Electronic Supplementary Information

Zeolites with isolated-framework and oligomeric-extraframework hafnium species characterized with pair distribution function analysis

Takayuki Iida1,2, Koji Ohara3, Yuriy Román-Leshkov2*, and Toru Wakahara1*

1) Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

2) Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, Cambridge, Massachusetts 02139, United States of America

3) Japan Synchrotron Radiation Research Institute/SPring-8, Kouto 1-1-1, Sayo-gun, Hyogo 679-5198, Japan

*Corresponding Author: yroman@mit.edu, wakahara@chemsys.t.u-tokyo.ac.jp;

Phone: Prof. Yuriy Román-Leshkov (+1) 617-253-7090, Prof. Toru Wakahara (+81) 3-5841-7368
Table of contents

1. Experimentals ..3
 1.1 Reagents ...3
 1.2 Synthesis of the catalysts ..3
 1.3 Catalyst characterization ...4

2. Theory and the calculation methods for d-PDF analysis ...7

Table S1. Results for elemental analyses of various catalysts ..10
Table S2. Textural properties of various catalysts ...10
Figure S1. Crystal models of BEA and BEB zeolite polymorphs ..11
Figure S2. N\textsubscript{2} adsorption desorption isotherms of zeolite samples12
Figure S3. Faber-Ziman total structure factors, \(S(Q) \), of the zeolites used in this paper.13
Figure S4. Comparison of the PDFs from different HfO\textsubscript{2} crystal structures14
Figure S5. Assignment of the correlation peaks in the theoretical PDF of HfO\textsubscript{2} (monoclinic phase) made using the PDFgui software ...15
Figure S6. d-PDF comparison of Hf-beta(post)_AT and Sn-beta(post)_AT (top) in reference to the theoretical PDFs of \(m \)-HfO\textsubscript{2} and SnO\textsubscript{2} (cassiterite) ...16
Figure S7. DR UV-vis spectra of various *BEA zeolites with hafnium in reference to that of bulk \(m \)-HfO\textsubscript{2} ..17

References ..18
1. Experimentals

1.1 Reagents

Hafnium cyclopentadiene chloride (Hf(Cp)$_2$Cl$_2$; Sigma-Aldrich), nitric acid (60 wt%; Sigma-Aldrich), aluminosilicate *BEA zeolite (Si/Al = 12.5, CP814E*, Zeolyst), HfO$_2$ (Sigma-Aldrich), benzaldehyde (Wako Chemicals), acetone (Wako Chemicals), toluene (Wako Chemicals), tri-tert-butylbenzene (Wako Chemicals), tetraethoxyorthosilicate (TEOS; Alfa-Aesar), tetraethylammonium hydroxide (35 wt%; Sigma-Aldrich), hydrofluoric acid (48 wt%, Sigma-Aldrich), tin dimethyl dichloride (Me$_2$SnCl$_2$; Sigma-Aldrich) were used as purchased. Air (dry grade) was purchased from Airgas.

1.2 Synthesis of the catalysts

Hf-beta(post) was synthesized as follows. First, removal of framework aluminum from the aluminosilicate *BEA zeolite was performed by immersing the *BEA zeolites into nitric acid, and heating the suspension inside a Teflon*-lined steel autoclave for overnight. After collecting the solid by filtration and washing with deionized water (the product denoted as DeAl-beta), the zeolite was degassed under vacuum at 400°C for overnight. The dried zeolite was transferred and stored inside a glovebox. Into a Teflon*-lined autoclave, the degassed DeAl-beta, metal precursor (Hf(Cp)$_2$Cl$_2$ or Me$_2$SnCl$_2$), and
toluene were added, and the container was sealed inside the glovebox. The mixtures were heated at 160°C for 16 h to graft the metal precursor to the framework sites. The solid was collected by filtration, washed with hexane, and calcined in the oven at 550°C for 3 h under dry air flow (100 mL/min) after 3 h of ramping period. A second acid treatment was performed to the product after the calcination treatment following the same procedure described for removing the framework Al.

Si-beta(F), pure silica *BEA zeolite, was prepared following the procedures reported in previous works\(^1\), with ingredient molar composition of SiO\(_2\) : TEAOH : HF : H\(_2\)O = 1 : 0.5 : 0.5 : 7.5. For preparing HfO\(_x\)/Si-beta, incipient-wetness impregnation was performed with an ethanol solution containing the desired amount of HfCp\(_2\)Cl\(_2\). The dried sample was calcined at 550°C for 3 h under dry air flow (100 mL/min).

