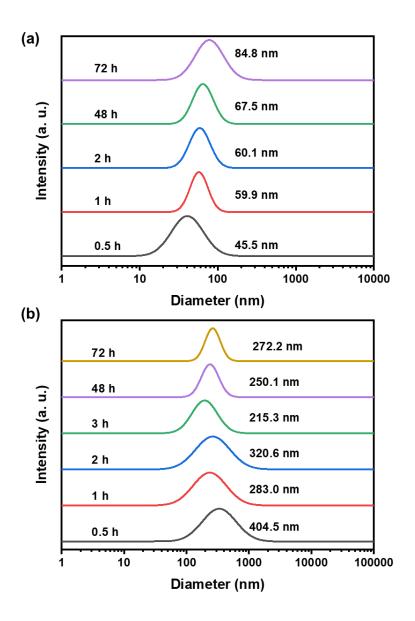
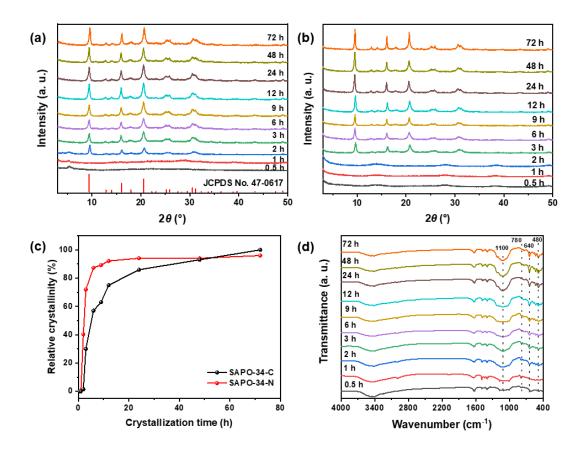
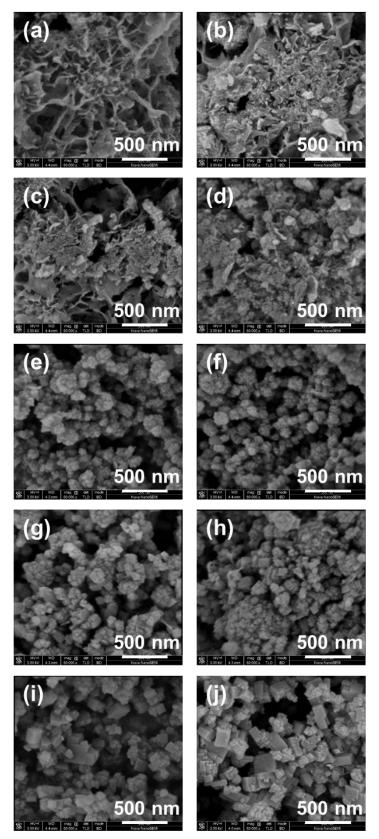
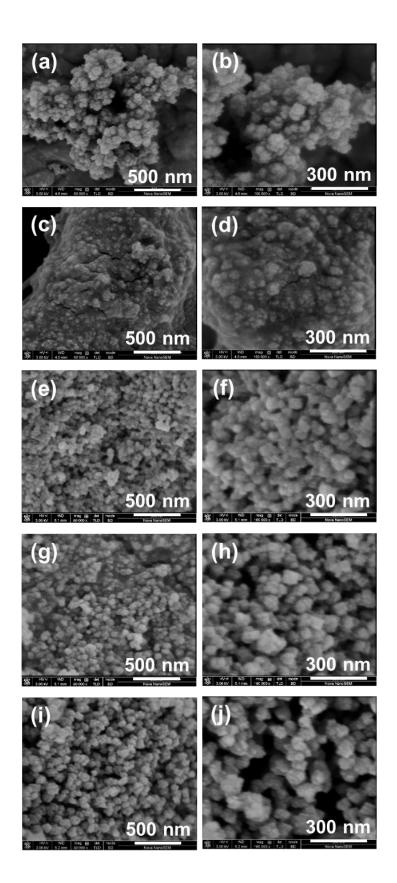


