Electronic supplementary information

Synthesis of Size-Tuneable \(\beta \)-FeOOH Nanoellipsoids and Study of Their Morphological and Compositional Changes by Reduction

Georgios Kasparisa,b, Aritz Sterne Erdocioa,b, Joshua Mark Tuffnellb and Nguyen Thi Kim Thanha,b*

a Biophysics group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

b UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, United Kingdom

*Corresponding author

E-mail: ntk.thanh@ucl.ac.uk; Fax: +44 (0)207 670 2920; Tel: +44 (0)207 491 6509

Figure S1. Thermogravimetric analysis of PEI coated \(\beta \)-FeOOH nanoparticles
Figure S2. Synthesis of β-FeOOH in the absence of PEI at 80 °C for 2 h.

Figure S3. Length (left) and aspect ratio (right) changes of β-FeOOH nanoellipsoids with different amount of 750 kDa PEI.
Figure S4. XRD patterns of oleylamine reduced β-FeOOH nanoellipsoids.

Figure S5. TEM images of β-FeOOH nanoellipsoids reduced by A) 5 ml, B) 10 ml and C) 15 ml oleylamine. Numbers are indicative of the lengths of the nanorods in each region in the TEM image at each condition.
Figure S7. XRD pattern of β-FeOOH nanoellipsoids reduced with oleylamine at 250 °C for 4 h.

Figure S6. ATR-FTIR spectra of oleylamine and oleylamine reduced nanoparticles.
Figure S8. TEM image of nanoparticles reduced with oleylamine at 250 °C for 4 h.

Figure S9. TEM images of hydrazine reduction at different reaction times.