Supplementary Information

Characterizing the hydrophobic-to-hydrophilic transition of electrolyte structuring in proton exchange membrane mimicking surfaces

Laila Moreno Ostertag 1,2,†, Xiao Ling 3,†, Katrin F. Domke 3, Sapun H. Parekh 3, Markus Valtiner 1,2

1 Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Düsseldorf, Germany

2 Institute of Applied Physics, Technische Universität Wien, Wiedner Hauptstraße 8, A-1040 Vienna, Austria

3 Department of Molecular Spectroscopy, Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany

† denotes equal contribution.

*to whom correspondence should be addressed: Markus Valtiner, valtiner@mpie.de
1. Preparation and characterization of the surfaces

<table>
<thead>
<tr>
<th>Au-substrate</th>
<th>Methods</th>
<th>Purposes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annealed Au(40)/Mica</td>
<td>A 40 nm Au layer was sputter coated on Mica and was subsequently cleaned with piranha solution (volumetric ratio of H$_2$O$_2$ and H$_2$SO$_4$ = 1:3), rinsed with MilliQ water, and dried with N$_2$ gas. The Au(40)/Mica substrates were flame annealed to make an atomically flat surface.</td>
<td>Static contact angle</td>
</tr>
<tr>
<td>Roughened Au/glass</td>
<td>200 nm Au was deposited onto a clean cleavage Mica sheet via physical vapor deposition (PVD). The Au(200)/Mica was roughened under electrochemical condition, where 0.1 M KCl solution was used and a linear potential sweep oxidation-reduction cycle (ORC) was applied to the substrates. 25 ORC cycles were applied for roughening the Au surface.1</td>
<td>Surface enhanced Raman scattering spectroscopy</td>
</tr>
<tr>
<td>Au/glue/glass</td>
<td>100 nm Au was deposited onto a freshly cleaved, clean Mica sheet via physical vapor deposition (PVD). A glass slide was subsequently cleaned with concentrated sulfuric acid, rinsed with MilliQ H$_2$O, and then rinsed with pure ethanol (Analytical standard, SIGMA-ALDRICH Chemie GmbH) following by drying with N$_2$ gas. The cleaned glass slide was glued onto the Au (100)/Mica using UV-active glue (Norland Optical Adhesive 81, Norland Products). The glass/glue/Au(100)/Mica was left under UV-light for 12 h for curing the glue. The Mica was subsequently peeled off the glass/glue/Au(100)/Mica in order to expose an atomically smooth surface.2</td>
<td>XPS; Atomic force microscopy (AFM)</td>
</tr>
</tbody>
</table>
Static contact angle

The macroscale hydrophobicity of the surface was characterized using static contact angle measurement, where 4 μL sessile (MilliQ H₂O) drop the SAM and the drop shape was analyzed using the analysis system DSA 10. The contact angles were obtained by fitting the drop contour with the Young-Laplace equation. The contact angle decreases with increasing X indicating that increasing the mole ratio of R-SO₃Na in the thiol-ethanol solutions results in increasing numbers of hydrophilic sulfonic acid groups on the surface.

2. X–ray photoelectron spectroscopy (XPS)

XPS was used to determine the thickness of self-assembled monolayer (SAM) on the Au-substrate. We used a PHI Quantera II instrument at a passing energy of 16 eV with a 24 W power. With a typical attenuation length \(\lambda \) of ~2 nm for electron attenuation in an organic matrix, the thickness \(T_{\text{SAM}} \) of a SAM with sulfonic acid headgroups can be estimated directly from the sulfur signals according to:

\[
I = I_0 e^{-\frac{T_{\text{SAM}}}{\lambda}}
\]

where \(I \) is the sulfur intensity of the sulfonic acid, which is located at the outer layer of the SAM, and \(I_0 \) is the reference intensity measured for sulfur that is bound to the gold below the SAM; \(\theta \) is the incident angle of X-ray. Based on this approach, the thickness of the SAM can be estimated at ~ 6.2 Å.

3. The extended DLVO model

We used a so-called extended DLVO model to reconstruct the total force \(F_{\text{tot}} \). The model is described as: ³

\[
F_{\text{tot}} = -\frac{R}{6} A_H(D_r)^4 \frac{4\pi \lambda_D \sigma^2 R}{\varepsilon \varepsilon_0} \left(e^{\frac{D_t}{\varepsilon_0}} + e^{-\frac{2D_t}{\varepsilon_0}} \right) - 4\pi \gamma H y e^{-\frac{D_t}{\lambda_H y}}
\]

where

\[
A_H(D_r) = \frac{\lambda_0}{D_r^2} \cdot 2 \cdot \frac{\sqrt{A_0 A_1}}{(D_r + T_{\text{SAM}})^2} + \frac{A_1}{(D_r + 2T_{\text{SAM}})^2}
\]