1.3 Catalyst characterization

Powder X-ray diffraction (XRD) patterns were collected using Bruker D8 diffractometer with Nickel-filtered Cu Ka radiation (\(\lambda = 1.5418 \text{ Å}\)) for a 2\(\theta\) range of 3°–50°. \(\text{N}_2\) physisorption was carried out on Quantachrome Autosorb iQ-2 automated gas sorption system. All samples were degassed under vacuum prior to use (350°C) and the measurement was conducted at liquid nitrogen temperature (-196°C).

The activity for aldol condensation between benzaldehyde and acetone was measured
using the conditions based on a previous report\(^2\). GC-FID (Shimadzu 2014) fitted with DB-1701 column (Agilent) was used for quantification of the reactant/products. Tri-tert-butylbenzene was used as an internal standard.

The high-energy X-ray Total Scattering (HEXTS) measurements were performed on powder sample in a quartz capillary at room temperature using a horizontal two-axis diffractometer at the BL04B2 high-energy X-ray diffraction beamline (SPring-8, Japan). The energy of incident X-rays was 61.43 keV (\(\lambda = 0.2018\) Å). The maximum \(Q (Q = 4\pi \sin \theta / \lambda)\), \(Q_{\text{max}}\), collected in this study was 20 Å\(^{-1}\). The obtained data were subjected to well-established analysis procedures, such as absorption, background, polarization and Compton scattering corrections, and subsequently normalized to give a Faber–Ziman total structure factor \(S(Q)^{3,4}\). These collected data were used to calculate the (reduced) pair distribution function, \(G(r)\), using the following function:

\[
G(r) = 4\pi r [\rho(r) - \rho_0] = \frac{2}{\pi} \int_{Q_{\text{min}}}^{Q_{\text{max}}} Q[S(Q) - 1] \sin(Qr) dQ,
\]

where \(\rho\) is the atomic number density.

The theoretical PDFs were calculated using PDFgui software\(^5\), and information regarding various crystal structures were taken from the following literatures; cubic\(^6\), monoclinic\(^7\), orthorhombic\(^8\) HfO\(_2\) and cassiterite\(^9\).

The following definitions were used to quantify the catalytic testing results:
Conversion [%] = moles of reactant consumed / moles of reactant fed × 100

Selectivity [%] = moles of product / moles of reactant consumed × 100
2. Theory and the calculation methods for d-PDF analysis

An unique feature of PDF is its linearity\(^{10}\), as shown in eq (1), to describe the pair distribution function, \(G(r) \), of a binary phase admixture of pure phase A and pure phase B by a linear addition of each of the pair distribution functions, \(G(r) \).

\[
G_{\text{Mixture}}(r) = x_A G_A(r) + x_B G_B(r) + x_{A-B} G_{A-B}(r) \cdots (1)
\]

Where \(x_A, x_B, \) and \(x_{A-B} \) are coefficients and \(G_{\text{Mixture}}(r), G_A(r), G_B(r), \) and \(G_{A-B}(r) \) represent the pair distribution functions describing the structure of the mixture, phase A, phase B, and the interatomic correlations between phases A and B. When the phases are totally independent (for example, having no atomic connectivity by chemical bondings), the following approximation holds\(^{11}\):

\[
G_{A-B}(r) = 0 \cdots (2)
\]

By modifying this equation as shown in Eq (3) below, and calculating the difference in the PDFs of mixture and B (as shown in the right side eq (3)), the structure of phase A can be extracted:

\[
x_A G_A(r) \equiv G_{\text{Mixture}}(r) - x_B G_B(r) \cdots (3)
\]

There are two things to be taken into account for the calculation of d-PDFs regarding heteroatom-containing zeolites.

1) For heteroatom-containing zeolites, the assumption made in eq (2) does not hold
because there is a direct connectivity between the heteroatom and the zeolite, and thereby, the PDF describing the surrounding environment of the heteroatom (for example Hf) including the interatomic correlations with the zeolite framework, $G_{Hf}(r)$, is extracted from the right side of eq (3). That is, eq (3) can be fixed to the following form.

$$x_AG_{Hf} (r) = G_{Mixture} (r) - x_BG_{Zeolite} (r) \cdots (4)$$

2) In X-ray experiments, the scattering factors are functions of wavenumber vector Q, and thereby, assumption that x_B stays constant does not hold in the strict sense. Thereby, in this work, $x_BG_{Zeolite}(r)$ was calculated by the following Fourier transformation equation;

$$x_BG_{Zeolite}(r) = \frac{2}{\pi} \int_{Q_{min}}^{Q_{max}} Q \left[\frac{c_B^2 \langle f_B(Q) \rangle^2}{\langle f_{Mixture}(Q) \rangle^2} F_{Zeolite}(Q) \right] \sin (Qr) dQ \cdots (5)$$