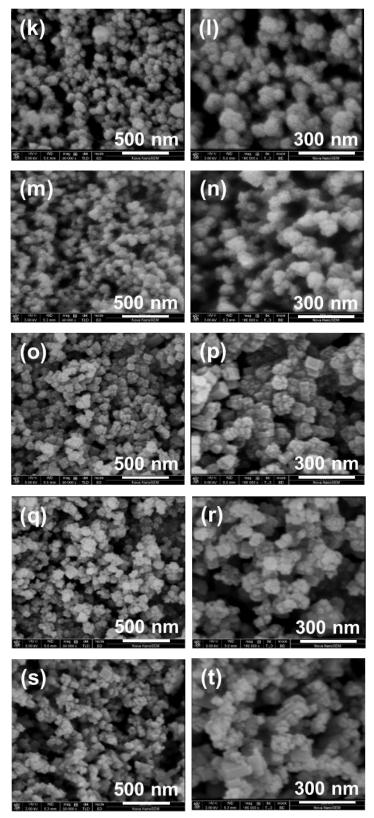
Fig. S5 Dynamic Light Scattering measurements of early stage and final stage of solid dispersion at varied crystallization time for SAPO-34-N (a) and SAPO-34-C (b) formation. a

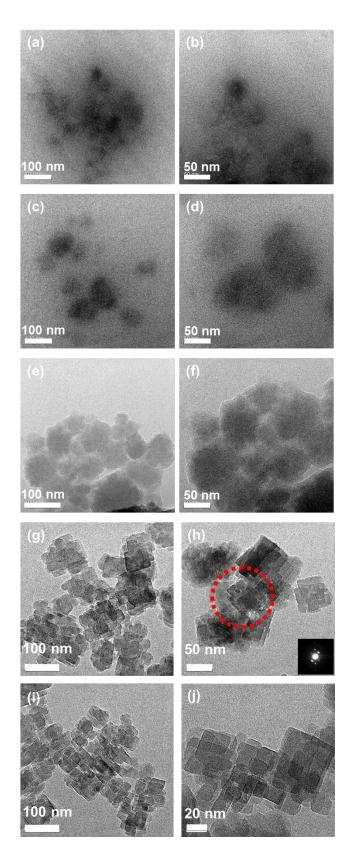
^a Particle dispersion index of SAPO-34-N-0.5h = 0.211, SAPO-34-N-1h = 0.070, SAPO-34-N-2h = 0.096, SAPO-34-N-48h = 0.091, SAPO-34-N-72h = 0.175, SAPO-34-C-0.5h = 0.391, SAPO-34-C-1h = 0.375, SAPO-34-C-2h = 0.399, SAPO-34-C-2h = 0.218, SAPO-34-C-48h = 0.105, SAPO-34-C-72h = 0.078.


Fig. S6 XRD patterns of the solid products collected at different time points of SAPO-34-N (a), SAPO-34-C (b), relative crystallinity evolution with crystallization time (c)^a, and time-dependent FT-IR of SAPO-34-N (d)^b.

^a Relative crystallinity calculation based on the area of peaks at $2\theta = 9.5$, 16.0, 20.5, 25.8 and 30.50 °, the relative crystallinity of fully crystallized SAPO-34-C.


^b All peaks are assigned as follows: $3650-3000 \text{ cm}^{-1}$ arising from the hydroxyl vibration; $1300-1000 \text{ cm}^{-1}$ ascribed to the asymmetric stretch of T–O tetrahedra; 740 cm⁻¹ due to the symmetric stretch of T–O tetrahedra; the peaks at 640 cm⁻¹ corresponding to the vibration of double-6 rings.


Fig. S7 SEM images of SAPO-34-C-0.5h (a), SAPO-34-C-1h (b), SAPO-34-C-2h (c), SAPO-34-C-3h (d), SAPO-34-C-6h (e), SAPO-34-C-9h (f), SAPO-34-C-12h (g), SAPO-34-C-24h (h), SAPO-34-C-48h (i), SAPO-34-C-72h (j).

to be continued

Fig. S8 SEM images of SAPO-34-N-0.5h (a, b), SAPO-34-N-1h (c, d), SAPO-34-N-2h (e, f), SAPO-34-N-3h (g, h), SAPO-34-N-6h (i, j), SAPO-34-N-9h (k, l), SAPO-34-N-12h (m, n), SAPO-34-N-24h (o, p), SAPO-34-N-48h (q, r), SAPO-34-N-72h (s, t).

