Supporting Information

for

Quantitative description of 1H SQ and DQ coherences for the hydroxyl disorder within hydrous ringwoodite

Helen Grüninger, a Adrian Schmutzler, a Renée Siegel, a Katherine Armstrong, b Daniel J. Frost b
and Jürgen Senker* a

a Anorganische Chemie III, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany.

b Bayerisches Geo-Institut, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany.

*juergen.senker@uni-bayreuth.de
1. Influence of the CSA on experimental spectra and simulations

The occurrence of spinning sidebands as shown in Fig. S1 indicate a significant contribution of the chemical shift anisotropy. We observe a slightly poorer resolution in the spinning sidebands, which is a common phenomenon for MAS NMR spectroscopy. In our case a likely explanation is a higher spin correlation in some defect types, as previously described by Schnell and Spiess\(^1\) and Zorin \(et\ al.\)^2.

\(\text{Fig. S1: } ^1\text{H MAS spin-echo of hydrous ringwoodite with two visible spinning sidebands (} v_{\text{rot.}}\text{ 40 kHz) highlighted as insets. The presence of two spinning sidebands with comparable lineshapes indicates a CSA of significant strength for all defect types and emphasizes the necessity to consider the CSA interaction in the simulations of experimental observables.}\)

Two different two-spin systems of an isolated Mg vacancy (\(\text{V}_{\text{Mg}}^{+}+2\text{H}^{**}\)) with varying strength of the CSA were used (Table S1) to test the influence of the asymmetry \(\eta\) (\(\eta = 0.0, 0.1, 0.2\)) on \(^1\text{H}-^1\text{H DQ buildup curves (Fig. S2). The resulting curves of both spin systems (SS1, SS2 Fig. S2) for the different values of } \eta \text{ are overlapping and reveal that the asymmetry has no or negligible influence on the behaviour of the DQ curves.}\)

Fig. S2: Simulated 1H-1H DQ buildup curves (R18o_8 sequence with an S_0S_{π} supercycle) of the spin systems SS1 and SS2 (Table S1) of an isolated Mg vacancy in ringwoodite with varying asymmetry η.

Table S1: Spin systems SS1 and SS2 of an isolated Mg vacancy in ringwoodite.

<table>
<thead>
<tr>
<th>Model $V_{Mg}^{'''} + 2H^{**}$</th>
<th>1H-1H distance</th>
<th>δ_{iso} (H1/H2)</th>
<th>δ_{aniso} (H1/H2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spin system 1 (SS1)</td>
<td>2.8 Å</td>
<td>9.1 / 8.5 ppm</td>
<td>-17.4 / -15.7 ppm</td>
</tr>
<tr>
<td>Spin system 2 (SS2)</td>
<td>2.7 Å</td>
<td>11.4 / 10.3 ppm</td>
<td>-29.2 / 21.9 ppm</td>
</tr>
</tbody>
</table>
2. Defect models

100 exemplary proton positions of the OH groups of each defect type extracted from the MD runs are depicted in Fig. S3. Proton H1 of the coupled defect $\text{Mg}_{\text{Si}}\text{V}_{\text{Mg}}$ “hops” after roughly 4,100 MD steps.

Fig. S3: 100 exemplary proton positions from the MD runs of a) an isolated Mg vacancy, b) an isolated Si vacancy charge balanced by four protons, c) an isolated Si vacancy charge balanced by an Mg^{2+} and two protons and d) a coupled defect with an octahedral vacancy and one Mg^{2+} on a Si site. In d) the four different OH groups (H1-H4) are specified. H1 has a mixed Si and Mg coordination sphere, while H2-4 are solely in Mg environment.

3. Comparison of 1D 1H MAS spin echos of ringwoodite

The three 1D 1H MAS spin echos of ringwoodite (Fig. S4) with interpulse delays of 25 µs ($1\ \nu_{\text{rot}}^{-1}$), 50 µs ($2\ \nu_{\text{rot}}^{-1}$, scaled by 1.15) and 75 µs ($3\ \nu_{\text{rot}}^{-1}$, scaled by 1.31) reveal that the broad components of the spectrum exhibit spin-spin relaxation times (T_2) of similar magnitude, while the sharper resonances at 1.2 and 0.8 ppm, which have previously been assigned to surface species, show slightly longer relaxations times. This behaviour allows for a quantitative description of the spectrum, since the ratio of the broad components remains virtually constant and the surface species are not considered in the description of ringwoodites defect chemistry.
4. Simulated 1H-1H DQ buildup curves

The simulated individual, as well as average 1H-1H DQ buildup curves for the four hydrous defect types are shown in Figs. S5-S7.
5. Convergence of 1H signal and average 1H-1H DQ buildup curves

Figs. S8-11 show the convergence of the two experimental observables — lineshape of the 1H signal and average 1H-1H DQ buildup curves. In each Fig, the expected 1H signal or 1H-1H DQ build up curve is shown for increments of 1,000 MD steps. The lineshape of the 1H signal (Fig. S7) for each defect type converges within 10,000 MD steps.
Fig. S8: Convergence of the calculated 1H signal in steps of 1,000 structures for an isolated Mg vacancy (a); an isolated Si vacancy charge balanced by four protons (b) or one Mg$^{2+}$ and two protons (c) and the mixed coupled defect (d).

