Supporting Information

Unconventional Strain-Dependent Conductance Oscillations in Pristine Phosphorene

S. J. Ray*

Department of Physics, Indian Institute of Technology Patna, Bihta 801106, India; E-mail: ray@iitp.ac.in; ray.sjr@gmail.com

M. V. Kamalakar

Department of Physics and Astronomy, Uppsala University, PO Box 516, 75120, Uppsala, Sweden

^{*}Electronic address: ray.sjr@gmail.com

FIG. S1: Differential Conductance (dI/dV) as function of applied bias for various values of S_Z , corresponding to I_{AZ} geometry.

FIG. S2: Two-probe conduction geometry in Phosphorene for external strain applied along the armchair direction (S_A) and current measured along the zigzag direction (I_{ZA}) .

FIG. S3: Phosphorene based Field effect Transistor in lateral gate geometry. Two gate electrodes are placed on two sides of the channel area in the same plane.