Supporting Information

Dihydrochalcone molecules destabilize Alzheimer’s amyloid-β protofibrils through binding to the protofibril cavity

Yibo Jin, Yunxiang Sun, Jiangtao Lei, Guanghong Wei*

Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China
*Corresponding author: Guanghong Wei, E-mail: ghwei@fudan.edu.cn

This material contains seven supplementary figures and a movie. The movie is used to show the dynamic process of a Dih molecule entering the cavity and dissociate the edge strand at the even end from the Aβ17-42 protofibril.

![Residue-based Cα-root-mean-square fluctuations (Cα-RMSFs) of the Aβ17-42 protofibril in Aβ (A) and Aβ+Dih (B) systems.](image1)

Figure S1. Residue-based Cα-root-mean-square fluctuations (Cα-RMSFs) of the Aβ17-42 protofibril in Aβ (A) and Aβ+Dih (B) systems.

![The K28 Cα-Cα distance between each two nearest neighboring chains of the Aβ17-42 protofibril in each of the Aβ (A, B, C) and Aβ+Dih (D, E, F) systems as a function of simulation time.](image2)

Figure S2. The K28 Cα-Cα distance between each two nearest neighboring chains of the Aβ17-42 protofibril in each of the Aβ (A, B, C) and Aβ+Dih (D, E, F) systems as a function of simulation time.
Figure S3. Secondary structure analysis of the Aβ17-42 protofibril in each MD run of the Aβ and Aβ+Dih systems. (A) Secondary structure probabilities of β1 region (residues 18-26). (B) Residue-based β-sheet probabilities of the protofibril (residue 17-42).

Figure S4. Probability density function (PDF) of the intra-chain (A, C, E) and inter-chain (B, D, F) D23-K28 distance of the Aβ17-42 protofibril in each of the MD run of the Aβ+Dih system compared with the three MD runs of Aβ system.
Figure S5. Snapshots taken at nine different time points in a representative trajectory showing the dynamic process of Dih molecules entering the cavity and dissociating the edge strand at the even end of the Aβ17-42 protofibril.

Figure S6. The initial structure of U-shaped Aβ42/Aβ40 protofibrils and S-shaped Aβ42 protofibril in the absence (A, C, E) or presence of ten Dih molecules (B, D, F).
Figure S7. Snapshots taken at 12 different time points in a representative trajectory showing the dynamic process of Dih molecules entering the cavity and remodeling the S-shaped Aβ_{42} protofibril.