The average 1H-1H DQ buildup curves of the isolated defect types, V_{Mg} (Fig. S9), V_{Si} and MgSi (Fig. S10) already converge after roughly 4,000 steps.

Fig. S9: Convergence of the calculated average 1H-1H DQ buildup curve in increments of 1,000 MD steps for an isolated Mg vacancy. The averaged curve over the first 1,000 steps is shown in blue, while the curve averaged over 10,000 structures is shown in red. Convergence of the 1H-1H DQ buildup curve is already reached after roughly 4,000 MD steps.
Fig. S10: Convergence of the calculated average 1H-1H DQ buildup curve in increments of 1,000 MD steps for an isolated Si vacancy charge balanced by four protons (left) and by one Mg$^{2+}$ and two protons (right). The averaged curve over the first 1,000 steps is shown in blue, while the curve averaged over 10,000 structures is shown in red. Convergence of the 1H-1H DQ buildup curves is already reached after roughly 4,000 MD steps.

The convergence of the average 1H-1H DQ buildup curves of the mixed coupled defect type Mg$_x$Si$_y$V$_{Mg}$ are depicted in Fig. S11. The curves take more steps (~9,000) to reach convergence since proton H1 “hops” to a neighbouring oxygen after roughly 4,100 MD steps in the simulation run.

Fig. S11: Convergence of the calculated average 1H-1H DQ buildup curves in increments of 1,000 MD steps for the four OH groups of the mixed coupled defect Mg$_x$Si$_y$V$_{Mg}$.

S8
6. SIMPSON input for the simulation of DQ buildup curves

In the following section a representative SIMPSON input-file of one proton configuration of a $\text{V}_\text{Mg}^{''}+ 2\text{H}^{**}$ and a one proton configuration of a $\text{Mg}_\text{Si}^{''''}+ 4\text{H}^{****}$ defect model is provided. Due to the necessity to calculate points after each RR’ block of the R18 sequence the use of propagators is not possible.

Exemplary spin-system for the $\text{V}_\text{Mg}^{''}+ 2\text{H}^{**}$ defect model:

```
spinsys {
    channels 1H
    nuclei 1H 1H
    shift 1 9.13519460534p -17.442954149273753p 0.0 -180.0 147.112680258 -96.0999976466
    shift 2 8.45403012623p -15.721046143694831p 0.0 89.5128851082 33.9049512299 90.5869044213
    dipole 1 2 -5637.1164636 0.0 31.6851345727 -78.1078876858
}
```

Exemplary spin-system for the $\text{Mg}_\text{Si}^{''''}+ 4\text{H}^{****}$ defect model:

```
spinsys {
    channels 1H
    nuclei 1H 1H 1H 1H
    shift 1 7.65570538667p -14.230231427794791p 0.0 9.56652519022e-16 89.9053170479 116.107581184
    shift 2 4.83390111118p -14.9184223233166p 0.0 2.39509235681e-13 75.7896442027 145.827201686
    shift 3 3.68098859231p -13.067138872082891p 0.0 180.0 72.0379085765 -115.290718781
    shift 4 4.09971035372p -13.67849624820266p 0.0 -180.0 65.9409116727 -176.770801038
    dipole 1 2 -9979.71504354 -0.0 90.899156288 -132.673633621
    dipole 1 3 -2207.9376203 -0.0 126.834801466 -133.940698073
    dipole 1 4 -1309.36099235 -0.0 121.542103199 -165.605453363
    dipole 2 3 -9180.32699327 -0.0 161.606622851 -137.848273934
    dipole 2 4 -3461.074725 0.0 135.429867105 161.424835593
    dipole 3 4 -14279.8642363 0.0 92.4715817321 142.809597446
}
```

General Parameters and pulse program:

```
par {
    variable N 18.
    variable n 8.
    variable nu 5.
    start_operator Inz
    detect_operator Ip
    spin_rate 40000
    gamma_angles 5
    crystal_file zcw232
    np 50
    sw spin_rate/$n
```
proton_frequency 600e6
verbose 11110
}

proc pulseq {} {
 global par
 maxdt 1.0

 #
 set rf [expr $par(spin_rate)*$par(N)/$par(n)]
 set p90 [expr 0.25e6/$rf]
 set p270 [expr 0.75e6/$rf]

 # Phase: phi, phi+pi, -phi, -phi+pi
 set ph10 [expr 180.00*$par(nu)/$par(N)]
 set ph11 [expr 180.00*$par(nu)/$par(N)+180.00]
 set ph12 [expr (-1)*180.00/$par(N)*$par(nu)+360.00]
 set ph13 [expr (-1)*180.00/$par(N)*$par(nu)+180.00]

 # Calculation of buildup curve
 # 1. Point of Buildup
 reset
 acq

 # 2. Point of buildup
 reset
 pulse $p90 $rf $ph10
 pulse $p270 $rf $ph11
 pulse $p90 $rf $ph12
 pulse $p270 $rf $ph13

 matrix set 1 totalcoherence { -2 2 }
 filter 1
 pulse $p90 $rf $ph10
 pulse $p270 $rf $ph11
 pulse $p90 $rf $ph12
 pulse $p270 $rf $ph13

 matrix set 2 totalcoherence { 0 }
 filter 2
 pulseid 1 250000 -y
acq

…. et cetera

}

proc main {} {
 global par
 set f [fsimpson]
 fexpr $f { $re } { $im }
 fsave $f $par(name).dat -xreim
}