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Solution of the Heat Equation

The 3ω method was originally developed by David Cahill1 for the measurement of the thermal

conductivity of solids, particularly of thin-�lms.2 In this method, an AC current of frequency

ω is driven along a narrow metallic line deposited on top of the sample under study (Fig.

S1a)). The temperature distribution in the solid due to Joule heating can be obtained by

solving the heat equation, whose expression in cylindrical coordinates is:
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where D, and κ are the thermal di�usivity, the heating power and the thermal conductivity

respectively. In the limit where the metal strip can be considered to be in�nitely long and

narrow, at a depth r (l � r � w) the heat propagation can be considered to be cylindrical

(Fig. S1b)). In this case the temperature function should not depend on θ and z:
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The solution of this equation is proportional to the zeroth-order modi�ed Bessel function

(K0)
3:4
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where δ is the penetration depth of the evanescent temperature wave:
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2iω
(4)
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Figure S1: (a) Experimental setup for the measurement of the thermal conductivity of solids.
A metallic line of width w and length l is deposited on top of the solid, and it is used as a
heater and sensor. (b) Heat propagation through the solid in a perpendicular plane to the
metallic strip, due to Joule heating.

In the limit where r � δ, the Bessel function can be approximated by:
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where γ ' 0.5772 is the Euler-Mascheroni constant. By introducing this approximation in
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the equation (3), the temperature oscillation can be expressed as follows:
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This equation is the solution for an in�nitely narrow line. However, the solution for a

strip with a �nite width w can be calculated as the convolution of many in�nitely narrow

heating lines along the width of the sensor. The spatial heat generation function can be

expressed as a normalized rectangle function:
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In order to perform the convolution of this function and the equation (3), it is convenient

to move to the Fourier space, where the convolution of two functions is the product of their

Fourier transforms. Then, the Fourier cosine transform of the Bessel function along the

width direction (x) is:
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And the transform of the spatial function (7) is:
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Then, applying the convolution theorem and making the inverse Fourier transform, the

temperature distribution created by the strip can be expressed as follows:
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Whose average provides the mean temperature measured by the strip:
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The integral of the equation (11) does not have an analytic solution. However, in the limit

where δ � w, the sinc function can be approximated by 1 and the upper limit of the integral

can be reduced to the inverse of the half-width of the strip, 1/b = 2/w. On this limit, the

solution can be rewritten as follows:
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If we compare the equations (6) and (12), we can observe that they only di�er in the Euler-

Mascheroni constant. Therefore, we can express the solution of the temperature oscillations

as a function of a constant (η) which should depend on the material.
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The 3ω voltage

For any resistance supporting an AC current at ω, self-heating by Joule e�ect produces a

voltage at three times the input frequency (3ω), related to the temperature oscillations in

the resistance. When we drive an AC current through the heater-sensor resistance (R), the
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dissipated power which develops due to the Joule e�ect is:

Q = I2R = I20 sin2(ωt)R =
I20R

2
[1− cos(2ωt)] = P [1− cos(2ωt)] (14)

where I0 is the amplitude of the AC current. This heating will produce a variation in

the temperature, which has contributions of transient and oscillatory components. When

the transient component reaches the equilibrium, the temperature oscillation (∆T ) can be

expressed as follows:

∆T (r, t) = −∆T (r) cos(2ωt+ φ) (15)

where φ is the di�erence of phase between the input current and the temperature wave.

The e�ect of the self-heating in the resistance produces oscillations in its value. Therefore,

according to Ohm's law, the voltage drop in the resistance can be expressed as:
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This equation shows that the value of ∆T , and consequently the thermal conductance of the

sample, can be obtained by measuring the third harmonic of the voltage (V3ω):

V3ω =
I0

dR
dT

2
∆T (r) (17)

Therefore, we can obtain the thermal conductivity of the substrate from the slope of the

V3ω/V1ω vs ln(2ω) plot:

κ =
I20

dR
dT

4πlm
(18)

where m is this slope.
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Extension of the 3ω method for liquids

Chen et al.5 solved the heat di�usion equation for the case where the metallic strip is placed

between two semi-in�nite media, a solid substrate and a �uid. Similar to equation (11), the

solution of the heat equation when a liquid is placed over the heater line (∆Ts+l) can be

expressed as follows:
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where the subscripts s and l refer to the substrate and the liquid respectively. As in equation

(11), the integral of this equation does not have an analytic solution. However, we can use

the energy conservation principle and obtain an approximate solution of the equation. The

power dissipated in the heater (P ) must be the sum of the power dissipated both in the solid

(Ps) and the liquid (Pl):

P = Ps + Pl (20)

Now, we can assume that the solution for each media can be obtained independently from

equation (13):
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where Hj(x) = − ln(x) + ηj. Supposing that the temperature oscillations produced in both

media are equal, ∆Ts+l ' ∆Ts ' ∆Tl, the equation can be rewritten as:
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This equation shows that in the linear regime, the apparent thermal conductivity calculated

from the slope of the V3ω/V1ω vs. ln(2ω) plot should be the sum of the thermal conductivity

of the solid and the liquid:

κ = κs + κl (23)

Therefore, if the thermal properties of the substrate are known, the thermal conductivity of

the liquid can be obtained.

In order to increase the sensitivity of the method, i.e. to increase the 3ω voltage with

respect to the 1ω signal as much as possible, the dimensions of the line (particularly its

width) must be properly optimized. The e�ect of line-width over the response of the sensor

is shown in Figure S3 below.
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Figure S2: Frequency dependence of the 3ω voltage for di�erent line widths, for a power of
5 mW. Increasing the width of the line produces a departure from the linear regime. This
e�ect is more evident in the presence of liquid (right panel).

Heat Capacity of Liquids

The intercept of the V3ω vs. ln(2ω) plot contains information about the thermal conductivity

and heat capacity of the liquid and substrate. For obtaining the heat capacity of the liquid,

accurate values of C and κ of the substrate must be derived from an independent measure-
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ment. The κ(T) was obtained directly by the 3ω method in our setup. For the C we have

used a PPMS from Quantum Design; see Fig. S3.

The experimental value of η was derived as the only �tting parameter of experimental

V3ω data of di�erent substrates to equation (22). We observed an increase of η with thermal

di�usivity D = κ/(ρC); see Fig. S3d).
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Figure S3: (a) Thermal conductivity of MgO, LaAlO3 (LAO), and Corning R© Glass in the
temperature range 50-300K. (b) Heat Capacity of MgO, LaAlO3, and Corning R© Glass from
2K to 300K. (c) Dependence of the η on the square root of the thermal di�usivity: η =
a + bD1/2, where a = 0.599 ± 0.12 and b = 351 ± 27 s1/2m−1. (d) Fit of the experimental
data to equation (22) for [MOIM ][PF6] on Corning R© glass at 295K, from 56 to 2120 Hz.

This dependence of η must be the result of the di�erence between the solution of the

equation (11):
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and expanding the argument of the integral to �rst order:
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This gives support to the dependence of η with D1/2 found experimentally for di�erent

materials over a wide range of D (Fig. S3c)). The values of η also contain any instrumental

contribution to this parameter in our setup.

Finally, once κ, C and η are determined for Corning R© Glass, we can obtain the values of

the heat capacity of the liquid from the intercept of the V3ω vs. ln(2ω).
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