Understanding and modulating high-energy property of noble-gas hydrides from their long-bonding: an NBO/NRT investigation on HNgCO⁺/CS⁺/OSi⁺ and HNgCN/NC (Ng = He, Ar, Kr, Xe, Rn) molecules

Guiqiu Zhang,*a Junjie Song,a Lei Fu,a Kongshuang Tang,a Yue Su,a and Dezhan Chen,a
Table S1 CCSD(T) calculated values of the harmonic vibrational frequencies (in cm$^{-1}$) of HNgAB Molecules

<table>
<thead>
<tr>
<th>Molecules</th>
<th>H-Ng stretch</th>
<th>Ng-A stretch</th>
<th>A-B stretch</th>
<th>H-Ng-A bend</th>
<th>Ng-A-B bend</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHeCO$^+$</td>
<td>336.5(3004.6)b</td>
<td>318.2(423.4)b</td>
<td>2216.1(2285.4)b</td>
<td>357.3(439.7)b</td>
<td>222.3(203.5)b</td>
</tr>
<tr>
<td>HaCO$^+$</td>
<td>237.9(2535.5)b</td>
<td>129.0(196.3)b</td>
<td>2198.9(2267.4)b</td>
<td>272.3(311.7)b</td>
<td>140.1(138.7)b</td>
</tr>
<tr>
<td>HkCO$^+$</td>
<td>2534.6(2400.5)b</td>
<td>124.7(112.7)b</td>
<td>2202.7(2268.8)b</td>
<td>307.9(314.0)b</td>
<td>143.8(130.3)b</td>
</tr>
<tr>
<td>HxeCO$^+$</td>
<td>2314.2(2213.6)b</td>
<td>120.1(172.4)b</td>
<td>2202.9(2267.5)b</td>
<td>306.4(294.1)b</td>
<td>139.0(126.4)b</td>
</tr>
<tr>
<td>Hrnc$^+$</td>
<td>2185.6</td>
<td>126.7</td>
<td>2207.4</td>
<td>320.3</td>
<td>143.9</td>
</tr>
<tr>
<td>HHeCl$^+$</td>
<td>3272.4(3398.9)b</td>
<td>411.9(485.2)b</td>
<td>1376.9(1336.0)b</td>
<td>550.8(556.0)b</td>
<td>178.4(190.8)b</td>
</tr>
<tr>
<td>HaCl$^+$</td>
<td>2661.6(2638.5)b</td>
<td>152.0(241.6)b</td>
<td>1348.6(1323.4)b</td>
<td>392.3(416.0)b</td>
<td>123.1(139.6)b</td>
</tr>
<tr>
<td>HkCl$^+$</td>
<td>2459.6(2521.1)b</td>
<td>141.6(239.8)b</td>
<td>1357.0(1325.5)b</td>
<td>439.6(432.9)b</td>
<td>126.5(139.1)b</td>
</tr>
<tr>
<td>HxeCl$^+$</td>
<td>2239.7(2278.3)b</td>
<td>133.1(230.6)b</td>
<td>1359.6(1324.0)b</td>
<td>427.9(408.1)b</td>
<td>121.0(137.8)b</td>
</tr>
<tr>
<td>HrncCl$^+$</td>
<td>2108.0</td>
<td>134.9</td>
<td>1365.5</td>
<td>419.5</td>
<td>126.1</td>
</tr>
<tr>
<td>HHeOsi$^+$</td>
<td>3549.5(3559.0)b</td>
<td>543.2(628.9)b</td>
<td>1196.8(1156.0)b</td>
<td>462.8(469.0)b</td>
<td>146.6(134.7)b</td>
</tr>
<tr>
<td>HaOsi$^+$</td>
<td>2760.1(2775.6)b</td>
<td>199.3(252.3)b</td>
<td>1198.0(1162.3)b</td>
<td>407.5(412.6)b</td>
<td>106.2(105.0)b</td>
</tr>
<tr>
<td>HkOsi$^+$</td>
<td>2532.3(2547.2)b</td>
<td>178.8(241.4)b</td>
<td>1194.6(1158.6)b</td>
<td>439.3(442.0)b</td>
<td>107.4(105.2)b</td>
</tr>
<tr>
<td>HxeOsi$^+$</td>
<td>2292.5(2323.2)b</td>
<td>166.7(232.6)b</td>
<td>1189.3(1155.6)b</td>
<td>431.8(428.0)b</td>
<td>106.7(106.5)b</td>
</tr>
<tr>
<td>HrncOsi$^+$</td>
<td>2170.2</td>
<td>166.5</td>
<td>1191.2</td>
<td>412.6</td>
<td>107.6</td>
</tr>
<tr>
<td>HHeCN</td>
<td>989.2</td>
<td>309.7</td>
<td>2128.3</td>
<td>664.5</td>
<td>134.5</td>
</tr>
<tr>
<td>HaCN</td>
<td>1597.2</td>
<td>294.0</td>
<td>2138.8</td>
<td>673.0</td>
<td>138.9</td>
</tr>
<tr>
<td>HkCN</td>
<td>1720.7</td>
<td>282.5</td>
<td>2142.7</td>
<td>636.9</td>
<td>139.9</td>
</tr>
<tr>
<td>HrncCN</td>
<td>1690.8</td>
<td>280.2</td>
<td>2147.0</td>
<td>573.4</td>
<td>143.7</td>
</tr>
<tr>
<td>HHeNC</td>
<td>2428.0</td>
<td>745.7</td>
<td>2050.6</td>
<td>776.7</td>
<td>86.9</td>
</tr>
<tr>
<td>HaNC</td>
<td>2217.8</td>
<td>328.1</td>
<td>2050.7</td>
<td>647.3</td>
<td>66.0</td>
</tr>
<tr>
<td>HkNC</td>
<td>2108.7</td>
<td>314.7</td>
<td>2039.3</td>
<td>652.9</td>
<td>80.1</td>
</tr>
<tr>
<td>Hxen</td>
<td>1970.3</td>
<td>306.1</td>
<td>2066.9</td>
<td>615.6</td>
<td>89.7</td>
</tr>
<tr>
<td>HrncN</td>
<td>1886.2</td>
<td>305.7</td>
<td>2070.2</td>
<td>555.1</td>
<td>99.5</td>
</tr>
</tbody>
</table>