Where,

$$F_{Zeolite}(Q) = S_{Zeolite}(Q) - 1 \cdots (6)$$

c_B represents the total the atomic composition of elements in phase B (in this case zeolites) out of the whole mixture (that is the mixture of zeolite and hafnium oxide phases), and

$$\langle f_B(Q) \rangle, \langle f_{Mixture}(Q) \rangle$$ can be calculated based on the following equations.

$$\langle f_B(Q) \rangle^2 = \left(\sum_{i=1}^{B} c_i f_i \right)^2 \cdots (7)$$

$$\langle f_{Mixture}(Q) \rangle^2 = \left(\sum_{i}^{Mixture} c_i f_i \right)^2 \cdots (8)$$
Where c_i represents the atomic composition of element i, and f_i represents the X-ray scattering factor of element i.
Table S1. Results for elemental analyses of various catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Si/Hf</th>
<th>Si/Sn</th>
<th>Si/Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hf-beta(post)</td>
<td>37</td>
<td>-</td>
<td>>1000</td>
</tr>
<tr>
<td>Hf-beta(post)_AT</td>
<td>180</td>
<td>-</td>
<td>>1000</td>
</tr>
<tr>
<td>HfOₓ/Si-beta(F)</td>
<td>230</td>
<td>-</td>
<td>>1000</td>
</tr>
<tr>
<td>Sn-beta(post)</td>
<td>-</td>
<td>59</td>
<td>>1000</td>
</tr>
<tr>
<td>Sn-beta(post)_AT</td>
<td>-</td>
<td>93</td>
<td>>1000</td>
</tr>
</tbody>
</table>

Table S2. Textural properties of various catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>BET specific surface area [m² g⁻¹]</th>
<th>Micropore volume [cc g⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-beta</td>
<td>644</td>
<td>0.17</td>
</tr>
<tr>
<td>DeAl-beta</td>
<td>513</td>
<td>0.14</td>
</tr>
<tr>
<td>Hf-beta(post)</td>
<td>547</td>
<td>0.16</td>
</tr>
<tr>
<td>Hf-beta(post)_AT</td>
<td>577</td>
<td>0.17</td>
</tr>
<tr>
<td>Si-beta(F)</td>
<td>554</td>
<td>0.21</td>
</tr>
<tr>
<td>HfOₓ/Si-beta(F)</td>
<td>531</td>
<td>0.20</td>
</tr>
</tbody>
</table>

*Calculated using t-plot method
Figure S1. Crystal models of BEA and BEB zeolite polymorphs.

*BEA zeolites are obtained as an intermixture of both BEA and BEB crystal structure polymorphs. Information of the crystal structures were obtained from International Zeolite Association Structure Commission Database.

(http://www.iza-structure.org/databases/)

BEA crystal; (a = 12.66139 Å, b = 12.66139 Å, c = 26.40612Å, α=β=γ=90°)

BEB crystal; (a = 17.89654 Å, b = 17.92002 Å, c = 14.32815 Å, α=90°,β=114.803°,γ=90°)
Figure S2. \(N_2 \) adsorption desorption isotherms of zeolite samples.
Figure S3. Faber-Ziman total structure factors, $S(Q)$, of the zeolites used in this paper.
Figure S4. Comparison of the PDFs from different HfO$_2$ crystal structures.

The calculations were performed using PDFgui software5.
Figure S5. Assignment of the correlation peaks in the theoretical PDF of HfO$_2$ (monoclinic phase) made using the PDFgui software5.

For example, Hf-Hf shows the probability of finding Hf-Hf distance at a given distance, r. Most correlations visible were found to originate from Hf-Hf or Hf-O correlations (at 2.0 and 4.4 Å) due to the relatively large X-ray scattering factor by Hf compared to O.
Figure S6. d-PDF comparison of Hf-beta(post)_AT and Sn-beta(post)_AT (top) in reference to the theoretical PDFs of m-HfO$_2$ and SnO$_2$ (cassiterite).

The blue dashed lines compare the peak positions in the d-PDF analysis, and with the correlations originating from m-HfO$_2$ in the distances between 3 ~ 4.5 Å. The black dashed lines compare the peak positions in the d-PDF analysis between Hf-beta(post)_AT and Sn-beta(post)_AT at the other distances.
Figure S7. DR UV-vis spectra of various *BEA zeolites with hafnium in reference to that of bulk m-HfO$_2$.
References