\(\lambda_0 = 4.5 \times 10^{-21} \) J quantifies the interaction between hydrocarbons and \(A_1 = 400 \times 10^{-21} \) J quantifies the interaction between Au-tip/Au-substrate across the hydrocarbon layers; \(T_{\text{SAM}} \) is the thickness of SAM and the value in this work has been determined by the XPS results in the preceding text; \(R \) is the radius of the tip and has been restricted to a variation range between 8 nm to 40 nm; \(\gamma = 45 \) mJ/m² is the hydrophobic tension; \(\sigma \) is the surface charge density, whose value has been deduced from the fit; \(D_r \) is the distance between the tip and surface, Hydra \(H y \) and Hydra decay length \(\lambda_H y \)
are free-fitting parameters that characterize the hydrophobicity of the surface, and the values for both of them were deduced from the fit; \(\lambda_D = 9.6133 \times 10^{-10} \) m is the Debye length for the given ionic force; \(\varepsilon = 8.85 \times 10^{-12} \) F/m is the permittivity of vacuum; and \(\varepsilon_0 = 78.3 \) F/m is the dielectric constant of water.

In the extended DLVO model, the total force was represented with the sum of the Van der Waals force \((-\frac{R}{6} A_H(D_r))\), the hydration \((-4\pi R H \gamma e^{-H_D})\) force and the electric double layer force \(\left(\frac{4n\lambda_D^2}{\varepsilon_0} \frac{D_r}{2D} \frac{D_r}{2D} e^{-\lambda_D D} + e^{-\lambda_D D}\right)\). All force–distance curves in Figure 1 were fit to the model with \(H_D, \lambda_D \) and \(\sigma \) as free parameters.

4. Estimation of the surface charge density in Nafion® membranes

We estimated the charge surface density of the ionic water channels in commercial Nafion® membranes as explained below. Commercial Nafion® membranes are characterized by an equivalent weight (EW), which is the dry weight of Nafion® that contains 1 mole of \(-\text{SO}_3\text{H}\) groups. For two industry standard membranes, Nafion® 212 and Nafion® 117, the EW = 1100 g. As is commonly believed, we assume the \(-\text{SO}_3\text{H}\) groups are distributed within cylindrical ionic water channels in Nafion®, and the surface density \(C_N \) [#/m^2] of \(-\text{SO}_3\text{H}\) groups can be written as \(C_N = \frac{#(\text{SO}_3\text{H})}{A} \), where \(A \) is the surface area of the cylindrical channel. \(A \) is given as \(2 \times V \times (1/L + 1/r) \), where \(V \) is the volume of all water channels, \(L \) is the total length of all the water channels, and \(r \) is the radius of the water channels. Assuming \(L >> r \), we obtained \(A \approx 2 \times V \times (1/r) \). Then, the surface density of \(-\text{SO}_3\text{H}\) in the ionic channel of a Nafion® membrane is given by:

\[
C_N \approx \frac{#(\text{SO}_3\text{H})}{2 \times V \times \frac{1}{r}}
\]

It has been reported that a dry Nafion® membrane with EW 1100 g/mol absorbs approximately 26 wt% when fully hydrated in liquid water. In other words, 1 g of the dry Nafion® membrane takes up 0.26 g of water when the membrane is fully hydrated. Therefore, the volume of water in the fully hydrated membrane is calculated as 0.26 g/\(\rho_{\text{H}_2\text{O}} \), where \(\rho_{\text{H}_2\text{O}} \) is the density of water in the membrane. For simplicity, we assume that \(\rho_{\text{H}_2\text{O}} \) equals that of bulk water (10^3 kg/m^3). Assuming all water in Nafion® resides in the channels, the channel volume channel equals water volume. Thus \(V = 0.26 \ g/\rho_{\text{H}_2\text{O}} \). The #(SO_3H) in 1 g of Nafion® is given as \(1/1100 \ [\text{mol}] \times N_A \ [\text{mol}^{-1}] \) for 1 g of dry Nafion® membrane. The average radius \(r \)
of the ionic channels in Nafion® 212 and Nafion® 117 is ~ 2.3 nm. \(^9\) Therefore, we obtained
\[C_N \approx 2.3 \times 10^{18} \text{ m}^{-2}. \]
As the –SO\(_3\)H groups have been reported to be all deprotonated in the
fully hydrated Nafion® membranes, \(^{10}\) we obtained the surface charge density \(C_s\) for Nafion®
as \[2.3 \times 10^{18} \text{ m}^{-2}/\text{m}^2 \text{ respectively}. \]
References

