Supporting Information

Stereocomplex Affected Crystallization Behavior of PDLA in PDLA/PLDLA blends

Lu Cheng\textsuperscript{1}, Cunliang Hu\textsuperscript{1}, Jingqing Li\textsuperscript{*1}, Shaoyong Huang\textsuperscript{*2}, Shichun Jiang\textsuperscript{*1}

\textbf{Figure S1} DSC melting curves at 10 °C/min of all the synthesized samples of PDLA (D), PLLA (L), and PLDLA copolymers (L-x=89, 83, 50 %) after isothermally crystallized at 140 °C for the same time.

\textbf{Figure S2} POM images of the samples as depicted crystallizing from melt during their isothermal crystallization processes at 130 °C

* Corresponding authors: scjiang@tju.edu.cn, syhuang@ciac.ac.cn, jqli11103@tju.edu.cn
**Figure S3** POM images of the samples as depicted crystallizing from melt during their isothermal crystallization processes at 140 °C.

**Figure S4** POM images of the samples as depicted after isothermally crystallizing from melt at 110 °C for 20 s and 120 °C for 50 s, respectively.
**Figure S5** Induction periods of the samples as depicted while isothermally crystallizing from melt at various temperatures $T_c$.

**Figure S6** In-situ 1D-WAXS profiles collected during the non-isothermal crystallization processes at cooling rates of 10 °C/min of the samples including D (a), D/L (b), D/(L-89%) (c), D/(L-83%) (d), and D/(L-50%) (e) as depicted.
Figure S7 XRD profiles of D (a), D/L (b), D/(L-89%) (c), D/(L-83%) (d), an D/(L-50%) (e) isothermally crystallized at the depicted various temperatures.

Figure S8 $T_c$-dependent relative crystallinity of the depicted samples isothermally crystallized from the melt at $T_c$ for 6 hours (a) and the formed SC and HC crystals fractions (b). The open and solid symbols refer to HC and SC crystals in the samples.
Figure S9 In-situ 1D-WAXS profiles of the isothermally crystallizing PDLA (a), D/L (b), D/(L-89%) (c), D/(L-83%) (d), and D/(L-50%) (e) at 130 °C.

Figure S10 Diffraction peaks intensity of the samples as depicted representing the SC and HC crystallinities dependent on crystallization time $t$ during isothermal crystallization process characterized by in-situ WAXS at 130 °C.
Figure S11 The glass transition temperature of the melt-quenched amorphous-made samples D/L, D/(L-89 %), D/(L-83 %), and D/(L-50 %) blends as depicted in comparison with that of neat PDLA determined by DSC with a heating rate of 10 °C/min.

Figure S12 Equilibrium melting point of PDLA HC crystals in the D/L, D/(L-89 %), D/(L-83 %), and D/(L-50 %) blends as depicted in comparison with that of neat PDLA.