Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

On the Mechanism of Spontaneous Thiol–Disulfide Exchange in Proteins. Electronic Supplementary Information

Marina Putzu, Frauke Gräter, Tomáš Kubař tomas.kubar@kit.edu

FIG. 1. Additional representations of free energy surfaces for the dimethyldisulfide–methylthiolate system.

FIG. 2. Additional representations of free energy surfaces for all of the small peptides considered.

Peptide	Min1		Min2		Min3	
	Popul.	ΔG	Popul.	ΔG	Popul.	ΔG
		$\rm kcal/mol$		$\rm kcal/mol$		$\rm kcal/mol$
ACACACA	0.005	3.13	0.008	2.85	0.987	0
ACAACAACA	0.056	0	0.001	3.85	0.342	0.39
ACAAACAAACA	0.072	1.50	0.021	2.23	0.907	0

TABLE I. Populations of energy minima for the disulfide exchange in peptides ACA_nCA_nCA .

Peptide	TS12	TS23	TS13
	deg	deg	deg
ACACACA	159	160	151
ACAACAACA	157	154	160
ACAAACAAACA	156	164	156

TABLE II. Geometry of transition states for the disulfide exchange in peptides ACA_nCA_nCA .

FIG. 3. Alternative representations of the free energy surfaces presented in Figs. 5, 6, 7, 9 and 10 in the main text. Free energy is given as a function of $r_1 - r_2$ and r_3 while $r_1 + r_2$ is integrated out.