a From ref. 10. b From ref. 11. c From ref. 12.

Table S2 Covalent limits R_{coy} and vdW limits R_{vdw} for H–Ng, Ng–A and H–A bonds of HNgAB Molecules

<table>
<thead>
<tr>
<th>Molecules</th>
<th>R_{coy}, H–Ng (Å)</th>
<th>R_{coy}, Ng–A (Å)</th>
<th>R_{vdw}, H–Ng (Å)</th>
<th>R_{vdw}, Ng–A (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHeCO$^+$</td>
<td>0.78</td>
<td>1.21</td>
<td>1.07</td>
<td>2.88</td>
</tr>
<tr>
<td>HaCO$^+$</td>
<td>1.28</td>
<td>1.71</td>
<td>1.07</td>
<td>3.51</td>
</tr>
<tr>
<td>HkCO$^+$</td>
<td>1.49</td>
<td>1.92</td>
<td>1.07</td>
<td>3.66</td>
</tr>
<tr>
<td>HxCO$^+$</td>
<td>1.63</td>
<td>2.06</td>
<td>1.07</td>
<td>3.86</td>
</tr>
<tr>
<td>Hrnc$^+$</td>
<td>1.74</td>
<td>2.17</td>
<td>1.07</td>
<td>3.97</td>
</tr>
<tr>
<td>HHeCl$^+$</td>
<td>0.78</td>
<td>1.21</td>
<td>1.07</td>
<td>2.88</td>
</tr>
<tr>
<td>HaCl$^+$</td>
<td>1.28</td>
<td>1.71</td>
<td>1.07</td>
<td>3.51</td>
</tr>
<tr>
<td>HkCl$^+$</td>
<td>1.49</td>
<td>1.92</td>
<td>1.07</td>
<td>3.66</td>
</tr>
<tr>
<td>HxCl$^+$</td>
<td>1.63</td>
<td>2.06</td>
<td>1.07</td>
<td>3.86</td>
</tr>
<tr>
<td>HrncCl$^+$</td>
<td>1.74</td>
<td>2.17</td>
<td>1.07</td>
<td>3.97</td>
</tr>
<tr>
<td>HHeOsi$^+$</td>
<td>0.78</td>
<td>1.21</td>
<td>0.95</td>
<td>2.88</td>
</tr>
<tr>
<td>HaOsi$^+$</td>
<td>1.28</td>
<td>1.59</td>
<td>0.95</td>
<td>3.51</td>
</tr>
<tr>
<td>HkOsi$^+$</td>
<td>1.49</td>
<td>1.80</td>
<td>0.95</td>
<td>3.66</td>
</tr>
<tr>
<td>HxOsi$^+$</td>
<td>1.63</td>
<td>1.94</td>
<td>0.95</td>
<td>3.86</td>
</tr>
<tr>
<td>HrncOsi$^+$</td>
<td>1.74</td>
<td>2.05</td>
<td>0.95</td>
<td>3.97</td>
</tr>
<tr>
<td>HHeCN</td>
<td>1.28</td>
<td>1.71</td>
<td>1.07</td>
<td>3.51</td>
</tr>
<tr>
<td>HaCN</td>
<td>1.49</td>
<td>1.92</td>
<td>1.07</td>
<td>3.66</td>
</tr>
<tr>
<td>HkCN</td>
<td>1.63</td>
<td>2.06</td>
<td>1.07</td>
<td>3.86</td>
</tr>
<tr>
<td>Hxen</td>
<td>1.74</td>
<td>2.17</td>
<td>1.07</td>
<td>3.97</td>
</tr>
<tr>
<td>HrncN</td>
<td>1.74</td>
<td>2.13</td>
<td>1.03</td>
<td>3.97</td>
</tr>
</tbody>
</table>
Figure S1. Correlation plot for long-bond orders (b_{H-A}) – dissociation energies (ΔE_2) of HNgNC species.

Figure S2. Correlation plot for long-bond orders (b_{H-A}) – dissociation energies (ΔE_2) of HArAB species.
Figure S3. Correlation plot for long-bond orders (b_{H-A}) – dissociation energies (ΔE_2) of HKrAB species.

Figure S4. Correlation plot for long-bond orders (b_{H-A}) – dissociation energies (ΔE_2) of HXeAB species.
Figure S5. Correlation plot for long-bond orders ($b_{\text{H-A}}$) – dissociation energies (ΔE_2) of HRnAB species.