Fig. S9 TEM images of SAPO-34-N-0.5h (a, b), SAPO-34-N-1h (c, d), SAPO-34-N-2h (e, f), SAPO-34-N-24h (g, h), SAPO-34-N-48h (i, j).

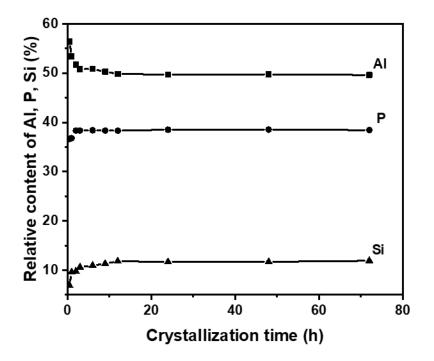


Fig. S10 Chemical composition variations of inorganic components in solid product during crystallization process

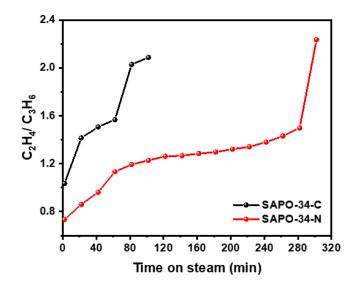


Fig. S11 Time on stream C_2H_4/C_3H_6 of DTO for SAPO-34-N and SAPO-34-C.

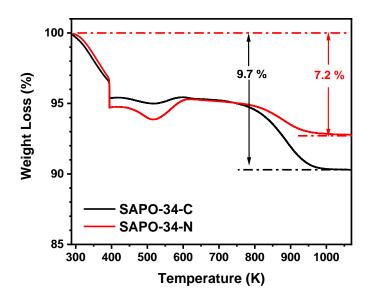


Fig. S12 Coke amounts determined via Thermal gravimetric analysis (TGA) measurement from spent catalysts.

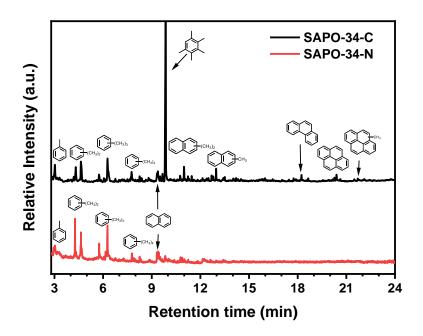


Fig. S13 GC-MS detection of entrapped hydrocarbon species from spent catalysts after DTO reaction.

	Crystallization condition							
Name	Aluminum source	Static or dynamic	Molar composition					
			Al ₂ O ₃	P ₂ O ₅	SiO ₂	TEAOH	H ₂ O	toluene
SAPO-34-C	AIP	Static	1	1	0.3	2	50	0
SAPO-34-S-W-T	AIP	Static	1	1	0.3	2	50	6.5
SAPO-34-D-W	AIP	Dynamic	1	1	0.3	2	50	0
SAPO-34-N	AIP	Dynamic	1	1	0.3	2	50	6.5
SAPO-34-PB-D-W	PB	Dynamic	1	1	0.3	2	50	0
SAPO-34-PB-D-W-T	PB	Dynamic	1	1	0.3	2	50	6.5
SAPO-34 W:T=50:3.2	AIP	Dynamic	1	1	0.3	2	50	3.2
SAPO-34 W:T=50:13	AIP	Dynamic	1	1	0.3	2	50	13
SAPO-34 W:T=25:6.5	AIP	Dynamic	1	1	0.3	2	25	6.5

Table S1 Detailed synthetic procedures of all relevant samples.

Sample	TOS - (min)	Selectivity (%)								
		CH4	C_2H_4	C ₂ H ₆	C ₃ H ₆	C_3H_8	C_4H_8	C4H10	C_5^+	C ₂ H ₄ +C ₃ H ₆
SAPO-34-C	22	1.13	48.05	0.43	33.94	0.63	4.16	6.73	4.88	81.99
SAPO-34-N	102	1.19	46.09	0.65	40.65	0.44	2.61	5.06	3.27	86.75

Table S2 DTO catalytic results of SAPO-34-C and SAPO-34-N catalysts.